CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 608

_id ecaade2016_079
id ecaade2016_079
authors Cheng, Chi-Li and Hou, June-Hao
year 2016
title Biomimetic Robotic Construction Process - An approach for adapting mass irregular-shaped natural materials
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 133-142
doi https://doi.org/10.52842/conf.ecaade.2016.1.133
wos WOS:000402063700015
summary Beaver dams are formed by two main processes. One is that beavers select proper woods for constructing. The other one is that streams aggregate those woods to be assembled. Using this approach to construction structure is suitable for natural environment. In this paper, we attempt to develop a construction process which is suitable for all-terrain construction robot in the future. This construction process is inspired by beavers' construction behavior in nature. Beavers select proper sticks to make the structure stable. We predict that particular properties of sticks contribute gravity-driven assembly of wood structure. Thus, we implement the system with machine learning to find proper properties of sticks to improve selection mechanism of construction process. During this construction process, 3D scanner on robotic arm scans and recognizes sticks on terrain, and then robot will select proper sticks and place them. After placement, the system will scan and record the results for learning mechanism.
keywords Biomimetic Design; Machine Learning; Natural Material; Point Cloud Analysis; Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2016_805
id sigradi2016_805
authors Cormack, Jordan; Sweet, Kevin S.
year 2016
title Parametrically Fabricated Joints: Creating a Digital Workflow
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.412-417
summary Timber joinery for furniture and architectural purpose has always been identified as a skill or craft. The craft is the demonstration of hand machined skill and precision which is passed down or developed through the iteration of creation and refined reflection. Using digital fabrication techniques provides new, typically unexplored ways of creating and designing joints. It is as if these limitations which bind the ratio of complexity and use are stretched. This means that these joints, from a technical standpoint, can be more advanced than historically hand-made joints as digital machines are not bound by the limitations of the human. The research investigated in this paper explores the ability to create sets of joints in a parametric environment that will be produced with CNC machines, thus redefining the idea of the joint through contemporary tools of creation and fabrication. The research also aims to provide a seamless, digital workflow from the flexible, parametric creation of the joint to the final physical fabrication of it. Traditional joints, more simple in shape and assembly, were first digitally created to ease the educational challenges of learning a computational workflow that entailed the creation and fabrication of geometrically programmed joints. Following the programming and manufacturing of these traditional joints, more advanced and complex joints were created as the understanding of the capabilities of the software and CNC machines developed. The more complex and varied joints were taken from a CAD virtual environment and tested on a 3-axis CNC machine and 3D printer. The transformation from the virtual environment to the physical highlighted areas that required further research and testing. The programmed joint was then refined using the feedback from the digital to physical process creating a more robust joint that was informed by reality.
keywords Joinery; digital fabrication; parametric; scripting; machining
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia16_394
id acadia16_394
authors Eisinger, Daniel; Putt, Steven
year 2016
title Formeta 3D: Posthuman Participant Historian
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 394-401
doi https://doi.org/10.52842/conf.acadia.2016.394
summary Formeta:3D is a project that engages the posthuman through the development of a machine that translates inputs from its surroundings into physical form in real-time. By responding to interaction with the inhabitants of its environs and incorporating the detected activity in the inflections of the produced form, it has an impact on the activity in the space, resulting in a recursive feedback loop that incorporates the digital, the physical, and the experiential. This paper presents the development of this project in detail, providing a methodology and toolchain for implementing real-time interaction with additive physical form derived from digital inputs and examining the results of an interactive installation set up to test the implementation.
keywords tool streams, digital fabrication, human-computer interaction, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id acadia16_124
id acadia16_124
authors Ferrarello, Laura
year 2016
title The Tectonic of the Hybrid Real: Data Manipulation, Oxymoron Materiality, and Human-Machine Creative Collaboration
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 124-129
doi https://doi.org/10.52842/conf.acadia.2016.124
summary This paper describes the latest progress of the design platform Digital Impressionism (DI), created by staff and students in the Information Experience Design programme at the Royal College of Art in London. DI aims to bridge human creative thinking with machine computation, under the theoretical method/concept of oxymoron tectonic. Oxymoron tectonic describes the process under which hybrid materiality, that is the materiality created between the digital and the physical, takes form in human-machine creative interactions. The methodology intends to employ multimaterial 3D printers in combination with data manipulation (a process that gives data physical substance), pointclouds, and the influence of intangible environmental data (like sound and wind) to model physical forms by interfacing digital and physical making. In DI, modeling is a hybrid set of actions that take place at the boundary of the physical and digital. Through this interactive platform, design is experienced as a complex, hybrid process, which we call a digital tectonic; forms are constructed via a creative feedback loop of human engagement with nonhuman agents to form a creative network of sustainable and interactive design and fabrication. By developing a mutual understanding of design, machines and humans work together in the process of design and making.
keywords human-computer interaction and design, craft in design computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2016_063
id caadria2016_063
authors Kawiti, Derek; Marc Aurel Schnabel and James Durcan
year 2016
title Indigenous Parametricism - Material Computation.
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 63-72
doi https://doi.org/10.52842/conf.caadria.2016.063
summary The use of computational formats and digital tools includ- ing machine fabrication by indigenous people worldwide to augment traditional practices and material culture is becoming more and more commonplace. However within the practice of architecture while there are indigenous architectural practitioners utilizing digital tools, it is unclear as to whether there is motivation to implement traditional in- digenous knowledge in conjunction with these computational instru- ments and methodologies. This paper explores how the tools might be used to investigate the potential for indigenous development, cultural empowerment and innovation. It also describes a general methodology whereby capacity can be shared between academia and indigenous groups to foster new knowledge through a recently implemented in- digenous focused design research entity, SITUA. The importance and significant research potential of what we term 'domain based research' is reinforced through the exploration of emergent materials and build- ing systems located within specific tribal domains. A recent project employing 3D clay extrusion printing is used to illustrate this ap- proach.
keywords Indigenous domain based research: Maori; materials; digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia16_254
id acadia16_254
authors Sharmin, Shahida; Ahlquist, Sean
year 2016
title Knit Architecture: Exploration of Hybrid Textile Composites Through the Activation of Integrated Material Behavior
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 254-259
doi https://doi.org/10.52842/conf.acadia.2016.254
summary The hybrid system in textile composites refers to the structural logic defined by Heino Engel, which describes a system that integrates multiple structural behaviors to achieve an equilibrium state (Engel 2007). This research explores a material system that can demonstrate a hybrid material behavior defined by the differentiated tensile and bending-active forces in a single, seamless knitted composite material. These behaviors were installed during the materialization phase and activated during the composite formation process. Here, the material formation involves two interdependent processes: 1) development of the knitted textile with integrated tensile and reinforced materials and 2) development of the composite by applying pre-stress and vacuuming the localized area with reinforcements in a consistent resin-based matrix. The flat bed industrial weft knitting machine has been utilized to develop the knitted textile component of the system with a controlled knit structure. This enables us to control the material types, densities, and cross sections with integrated multiple layers/ribs and thus, the performance of the textile at the scale of fiber structure. Both of these aspects were researched in parallel, using physical and computational methods informed and shaped by the potentials and constraints of each other. A series of studies has been utilized to develop small-scale prototypes that depict the potential of the hybrid textile composite as the generator of complex form and bending active structures. Ultimately, it indicates the possibilities of hybrid textile composite materials as self-structuring lightweight components that can perform as highly articulated and differentiated seamless architectural elements that are capable of transforming the perception of light, space, and touch.
keywords form-finding, programmable materials, composite forming processes, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2016_881
id caadria2016_881
authors Silvestre, Joaquim; Yasushi Ikeda and Franc?ois Gue?na
year 2016
title Artificial Imagination of Architecture with Deep Convolutional Neural Network
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 881-890
doi https://doi.org/10.52842/conf.caadria.2016.881
summary This paper attempts to determine if an Artificial Intelli- gence system using deep convolutional neural network (ConvNet) will be able to “imagine” architecture. Imagining architecture by means of algorithms can be affiliated to the research field of generative archi- tecture. ConvNet makes it possible to avoid that difficulty by automat- ically extracting and classifying these rules as features from large ex- ample data. Moreover, image-base rendering algorithms can manipu- late those abstract rules encoded in the ConvNet. From these rules and without constructing a prior 3D model, these algorithms can generate perspective of an architectural image. To conclude, establishing shape grammar with this automated system opens prospects for generative architecture with image-base rendering algorithms.
keywords Machine learning; convolutional neural network; generative design; image-based rendering
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2016_147
id ecaade2016_147
authors Tamke, Martin, Zwierzycki, Mateusz, Evers, Henrik Leander, Ochmann, Sebastian, Vock, Richard and Wessel, Raoul
year 2016
title Tracking Changes in Buildings over Time - Fully Automated Reconstruction and Difference Detection of 3d Scan and BIM files
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 643-651
doi https://doi.org/10.52842/conf.ecaade.2016.2.643
wos WOS:000402064400065
summary Architectural and Engineering Communities are interested in the detection of differences between different representations of the same building. These can be the differences between the design and the as-built-state of a building, or the detection of changes that occur over time and that are documented by consecutive 3D scans. Current approaches for the detection of differences between 3D scans and 3D building models are however laborious and work only on the level of a building element. We demonstrate a novel highly automated workflow to detect differences between representations of the same building. We discuss the underlying tools and methods and the ways to communicate deviations and differences in an appropriate manner and evaluate our approach with a rich set of real world datasets.
keywords 3d scan; BIM; Machine learning; Point Clouds; Big Data
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia16_290
id acadia16_290
authors Wang, Adam; Ahlquist, Sean
year 2016
title Pneumatic Textile System
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 290-297
doi https://doi.org/10.52842/conf.acadia.2016.290
summary This paper attempts to demonstrate a seamless transformable material system through an interdependent designed assembly of two materials with different material properties (anisotropic knit textile and isotropic silicone) but similar behaviors (stretch). The transformable system is achieved by balancing the volumetric expansion through a silicone tube, under inflation, with the controlled resistance to stretch by a custom knit fabric. The use of a CNC knitting machine allows not only an opportunity to program the stretch behavior of a knit fabric, by controlling the amount of yarn material to be deposited, but also an ability to knit multiple layers of fabric simultaneously, in order to create a space capable of accommodating an external element seamlessly. The paper will showcase a series of experiments ranging from the initial search for compatible material combinations to the varied structures of the tube sleeve and its relationship with surrounding region. The final prototype attempts to utilize the various behavioral properties of the material system learned from the experiments to create a transformable three-dimensional structure.
keywords fabric, knit, cnc knitting, pneumatic textile, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id acadia20_238
id acadia20_238
authors Zhang, Hang
year 2020
title Text-to-Form
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 238-247.
doi https://doi.org/10.52842/conf.acadia.2020.1.238
summary Traditionally, architects express their thoughts on the design of 3D architectural forms via perspective renderings and standardized 2D drawings. However, as architectural design is always multidimensional and intricate, it is difficult to make others understand the design intention, concrete form, and even spatial layout through simple language descriptions. Benefiting from the fast development of machine learning, especially natural language processing and convolutional neural networks, this paper proposes a Linguistics-based Architectural Form Generative Model (LAFGM) that could be trained to make 3D architectural form predictions based simply on language input. Several related works exist that focus on learning text-to-image generation, while others have taken a further step by generating simple shapes from the descriptions. However, the text parsing and output of these works still remain either at the 2D stage or confined to a single geometry. On the basis of these works, this paper used both Stanford Scene Graph Parser (Sebastian et al. 2015) and graph convolutional networks (Kipf and Welling 2016) to compile the analytic semantic structure for the input texts, then generated the 3D architectural form expressed by the language descriptions, which is also aided by several optimization algorithms. To a certain extent, the training results approached the 3D form intended in the textual description, not only indicating the tremendous potential of LAFGM from linguistic input to 3D architectural form, but also innovating design expression and communication regarding 3D spatial information.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ijac201614105
id ijac201614105
authors Ahlquist, Sean
year 2016
title Sensory material architectures: Concepts and methodologies for spatial tectonics and tactile responsivity in knitted textile hybrid structures
source International Journal of Architectural Computing vol. 14 - no. 1, 63-82
summary As the knowledge of material computation advances, continuing the seamless integration of design and fabrication, questions beyond materialization can be addressed with a focus on sensing, feedback, and engagement as critical factors of design exploration. This article will discuss a series of prototypes, design methodologies, and technologies that articulate a textile’s micro-architecture, at the scale of fibers and stitches, to instrumentalize simultaneous structural, spatial, and sensory-responsive qualities. The progression of research displays an ever-deepening instrumentalization of fiber structure and its implications to form definition and responsivity, in creating form- and bending-active structures. The research results in a more refined definition of material behavior as the innate phenomena which emerge at the moment of textile fabrication. Ultimately, the architecture, in its materiality and physical, visual, and auditory responsivity, is designed to address specific challenges for children in filtering multiple sensory inputs, an underlying factor of autism spectrum disorder.
keywords CNC Knitting, Form-active, Bending-active, Textile hybrid, Mutli-sensory
series journal
last changed 2016/06/13 08:34

_id ascaad2016_014
id ascaad2016_014
authors Ahmed, Zeeshan Y.; Freek P. Bos, Rob J.M. Wolfs and Theo A.M. Salet
year 2016
title Design Considerations Due to Scale Effects in 3D Concrete Printing
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 115-124
summary The effect of scale on different parameters of the 3D printing of concrete is explored through the design and fabrication of a 3D concrete printed pavilion. This study shows a significant gap exists between what can be generated through computer aided design (CAD) and subsequent computer aided manufacturing (generally based on CNC technology). In reality, the 3D concrete printing on the one hand poses manufacturing constraints (e.g. minimum curvature radii) due to material behaviour that is not included in current CAD/CAM software. On the other hand, the process also takes advantage of material behaviour and thus allows the creation of shapes and geometries that, too, can’t be modelled and predicted by CAD/CAM software. Particularly in the 3D printing of concrete, there is not a 1:1 relation between toolpath and printed product, as is the case with CNC milling. Material deposition is dependent on system pressure, robot speed, nozzle section, layer stacking, curvature and more – all of which are scale dependent. This paper will discuss the design and manufacturing decisions based on the effects of scale on the structural design, printed and layered geometry, robot kinematics, material behaviour, assembly joints and logistical problems. Finally, by analysing a case study pavilion, it will be explore how 3D concrete printing structures can be extended and multiplied across scales and functional domains ranging from structural to architectural elements, so that we can understand how to address questions of scale in their design.
series ASCAAD
email
last changed 2017/05/25 13:31

_id ascaad2016_048
id ascaad2016_048
authors Al Shiekh, Bassam
year 2016
title Arabic Calligraphy and Parametric Architecture - Translation from a calligraphic force to an architectural form
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 469-482
summary This paper describes an on-going research that unites two distinct and seemingly unrelated interests. One is Arabic calligraphy and the other is parametric architecture. The effort is to integrate these interests and, in doing so, balance cultural issues with technological ones, traditional with contemporary and spiritual with material. Moreover, this paper is inspired by Arabic calligraphy and its influence on Zaha Hadid’s designs; it is invigorated by parametric systems and their capacity as a source of architectural forms. This paper will observe the rising importance of computation technologies to architecture, which has always been a form of negotiation between ‘function and fiction’ and ‘force and form’. The paper proposes a Parametric Calligraphic Machine that simultaneously produces, connects and separates calligraphic surfaces, calligraphic images and calligraphic reality. Therefore, the goal is to examine this hypothesis in order to produce a set of techniques, tools and methods that inform the three-dimensional design process of Arabic calligraphy’s contemporary possibilities by addressing a process description rather than a state description of creating calligraphic images and calligraphic surfaces. The theoretical approach highlights issues pertaining to calligraphy, spatiality, translation, generative systems, parametric design, visual structure, force and form.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ascaad2016_043
id ascaad2016_043
authors Alacam, Sema; Orkan. Z. Güzelci
year 2016
title Computational Interpretations of 2D Muqarnas Projections in 3D Form Finding
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 421-430
summary In the scope of this study, we developed an algorithm to generate new 3D geometry (interpretation) of a given or generated planar projection of a muqarnas in a digital 3D modelling software (Rhinoceros), its visual scripting environment (VSE) Grasshopper and also the Python programming language. Differing from traditional methods, asymmetrical form alternatives are examined. In other words, 2D projections of muqarnas were only used as an initial geometrical pattern for generative form finding explorations. This study can be considered an attempt to explore new relations, rules and vocabulary through algorithmic form finding experiments derived from 2D muqarnas projections.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ascaad2016_047
id ascaad2016_047
authors Algeciras-Rodríguez, José
year 2016
title Trained Architectonics
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 461-468
summary The research presented here tests the capacity of artificial-neural-network (ANN) based multi-agent systems to be implemented in architectural design processes. Artificial Intelligence algorithms allow for a new approach to design, taking advantage of its generic functioning to produce meaningful outcomes. Experimentation within this project is based on Self-Organizing Maps (SOMs) and takes advantage of its behavior in topology to produce architectural geometry. SOMs as full stochastic processes involve randomness, uncertainty and unpredictability as key features to deal with during the design process. Following this behavior, SOMs are used to transmit information, which, instead of being copied, is reproduced after a learning (training) process. Pre-existent architectural objects are taken as learning models as they have been considered masterpieces. In this context, by defining the SOM input set, masterpieces become measurement elements and can be used to set a distance to the new element position in a comparatistic space. The characteristics of masterpieces get embedded within the code and are transmitted to 3D objects. SOM produced objects from a population with shared characteristics where the masterpiece position is its probabilistic center point.
series ASCAAD
email
last changed 2017/05/25 13:33

_id sigradi2016_673
id sigradi2016_673
authors Baquero, Pablo; Calixto, Victor; Orciuoli, Affonso; Vincent, Charles
year 2016
title Simulation and prototyping benefits on digital fabrication [Teaching experience on previous workshops]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.981-985
summary This paper explains how parametric methods are informed by simulation and prototyping, methods that were deployed during some series of digital fabrication workshops, their evolution and specifically with the objective of fabricating using combination of materials and CNC techniques, such as, 3d printing, laser cutting and milling machine. Teaching these workshops were the results of simulating and prototyping with students from the Biodigital Master (ESARQ UIC 2016) and a workshop done during Sigradi (Florianopolis 2015).
keywords Teaching, 3D printing, Milling, Patterns, Collaboration, Fabrication
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_055
id ecaade2016_055
authors Baranovskaya, Yuliya, Prado, Marshall, Dörstelmann, Moritz and Menges, Achim
year 2016
title Knitflatable Architecture - Pneumatically Activated Preprogrammed Knitted Textiles
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 571-580
doi https://doi.org/10.52842/conf.ecaade.2016.1.571
wos WOS:000402063700062
summary Textiles are widely used in architecture for tensile structures, as they are lightweight and can easily span large distances. These structures typically require an external framework for a support. Inflatable structures are self-supporting but are limited to relatively simple forms or require complex and predetermined cut patterns. The development of an adaptive and programmable textile system with an integrative method for pneumatic activation would create a novel self-supporting structure with high degree of design and architectural potential. This creates a highly integrative hybrid system where the generic pneumatic membranes are constrained by the differentiated knitted textile skin that is stretched in several directions under air pressure. This allows for an innovative, lightweight, easily transportable design, where the preprogrammed knitting pattern defines the structure, geometry and formation, activated under pneumatic pressure.
keywords programming textiles; binary textiles; analogue computing; air inflation; grading textile properties
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia16_362
id acadia16_362
authors Beesley, Philip; Ilgun, Zeliha, Asya; Bouron, Giselle; Kadish, David; Prosser, Jordan; Gorbet, Rob; Kulic, Dana; Nicholas, Paul; Zwierzycki, Mateusz
year 2016
title Hybrid Sentient Canopy: An implementation and visualization of proprioreceptive curiosity-based machine learning
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 362-371
doi https://doi.org/10.52842/conf.acadia.2016.362
summary This paper describes the development of a sentient canopy that interacts with human visitors by using its own internal motivation. Modular curiosity-based machine learning behaviour is supported by a highly distributed system of microprocessor hardware integrated within interlinked cellular arrays of sound, light, kinetic actuators and proprioreceptive sensors in a resilient physical scaffolding system. The curiosity-based system involves exploration by employing an expert system composed of archives of information from preceding behaviours, calculating potential behaviours together with locations and applications, executing behaviour and comparing result to prediction. Prototype architectural structures entitled Sentient Canopy and Sentient Chamber developed during 2015 and 2016 were developed to support this interactive behaviour, integrating new communications protocols and firmware, and a hybrid proprioreceptive system that configured new electronics with sound, light, and motion sensing capable of internal machine sensing and externally- oriented sensing for human interaction. Proprioreception was implemented by producing custom electronics serving photoresistors, pitch-sensing microphones, and accelerometers for motion and position, coupled to sound, light and motion-based actuators and additional infrared sensors designed for sensing of human gestures. This configuration provided the machine system with the ability to calculate and detect real-time behaviour and to compare this to models of behaviour predicted within scripted routines. Testbeds located at the Living Architecture Systems Group/Philip Beesley Architect Inc. (LASG/PBAI, Waterloo/Toronto), Centre for Information Technology (CITA, Copenhagen) National Academy of Sciences (NAS) in Washington DC are illustrated.
keywords intedisciplinary/collaborative design, intelligent environments, artificial intelligence, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id sigradi2016_724
id sigradi2016_724
authors Bomfim, Carlos Alberto Andrade; Lisboa, Bruno Teixeira Wildberger; Matos, Pedro Cesar Correia de
year 2016
title Gest?o de Obras com BIM – Uma nova era para o setor da Construç?o Civil [Construction Management with BIM – A new era for the Construction sector]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.556-560
summary The update in the design process associated with a constant search for efficient construction methods, budgets and actual schedules, passes through common terms the planning engineering and constructability, rationalization and integration. This article is based on literature review on the topic and interview with the experience of BIM core of a company in Brazil. BIM involves more than just 3D modeling and is also commonly defined into more dimensions, such as 4D (time), 5D (cost), 6D (the built - operation) and 7D (sustainability). The use of BIM can now be considered a reality that will promote changes to Construction.
keywords Project Management; Construction Management; Digital Modeling; Design Process; Simulation
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_073
id ecaade2016_073
authors Borhani, Alireza and Kalantar, Negar
year 2016
title Material Active Geometry - Constituting Programmable Materials for Responsive Building Skins
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 639-648
doi https://doi.org/10.52842/conf.ecaade.2016.1.639
wos WOS:000402063700069
summary This paper is part of a body of research developing an exploratory dialogue between the built form and the environment, via experimentation with performative geometry and material. Here, geometry is considered a design material with the specific capacity to contribute to the performative aspects and kinetic capabilities of building skins.This work opens with a review of emerging opportunities for architects to design materials. It then discusses the concept of Material Active Geometry (MAG) as a means of designing new properties for existing materials. This is followed by a discussion of MAG principles that inform the concepts of flexibility and rigidity in a 3D-printed textile called Flexible Textile Structure (FTS). This research characterizes two FTS types and discusses their potential to be employed in building skins; it also considers combinatory approaches to computational models and physical prototyping. The work concludes with a discussion of the advantages of using FTS, and provides a trajectory for future research in the field of responsive materials and systems.
keywords Programmable Material; Material Active Geometry; Flexible Textile Structures; Responsive Building Skins; Flexible yet Rigid
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_419108 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002