CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 2 of 2

_id ecaade2016_ws-folding
id ecaade2016_ws-folding
authors Akleman, Ergun, Kalantar, Negar and Borhani, Alireza
year 2016
title Folding The Unfoldable - A Method For Constructing Complex-Curved Geometry With Quad Edge Panels
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 69-72
doi https://doi.org/10.52842/conf.ecaade.2016.1.069
wos WOS:000402063700007
summary This paper explains a method will be used during a workshop for constructing complex-curved geometry with quad edge panels. In this workshop, we demonstrate that quad-edge mesh data structure can efficiently be used to construct complex large shapes. With hands-on experiments, we will show a vast variety of shapes can be constructed using square, rectangular, parallelogram and extruded-line shaped panels. In addition, using a system we have recently developed to unfold polygonal mesh, we will demonstrate how desired shapes can be constructed by using laser-cut quadrilateral panels. This approach is particularly suitable to construct complicated sculptural and architectural shapes from anisotropic materials that can only be bended in one direction.
keywords Shape Modeling; Physical Construction; Complex-Curved Geometry; Digital Fabrication
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2016_165
id ecaade2016_165
authors Kalantar, Negar, Borhani, Alireza and Akleman, Ergun
year 2016
title Nip and Tuck: A Simple Approach to Fabricate Double-Curved Surfaces with 2D Cutting
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 335-344
doi https://doi.org/10.52842/conf.ecaade.2016.1.335
wos WOS:000402063700038
summary In this paper, we introduce the Nip and Tuck Method, which provides a general approach to construct complicated shapes without using high-level software and/or without solving complex mathematical problems. Our framework is based on discrete version of Gauss-Bonnet theorem, which states that the sum of vertex angle defect in a given piecewise planar manifold or manifold with boundary mesh surface is independent of the number of vertices, faces and edges. Based on this property, architects and designers can simply introduce negative and positive curvatures in the places they want to obtain desired shapes. We presented Nip and Tuck Architecture to freshman students in beginning level design studios to design arches with modular elements along with other methods. Several groups of students, that chose to use Nip and Tuck approach to obtain individual modules, were able to design and construct unusual small-scale arches.
keywords Nip and Tuck ; Double-Curved Surfaces; Surface Active Arches; Self-Supporting Plywood Structures; Fabrication with Planner Materials; Freshman Design Studio
series eCAADe
email
last changed 2022/06/07 07:52

No more hits.

HOMELOGIN (you are user _anon_685052 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002