CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id sigradi2016_399
id sigradi2016_399
authors Trujillo, Juliana Couto; Alves, Gilfranco Medeiros
year 2016
title Digital mediation and occupation of public space: hybrid spaces for connection and cultural resistance
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.14-19
summary This paper presents a specific aspect of PhD research in progress titled “Hybrid dimensions of public space: from participatory city to collaborative city”. By studying two urban interventions in the older railway complex in Campo Grande / MS, one using the video mapping and other digital graffiti techniques, the paper brings the discussion of the hybrid condition of public spaces as a locus of conflict and social interactions in cities, which allow a collective and continued construction, proposing to imagine a pluralistic and inclusive society. The technological support strengthens the connection relations, giving new meanings to the local architecture through the images projected and open space for communication, emerging the cultural resistance.
keywords Digital culture; Public Space; Collaborative process; Digital graffiti; Vídeo mapping
series SIGRADI
email
last changed 2021/03/28 19:59

_id ascaad2016_037
id ascaad2016_037
authors Wannan, Samer R.
year 2016
title Teaching Parametric Design in Architecture - A Case Study
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 357-366
summary The increasing technological advancements nowadays make the integration of digital tools and techniques in architecture pedagogy a must. A course in the department of architecture at Birzeit University in Palestine was proposed as a summer course in order to introduce students to the possibilities of using digital parametric tools and techniques in architecture design and manufacturing. In reflection of the experiment of the course, in which students were asked to design and construct a temporary pavilion, the paper will examine the potentials and challenges of using parametric digital tools in architecture design, and the way students imagine and conceive the performance of their design ideas virtually and practically. Furthermore, the project proposes that form is not constrained to the form-making process, but form must be a response to a material system and its properties, and thus material should be engaged in the design process. Initial design ideas are explored by building a parametric 3D digital model using a visual scripting platform. This virtual model allows for the evaluation of the performance of the design and the assembly method before realization and, moreover, experiments with design alternatives and forms. The final full-detailed digital model will be used in the fabrication phase to construct a one-to-one scale physical model in the real world, which gives students the chance to get sense and interact with the implemented environment and to experience their designs in real world.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ecaade2017_007
id ecaade2017_007
authors Wurzer, Gabriel, Lorenz, Wolfgang E., Cerovsek, Tomo and Martens, Bob
year 2017
title Contrasting Publications in Design and Scientific Research
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 385-394
doi https://doi.org/10.52842/conf.ecaade.2017.1.385
summary This paper explores the differences between 'design' and 'science' papers published at eCAADe conferences through use of automatic classification. The latter is conducted using a set of differentiating criteria (e.g. number of figures determines a paper to be either 'design' or 'science') which are calibrated with the help of a manual selection of papers from eCAADe 2015 as ground truth. Results show that we predict 83% of the papers correctly; experiments using data from eCAADe 2014 until eCAADe 2016 furthermore show the stability of our results. However, we are not so much after the development this automatic classification but rather want to characterize the two research cultures of design and science. This is achieved by taking a close look at the differentiating criteria, which can inform tools such as ProceeDings over possible future directions and adaptation needs.
keywords Differentiation; Design; Science; ProceeDings; CumInCAD
series eCAADe
email
last changed 2022/06/07 07:57

_id ijac201614102
id ijac201614102
authors Cifuentes Quin, Camilo Andre?s
year 2016
title The cybernetic imagination of computational architecture
source International Journal of Architectural Computing vol. 14 - no. 1, 16-29
summary Since the publication in 1948 of Norbert Wiener’s Cybernetics, this thought model has exerted a profound influence in contemporary knowledge. Such influence has been decisive for a paradigm shift in the profession of architecture and particularly for the rise of a computational perspective in architectural design. This article explores the link between the cybernetic paradigm and the conception of architectural objects as performative, responsive, intelligent, and sentient artifacts—the visions of buildings that have been central to the development of digital architecture since its early stages. This connection shows that the dominant visions of design problems associated with the development of a computational perspective in architecture have not been exclusively the result of the introduction of computer pragmatics in architectural design. On the contrary, following such scholars as Bruno Latour and Katherine Hayles, these developments must be considered as the result of a particular feedback process that includes technical aspects as well as the definition of design problems around an informational ontology and epistemology. The understanding of the intellectual foundations of digital architecture is crucial not only to promote a critical regard of its productions but to imagine scenarios for a viable cybernetic practice of computer-mediated architectural design.
keywords Architecture, cybernetics, computational design
series journal
last changed 2016/06/13 08:34

_id caadria2016_881
id caadria2016_881
authors Silvestre, Joaquim; Yasushi Ikeda and Franc?ois Gue?na
year 2016
title Artificial Imagination of Architecture with Deep Convolutional Neural Network
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 881-890
doi https://doi.org/10.52842/conf.caadria.2016.881
summary This paper attempts to determine if an Artificial Intelli- gence system using deep convolutional neural network (ConvNet) will be able to “imagine” architecture. Imagining architecture by means of algorithms can be affiliated to the research field of generative archi- tecture. ConvNet makes it possible to avoid that difficulty by automat- ically extracting and classifying these rules as features from large ex- ample data. Moreover, image-base rendering algorithms can manipu- late those abstract rules encoded in the ConvNet. From these rules and without constructing a prior 3D model, these algorithms can generate perspective of an architectural image. To conclude, establishing shape grammar with this automated system opens prospects for generative architecture with image-base rendering algorithms.
keywords Machine learning; convolutional neural network; generative design; image-based rendering
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2016_702
id sigradi2016_702
authors Tosello, María Elena
year 2016
title Un espacio personal en la web [A personal web space]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.136-141
summary We live constantly networked, performing multiple activities in virtual spaces, which are intertwined with physical space, shaping an augmented and symbiotic cronotopo. Considering that personal space is an area surrounding individuals that provides a framework for developing activities ?wouldn’t be necessary to count on a virtual personal space? This paper presents the basis, processes and results of a didactic experience whose purpose was to imagine and design a personal web space, representing its properties and characteristics through a transmedia narrative deployed in diverse languages and media
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2016_048
id ecaade2016_048
authors Abramovic, Vasilija and Achten, Henri
year 2016
title From Moving Cube to Urban Interactive Structures - A case study
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 661-668
doi https://doi.org/10.52842/conf.ecaade.2016.1.661
wos WOS:000402063700071
summary When thinking about the future vision of a city, having in mind recent development in digital technologies and digital design tools we are inclined to expect new building structures which incorporate this technology to better help us manage the complexity of life, and to simplify our daily lives and tasks. The idea behind this research paper lies in design of such structures, which could be put inside an urban context and engage in creating a built environment that can add more to the quality of life. For us Interactive architecture is architecture that is responsive, flexible, changing, always moving and adapting to the needs of today. The world is becoming more dynamic, society is constantly changing and the new needs it develops need to be accommodated. As a result architecture has to follow. Spaces have to become more adaptive, responsive and nature concerned, while having the ability for metamorphosis, flexibility and interactivity. Taken as a starting point of this idea is a specific module from graduation project in 2014 "The Unexpected city", where it was possible to test out first ideas about interactive and flexible objects in an urban environment.
keywords Flexible architecture; Interactive architecture; Responsive systems
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2016_537
id sigradi2016_537
authors Abreu, Sandro Canavezzi de; Vasconcelos, Guilherme Nunes de; Stralen, Mateus van
year 2016
title Meta-Lab: programação de um laboratório interativo [Metal-Lab: the programming of an interactive lab]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.769-775
summary Here we discuss the technological and theoretical issues that conform the restructuring proposal of the Computer Laboratory of Escola de Arquitetura e Urbanismo da UFMG, reconfiguring it in what we call “Meta-Lab”: a space composed of programmable modules that make up the so called Sistema Hidra(!), a system structured in three levels (sensory, processor and actuator level) which receives environmental information via sensors, processes these information and changes the environment using actuators. We will address in more detail the processing level, a fundamental layer for enabling the implementation of “interactive permanency” through continuous reprogramming of interactions in Meta-Lab.
keywords Interactivity; Combinatory; Interactive Architecture
series other
type normal paper
email
last changed 2017/06/21 14:52

_id ascaad2016_052
id ascaad2016_052
authors Al-Badry, Sally; Cesar Cheng, Sebastian Lundberg and Georgios Berdos
year 2016
title Living on the Edge - Reinventing the amphibiotic habitat of the Mesopotamian Marshlands
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 513-526
summary The Mesopotamian Marshlands form one of the first landscapes where people started to transform and manipulate the natural environment in order to sustain human habitation. For thousands of years, people have transformed natural ecosystems into agricultural fields, residential clusters and other agglomerated environments to sustain long-term settlement. In this way, the development of human society has been intricately linked to the extraction, processing and consumption of natural resources. The Mesopotamian Marshlands, located in one of the hottest and most arid areas on the planet, formed a unique wetlands ecosystem, which apart from millions of people, sustained a very high number of wildlife and endemic species. Several historical, political, social and climatic changes, which densely occurred during the past century, completely destroyed the unique civilisation of the area, made all the wild flora and fauna disappear and forced hundreds of thousands of people to migrate. During the last decade, many efforts have been made to restore the marshlands. However, these efforts are lacking a comprehensive design strategy, coherent goals and deep understanding of the complex current geopolitical situation, making the restoration process an extremely difficult task. This work aims at providing strategies for recovering the Mesopotamian Marshlands, organising productive functions in order to sustain the local population and design a new inhabitation model, using advanced computational tools while taking into account the extreme climatic conditions and several unique cultural aspects. Part of the aim of this work is to advance the use of computation and explore the opportunities that digital tools afford in helping find solutions to complex design problems where various design variables need to be coordinated to satisfy the design goals. Today, advanced computation enables designers to use population consumption demands, ecological processes and environmental inputs as design parameters to develop more robust and resilient regional planning strategies. This work has the double aim of first, presenting a framework for re-inhabiting the Marshlands of Mesopotamia. Second, the work suggests a design methodology based on computer-aided design for developing and organising productive functions and patterns of human occupation in wetland environments.
series ASCAAD
email
last changed 2017/05/25 13:34

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id sigradi2016_672
id sigradi2016_672
authors Bianchi, Alejandra S.; Tripaldi, Gustavo A.; Pintos, Gladis E.; Iturriaga, José R.; Vargas, Sergio D.
year 2016
title Impacto del mundo digital sobre las representaciones gráficas del dise?o arquitectónico. La experiencia en el Taller Virtual de Arquitectura IV-UPC-UNNE [Digital world impact over the graphics representations of the architectural design. The experience in the virtual workshop of architecture IV-UPC-UNNE]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.123-128
summary The present work explains the preliminary results of the Research project that the authors are working on to know the way in which the architecture students of the UNNE represent the architectural object with analogues and digital methods. It wants to express the impact of the digital world over the representations through cross sections in five moments of their formation (beginner’s level, first, second, fourth and sixth years) in the school calendars 2013 to 2016. This qualitative research, descriptive and explanatory, expands in the virtual workshop, an innovative and unique experience of a collaborative workshop between the subjects of Architecture IV of different Universities.
keywords Graphic Representation, Architectural Design, Virtual Workshop
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2016_712
id sigradi2016_712
authors Braida, Frederico; Castro, Janaina Mendes de; Pires, Letícia Bedendo Campanha; Pereira, Luiz Antônio Rozendo; Cardoso, Marcela Martins Cavalari
year 2016
title Projetando com Blocos de Montar Digitais: Possibilidades e Limitaç?es do Jogo LEGO Digital Designer [Designing with Digital Building Blocks: Possibilities and Limitations of the LEGO Digital Designer Game]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.244-251
summary This article proposes a reflection on the possibilities of using building blocks games as educational tool applied to the universe of Architecture and Urbanism design, from literature search and empirical data gathered in a workshop coordinated by the Research Group of Languages and Expressions in Architecture, Urbanism and Design – LEAUD (Brasil). The goal is to highlight the possibilities and limitations of using projetual world of building blocks as an academic material for Architecture and Urbanism, especially after the experience with LEGO Digital Designer software.
keywords Design methodology; Building blocks; LEGO; Digital game; Design worlds
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_199
id ecaade2016_199
authors Caetano, In?s and Leit?o, António
year 2016
title Using Processing with Architectural 3D Modelling
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 405-412
doi https://doi.org/10.52842/conf.ecaade.2016.1.405
wos WOS:000402063700045
summary Although programming was considered a specialized task in the past, we have been witnessing an increasing use of algorithms in the architectural field, which has opened up a wide range of new design possibilities. This was possible in part due to programming languages that were designed to be easy to learn and use by designers and architects, such as Processing. Processing is widely used for academic purposes, whereas in the architectural practice it is not as used as other programming languages due to its limitations for 3D modeling. In this paper, we describe the use of an extended Processing implementation to generate three 3D models inspired in existing case studies, which can be visualized and edited in different CAD and BIM applications.
keywords Generative design; Programming; Processing; 3D modeling
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2016_079
id ecaade2016_079
authors Cheng, Chi-Li and Hou, June-Hao
year 2016
title Biomimetic Robotic Construction Process - An approach for adapting mass irregular-shaped natural materials
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 133-142
doi https://doi.org/10.52842/conf.ecaade.2016.1.133
wos WOS:000402063700015
summary Beaver dams are formed by two main processes. One is that beavers select proper woods for constructing. The other one is that streams aggregate those woods to be assembled. Using this approach to construction structure is suitable for natural environment. In this paper, we attempt to develop a construction process which is suitable for all-terrain construction robot in the future. This construction process is inspired by beavers' construction behavior in nature. Beavers select proper sticks to make the structure stable. We predict that particular properties of sticks contribute gravity-driven assembly of wood structure. Thus, we implement the system with machine learning to find proper properties of sticks to improve selection mechanism of construction process. During this construction process, 3D scanner on robotic arm scans and recognizes sticks on terrain, and then robot will select proper sticks and place them. After placement, the system will scan and record the results for learning mechanism.
keywords Biomimetic Design; Machine Learning; Natural Material; Point Cloud Analysis; Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2016_559
id caadria2016_559
authors Cokcan, Baris; Johannes Braumann, W. Winter and Martin Trautz
year 2016
title Robotic Production of Individualised Wood Joints
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 559-568
doi https://doi.org/10.52842/conf.caadria.2016.559
summary Modern modular constructions can consist of highly indi- vidualised elements that are produced at nearly the same efficiency as serial manufacturing. This paper focuses on the project “WoodWaves” an Info-Point for the conference World Congress of Timber Engineer- ing, which was designed with this new conception of modularity. The process utilises a robotically operated milling cutter to form block- board panels out of spruce, which make up the multifunctional infor- mation point. The entire object is produced with only sliding dovetail joints. Parametric design methods were developed to automatically adjust each joint to fit the individual conditions. New CAD/CAM in- terfaces, linking design directly with fabrication, enabled the serial production of 108 different shaped elements with a 6-axis robotic arm.
keywords Computational design; robotic production; digital fabrication; wood joints; info-point
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2016_805
id sigradi2016_805
authors Cormack, Jordan; Sweet, Kevin S.
year 2016
title Parametrically Fabricated Joints: Creating a Digital Workflow
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.412-417
summary Timber joinery for furniture and architectural purpose has always been identified as a skill or craft. The craft is the demonstration of hand machined skill and precision which is passed down or developed through the iteration of creation and refined reflection. Using digital fabrication techniques provides new, typically unexplored ways of creating and designing joints. It is as if these limitations which bind the ratio of complexity and use are stretched. This means that these joints, from a technical standpoint, can be more advanced than historically hand-made joints as digital machines are not bound by the limitations of the human. The research investigated in this paper explores the ability to create sets of joints in a parametric environment that will be produced with CNC machines, thus redefining the idea of the joint through contemporary tools of creation and fabrication. The research also aims to provide a seamless, digital workflow from the flexible, parametric creation of the joint to the final physical fabrication of it. Traditional joints, more simple in shape and assembly, were first digitally created to ease the educational challenges of learning a computational workflow that entailed the creation and fabrication of geometrically programmed joints. Following the programming and manufacturing of these traditional joints, more advanced and complex joints were created as the understanding of the capabilities of the software and CNC machines developed. The more complex and varied joints were taken from a CAD virtual environment and tested on a 3-axis CNC machine and 3D printer. The transformation from the virtual environment to the physical highlighted areas that required further research and testing. The programmed joint was then refined using the feedback from the digital to physical process creating a more robust joint that was informed by reality.
keywords Joinery; digital fabrication; parametric; scripting; machining
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_767
id caadria2016_767
authors De Azambuja Varela, Pedro and Timothy Merritt
year 2016
title CorkVault Aarhus: exploring stereotomic design space of cork and 5-axis CNC waterjet cutting
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 767-776
doi https://doi.org/10.52842/conf.caadria.2016.767
summary This paper presents the design, fabrication, and construc- tion of CorkVault Aarhus, which was designed using parametric and physics simulation software and realized from ECA cork sheets cut using a CNC waterjet cutter. We recount the lessons learned through the intensive two-week workshop that explored the limits of the mate- rials and tools through prototypes and culminated with the assembly of the final free-form vault structure. Various vaults and arch proto- types provided pedagogical and research value, building up knowledge essential to the final structure built, a human scale pavilion designed and built in three days and made of a thin shell of cork pan- els working only in compression. Three driving concepts were crucial to the experience: stereotomy as a supporting theory, expanded cork agglomerate (ECA) as the main material and water jet cutting as the principal means of fabrication. The complex vault shape called for precise 5-axis cuts supporting a new paradigm in building stereotomic components for architecture.
keywords Stereotomy; generative algorithm; digital fabrication; waterjet; cork
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia16_450
id acadia16_450
authors Estevez, Alberto T.
year 2016
title Towards Genetic Posthuman Frontiers in Architecture & Design
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 450-459
doi https://doi.org/10.52842/conf.acadia.2016.450
summary This paper includes a brief history about the beginning of the practical application of real genetics to architecture and design. Genetics introduces a privileged point-of-view for both biology and the digital realm, and these two are the main characters (the protagonists) in our posthuman society. With all of its positive and negative aspects, the study of genetics is becoming the cornerstone of our posthuman future precisely because it is at the intersection of both fields, nature and computation, and because it is a science that can command both of them from within—one practically and the other one theoretically. Meanwhile, through genetics and biodigital architecture and design, we are searching at the frontiers of knowledge for planetary benefit. In order to enlighten us about these issues, the hero image (Figure 1) has been created within the framework of scanning electron microscope (SEM) research on the genesic level, where masses of cells organize themselves into primigenic structures. Microscope study was carried out at the same time as the aforementioned genetic research in order to find structures and to learn typologies that could be of interest for architecture, here illustrated as an alternative landscape of the future. Behind this hero image is the laboratory’s first effort to begin the real application of genetics to architecture, thereby fighti hti ng for the sustainability of our entire planet and a better world
keywords performance in design, material agency, biomimetics and biological design, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id ecaade2017_046
id ecaade2017_046
authors Ezzat, Mohammed
year 2017
title Implementing the General Theory for Finding the Lightest Manmade Structures Using Voronoi and Delaunay
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 241-250
doi https://doi.org/10.52842/conf.ecaade.2017.2.241
summary In previous efforts, the foundation of a general theory that searches for finding lightest manmade structures using the Delaunay diagram or its dual the Voronoi diagram was set (Ezzat, 2016). That foundation rests on using a simple and computationally cheap Centroid method. The simple Centroid method is expected to play a crucial role in the more sophisticated general theory. The Centroid method was simply about classifying a cloud of points that represents specific load case/s stresses on any object. That classification keeps changing using mathematical functions until optimal structures are found. The point cloud then is classified into different smaller points' groups; each of these groups was represented by a single positional point that is related to the points' group mean. Those representational points were used to generate the Delaunay or Voronoi diagrams, which are tested structurally to prove or disprove the optimality of the classification. There was not a single optimized classification out of that process but rather a family of them. The point cloud was the input to the centroid structural optimization, and the family of the optimized centroid method is the input to our proposed implementation of the general theory (see Figure 1). The centroid method produced promising optimized structures that performed from five to ten times better than the other tested variations. The centroid method was implemented using the two structural plugins of Millipede and Karmaba, which run under the environment of the Grasshopper plugin. The optimization itself is done using the grasshopper's component of Galapagos.
keywords Agent-based structural optimization; Evolutionary conceptual tree representation; Heuristic structural knowledge acquisition ; Centroid structural classification optimization method
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2016_375
id sigradi2016_375
authors García Amen, Fernando; Payssé, Marcelo
year 2016
title La ciudad inteligente, un palimpsesto digital. El caso Fray Bentos [Smart City, a digital palimpsest. Case study Fray Bentos]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.849-852
summary The aim of this paper is to present the partial results of the project "La ciudad inteligente; un palimpsesto digital", which is currently being developed. The project focuses into the emerging paradigm of Smart cities from a regional perspective, transcending the timeless notion of urban-rural dichotomy, to focus on the territory as an integral cultural landscape. Reflection, but also experimentation on specific social-based technological applications applied to territory studies, constitute an essential tool in building the reality of a smart city. From the design and implementation of a strategic action plan designed to be completed in four years, this paper shows objectives, theoretical basis, used tools and partial results of the experiment carried out in the Paisaje Industrial Fray Bentos, recently declared "World Heritage" by UNESCO.
keywords Empowering; heritage; Smart cities; cultural landscape; fray bentos
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_871194 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002