CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 2 of 2

_id caadria2016_187
id caadria2016_187
authors Cruz, Camilo; Justyna Karakiewicz and Michael Kirley
year 2016
title Towards the implementation of a composite Cellular Automata model for the exploration of design space
doi https://doi.org/10.52842/conf.caadria.2016.187
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 187-196
summary In this paper, we introduce a novel composite Cellular Au- tomata (CA) model to explore the space of design for human envi- ronments. Consisting of multiple, regularly spaced, interleaved 1D CA, our model provides a mechanism to evolve flexible spatial units, where the ‘cells’ are not defined as programmatic elements but as ‘form-making’ elements. The efficacy of this approach is evaluated via a standard methodology, typically used in the study of complex adaptive systems. We systematically examine the dynamics of a series of instances of the composite CA by varying initial conditions and transition rules. A measure of entropy is used to validate emergent patterns. Subsequently, we investigate whether the composite CA is capable of generating aggregate spatial units to match specific spatial configurations, using a well-known example as a benchmark. This phase allows us to bring an understanding of the results into the con- text of architectural design.
keywords Cellular automata; generative design; design space
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2024_361
id ecaade2024_361
authors Sochůrková, Petra; Devyatkina, Svetlana; Kordová, Sára; Vaško, Imrich; Tsikoliya, Shota
year 2024
title Bioreceptive Parameters for Additive Manufacturing of Clay based Composites
doi https://doi.org/10.52842/conf.ecaade.2024.1.045
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 45–54
summary Due to climate change and the problematic amount of waste and CO2 emissions in the construction industry, non-human organisms and sustainable solutions are key motivators of the study. This paper focuses on developing a bioreceptive (Guillitte, 1995) composite suitable for additive manufacturing, composed to support growth of various organisms. It investigates key properties which have shown to be beneficial for promoting biological growth, such as water absorption, water permeability, humidity, and surface texture. The study evaluates the effect of two groups of clay-based waste additives, wooden sawdust (Arslan, et al., 2021) and sediment material sourced from local tunnel excavation in Prague. Simultaneously the need for intelligent reintegration and waste use is prevalent. Additive fabrication offers the ability to test a variety of composites and (re-)integrate them into the manufacturing processes. Current approach explores how to design artificial environments/skins for greenery and small life with the potential to improve both diversity and survivability while maintaining a better climate in its immediate surroundings. Bioreceptive design has the potential to improve the quality of the urban environment and bring new aesthetic influences into it (Cruz and Beckett 2016, p. 51-64).
keywords Digital Design, Material Research, Bioreceptive Design, Robotic Fabrication, Additive Manufacturing, Experimental Pastes, Bio compatibility, Waste Materials, Clay Composites
series eCAADe
email
last changed 2024/11/17 22:05

No more hits.

HOMELOGIN (you are user _anon_71229 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002