CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id caadria2016_631
id caadria2016_631
authors Alambeigi, Pantea; Sipei Zhao, Jane Burry and Xiaojun Qiu
year 2016
title Complex human auditory perception and simulated sound performance prediction
doi https://doi.org/10.52842/conf.caadria.2016.631
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 631-640
summary This paper reports an investigation into the degree of con- sistency between three different methods of sound performance evalu- ation through studying the performance of a built project as a case study. The non-controlled office environment with natural human speech as a source was selected for the subjective experiment and ODEON room acoustics modelling software was applied for digital simulation. The results indicate that although each participant may in- terpret and perceive sound in a particular way, the simulation can pre- dict this complexity to some extent to help architects in designing acoustically better spaces. Also the results imply that architects can make valid comparative evaluations of their designs in an architectur- ally intuitive way, using architectural language. The research acknowledges that complicated engineering approaches to subjective analysis and to controlling the test environment and participants is dif- ficult for architects to comprehend and implement.
keywords Human sound perception; acoustic simulation; experiment and measurement
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2016_343
id caadria2016_343
authors Asriana, Nova and Aswin Indraprastha
year 2016
title Making Sense of Agent-based Simulation: Developing Design Strategy for Pedestrian-centric Urban Space
doi https://doi.org/10.52842/conf.caadria.2016.343
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 343-352
summary This study investigates the relationships of field observa- tion, multi-agent simulation and space-syntax theory in spatial config- uration for developing design strategy for a case study, a tourist hub area in Musi Riverside, Palembang. Having such potential advantage and to tackle existing social and urban issues, our study developed a design approach based on multi-agent simulation enhanced by space syntax theory. The goal of this study is a deep understanding of multi agent simulation through mechanism of validation using field obser- vation and by taking into account the existing urban features. The purpose is to develop design strategy of pedestrian-centric urban space to be functioned as a tourist hub based on computational modelling. Following the paths result of pedestrian flow by multi-agents simula- tion, we elaborated the analysis of facility programming by means of Space Syntax theory. It shows the ranking of facility programs based on their relative connectivity and integration. By merging this result, it assembles programs and their circulation spaces by means of compu- tational simulation. Experimenting in both fields show a novel ap- proach for pedestrian-centric design in urban scale, particularly since behavioural models rarely used in early stage of design process. It shows that multi-agent simulation should be coupled with field obser- vation.
keywords Multi-agents simulation; network analysis; Space Syntax theory; design strategy; urban space
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2016_058
id ascaad2016_058
authors Assassi, Abdelhalim; Djemaa Benmechirah and Rachida Samai
year 2016
title Visibility Map - Exploratory study of urban planning for future city design
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 579-588
summary Through space we can read the acts and the daily activities of human being and, we can also understand different interactions within any social unit. This paper explain how specially the space type can interpret why the human being derives to a negative behavior like "Crime". So, in this study we adopt the visibility approach which is developed by the laboratory of space syntax (UCL), and which makes a sense for the link between the space design and its use and its positive or negative social consequences in the future. Then, the purpose of this paper is to present the importance of the use of visibility map which can also be an outlook approach for detecting potential hot-spots in urban planning designs specially of new cities, for avoiding the negative using of urban spaces like "Crime" in the future. The case of study is the new city of Ali Mendjeli (Constantine - Algeria), the capital of the East of Algeria known by a very fast demographic and urban growth. After analyzing a central urban neighborhood of this city using Depthmap, we found thirty-four hot-spots which can be appropriate spaces for the exercise of crime in the future, and we found that this point was downplayed in the urban planning designs before the realization of Ali Mendjeli new city.
series ASCAAD
email
last changed 2017/05/25 13:34

_id ascaad2016_027
id ascaad2016_027
authors Cocho-Bermejo, Ana
year 2016
title Time in Adaptable Architecture - Deployable emergency intelligent membrane
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 249-258
summary The term "Parametricism" widespread mainly by Patrick Schumacher (Schumacher, 2008) is worthy of study. Developing the concept of Human Oriented Parametric Architecture, the need of implementing time as the lost parameter in current adaptive design techniques will be discussed. Morphogenetic processes ideas will be discussed through the principle of an adaptable membrane as a case study. A model implementing a unique Arduino[i] on the façade will control its patterns performance through an Artificial Neural Network that will understand the kind of scenario the building is in, activating a Genetic Algorithm that will optimize the insulation performance of the ETFE pillows. The system will work with a global behavior for façade pattern performance and with a local one for each pillow, giving the option of individual sun-shading control. Machine learning implementation will give the façade the possibility to learn from the efficacy of its decisions through time, eliminating the need of a general on-off behavior.
series ASCAAD
email
last changed 2017/05/25 13:31

_id caadria2016_415
id caadria2016_415
authors Crolla, Kristof and Adam Fingrut
year 2016
title Protocol of Error: The design and construction of a bending-active gridshell from natural bamboo
doi https://doi.org/10.52842/conf.caadria.2016.415
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 415-424
summary This paper advocates alternative methods to overcome the impossibility of realising ‘perfect’ digital designs. It discusses Hong Kong’s 2015 ‘ZCB Bamboo Pavilion’ as a methodological case study for the design and construction of architecture from unprocessed natu- ral bamboo. The paper critically evaluates protocols set up to deal with errors resulting from precise digital design systems merging with inconsistent natural resources and onsite craftsmanship. The paper starts with the geometric and tectonic description of the project, illus- trating a complex and restrictive construction context. Bamboo’s unique growth pattern, structural build-up and suitability as a bending- active material are discussed and Cantonese bamboo scaffolding craftsmanship is addressed as a starting point for the project. The pa- per covers protocols, construction drawings and assembly methods developed to allow for the incorporation and of large building toler- ances and dimensional variation of bamboo. The final as-built 3d scanned structure is compared with the original digital model. The pa- per concludes by discussing the necessity of computational architec- tural design to proactively operate within a field of real-world inde- terminacy, to focus on the development of protocols that deal with imperfections, and to redirect design from the virtual world towards the latent opportunities of the physical.
keywords Bamboo; bending-active gridshells; physics simulation; form-finding; indeterminacy
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2016_187
id caadria2016_187
authors Cruz, Camilo; Justyna Karakiewicz and Michael Kirley
year 2016
title Towards the implementation of a composite Cellular Automata model for the exploration of design space
doi https://doi.org/10.52842/conf.caadria.2016.187
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 187-196
summary In this paper, we introduce a novel composite Cellular Au- tomata (CA) model to explore the space of design for human envi- ronments. Consisting of multiple, regularly spaced, interleaved 1D CA, our model provides a mechanism to evolve flexible spatial units, where the ‘cells’ are not defined as programmatic elements but as ‘form-making’ elements. The efficacy of this approach is evaluated via a standard methodology, typically used in the study of complex adaptive systems. We systematically examine the dynamics of a series of instances of the composite CA by varying initial conditions and transition rules. A measure of entropy is used to validate emergent patterns. Subsequently, we investigate whether the composite CA is capable of generating aggregate spatial units to match specific spatial configurations, using a well-known example as a benchmark. This phase allows us to bring an understanding of the results into the con- text of architectural design.
keywords Cellular automata; generative design; design space
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2016_078
id ecaade2016_078
authors Das, Subhajit, Zolfagharian, Samaneh, Nourbakhsh, Mehdi and Haymaker, John
year 2016
title Integrated Spatial-Structural Optimization in the Conceptual Design Stage of Project - A tool to generate and optimize design solutions aiding informed decision making for Architects, Engineers and Stakeholders
doi https://doi.org/10.52842/conf.ecaade.2016.2.117
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 117-126
wos WOS:000402064400011
summary Healthcare design projects require the careful integration of spatial and structural requirements. Today, design teams typically resolve these requirements in two separate, largely sequential steps. In the first step, architects leverage their experience and vision to develop space plans that address program and goals. Next, based on the architect's recommended design, engineers generate and refine a structural design to address structural requirements. This manual process produces a very limited number of non optimal spatial and structural design solutions with unclear decision rationale. This paper presents the Integrated Spatial-Structural Optimization (ISSO) decision making methodology. ISSO supports design teams by helping them generate, analyze, and manage a vast number of integrated spatial and structural solutions. ISSO features a bi-level optimization workflow that has been customized for spatial and structural design of healthcare facilities. The paper describes implementation in the Dynamo parametric modeling platform, and retrospective validation of the algorithm and workflow on an industry case study to demonstrate how ISSO can help design teams generate, analyze, and manage more conceptual design options.
keywords Spatial Design; Generative Design; Design Optimization; Facility Planning; Design Tools; Design Automation
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia16_106
id acadia16_106
authors Das, Subhajit; Day, Colin; Hauck, John; Haymaker, John; Davis, Diana
year 2016
title Space Plan Generator: Rapid Generationn & Evaluation of Floor Plan Design Options to Inform Decision Making
doi https://doi.org/10.52842/conf.acadia.2016.106
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 106-115
summary Design exploration in architectural space planning is often constrained by tight deadlines and a need to apply necessary expertise at the right time. We hypothesize that a system that can computationally generate vast numbers of design options, respect project constraints, and analyze for client goals, can assist the design team and client to make better decisions. This paper explains a research venture built from insights into space planning from senior planners, architects, and experts in the field, coupled with algorithms for evolutionary systems and computational geometry, to develop an automated computational framework that enables rapid generation and analysis of space plan layouts. The system described below automatically generates hundreds of design options from inputs typically provided by an architect, including a site outline and program document with desired spaces, areas, quantities, and adjacencies to be satisfied. We envision that this workflow can clarify project goals early in the design process, save time, enable better resource allocation, and assist key stakeholders to make informed decisions and deliver better designs. Further, the system is tested on a case study healthcare design project with set goals and objectives.
keywords healthcare spaces, facility layout design, design optimization, decision making, binary data tree structure, generative design, automated space plans
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id caadria2016_767
id caadria2016_767
authors De Azambuja Varela, Pedro and Timothy Merritt
year 2016
title CorkVault Aarhus: exploring stereotomic design space of cork and 5-axis CNC waterjet cutting
doi https://doi.org/10.52842/conf.caadria.2016.767
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 767-776
summary This paper presents the design, fabrication, and construc- tion of CorkVault Aarhus, which was designed using parametric and physics simulation software and realized from ECA cork sheets cut using a CNC waterjet cutter. We recount the lessons learned through the intensive two-week workshop that explored the limits of the mate- rials and tools through prototypes and culminated with the assembly of the final free-form vault structure. Various vaults and arch proto- types provided pedagogical and research value, building up knowledge essential to the final structure built, a human scale pavilion designed and built in three days and made of a thin shell of cork pan- els working only in compression. Three driving concepts were crucial to the experience: stereotomy as a supporting theory, expanded cork agglomerate (ECA) as the main material and water jet cutting as the principal means of fabrication. The complex vault shape called for precise 5-axis cuts supporting a new paradigm in building stereotomic components for architecture.
keywords Stereotomy; generative algorithm; digital fabrication; waterjet; cork
series CAADRIA
email
last changed 2022/06/07 07:55

_id ascaad2016_007
id ascaad2016_007
authors Elsayed, Mohamed; Osama Tolba and Ahmed Elantably
year 2016
title Architectural Space Planning Using Parametric Modeling - Egyptian National Housing Project
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 45-54
summary The Egyptian government resorts to prototype housing for low-income citizens to meet the growing demand of the housing market. The problem with the prototype is that it does not meet specific needs. Consequently, users make modifications to the prototype without professional intervention because of the high cost. This paper discusses an automatic multi-stories space planning tool that helps low-income citizens to modify their prototype housing provided by the government. Social, spatial and functional design aspects were set in the original design prototype by an architect. The proposed tool simulates spaces spatial locations in the original design by simulating the analogy of mechanical springs through an interactive simulation of a parametric model. The authors developed the used algorithm in the generative design tool Grasshopper and the live physics engine Kangaroo, both working within the Rhino 3D environment. The algorithm has two versions, one-floor level version and two floors version targeting the wealthier users. Results indicate that this tool integrates with the exploratory nature of the design process even for non-professional users. The authors designed a tool that will help the users to study the effect of the desired modifications against the originally provided prototype, it also makes it easier for users to express their requirements to a professional designer, conserving time and financial cost.
series ASCAAD
email
last changed 2017/05/25 13:13

_id acadia16_352
id acadia16_352
authors Farahi, Behnaz
year 2016
title Caress of the Gaze: A Gaze Actuated 3D Printed Body Architecture
doi https://doi.org/10.52842/conf.acadia.2016.352
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 352-361
summary This paper describes the design process behind Caress of the Gaze, a project that represents a new approach to the design of a gaze-actuated, 3D printed body architecture—as a form of proto-architectural study—providing a framework for an interactive dynamic design. The design process engages with three main issues. Firstly, it aims to look at form or geometry as a means of controlling material behavior by exploring the tectonic properties of multi-material 3D printing technologies. Secondly, it addresses novel actuation systems by using Shape Memory Alloy (SMA) in order to achieve life-like behavior. Thirdly, it explores the possibility of engaging with interactive systems by investigating how our clothing could interact with other people as a primary interface, using vision-based eye-gaze tracking technologies. In so doing, this paper describes a radically alternative approach not only to the production of garments but also to the ways we interact with the world around us. Therefore, the paper addresses the emerging field of shape-changing 3D printed structures and interactive systems that bridge the worlds of robotics, architecture, technology, and design.
keywords eye-gaze tracking, interactive design, 3d printing, smart material, programmable matter, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id ecaade2016_224
id ecaade2016_224
authors Gerber, David and Pantazis, Evangelos
year 2016
title Design Exploring Complexity in Architectural Shells - Interactive form finding of reciprocal frames through a multi-agent system
doi https://doi.org/10.52842/conf.ecaade.2016.1.455
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 455-464
wos WOS:000402063700050
summary This paper presents an integrated workflow for interactive design of shell structures, which couples structural and environmental analysis through a multi-agent systems (MAS) for design. The work lies at the intersection of architecture, engineering and computer science research, incorporating generative design with analytical techniques. A brief review on architectural shell structures and the structural logic of reciprocal frames is described. Through the morphological study of reciprocal frames locally we seek to inform the behavior of a MAS, which integrates form-finding techniques, with daylight factor analysis (DFA) and finite element analysis (FEA) on a global configuration. An experimental design is developed in order to explore the solution space of large span free form shells with varying topologies and boundary conditions, as well as identify the relationships between local design parameters of the reciprocal frames (i.e. number of elements, profile) and the analyses (i.e. stress distribution, solar radiation) for enabling the generation of different global design alternatives. The research improves upon design decision-making latency and certainty through harnessing geometric complexity and structural form finding for early stage design. Additionally, the research improves upon design outcomes by establishing a feedback loop between design generation, analysis and performance.
keywords Generative design; computational design; multi-agent systems; shell structures; reciprocal frames; form finding; parametric design
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia16_12
id acadia16_12
authors Gerber, David Jason; Pantazis, Evangelos
year 2016
title A Multi-Agent System for Facade Design: A design methodology for Design Exploration, Analysis and Simulated Robotic Fabrication
doi https://doi.org/10.52842/conf.acadia.2016.012
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 12-23
summary For contemporary design practices, there still remains a disconnect between design tools used for early stage design exploration and performance analysis, and those used for fabrication and construction of complex tectonic architectural systems. The research brings forward downstream fabrication constraints into the up-stream design exploration and design decision making. This paper addresses the issues of developing an integrated digital design work-flow and details a research framework for the incorporation of environmental performance into a robotic fabrication for early stage design exploration and generation of intricate and complex alternative façade designs. The method allows the user to import a design surface, define design parameters, set a number of environmental performance objectives, and then simulate and select a robotic construction strategy. Based on these inputs, design alternatives are generated and evaluated in terms of their performance criteria in consideration of their robotically simulated constructability. In order to validate the proposed framework, an experimental case study of office building façade designs that are generatively created from a multi-agent system for design methodology is design explored and evaluated. Initial results define a heuristic function for improving simulated robotic constructability and illustrate the functionality of our prototype. Project limitations and future research steps are then discussed.
keywords generative design, multi-objective design optimization, robotic fabrication, simulation, design performance, design decision making
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaade2016_083
id ecaade2016_083
authors Hansen, Ellen Kathrine, Mullins, Michael Finbarr and Triantafyllidis, Georgios
year 2016
title Dynamic Light as a Transformational Tool in Computer-aided Design
doi https://doi.org/10.52842/conf.ecaade.2016.1.275
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 275-282
wos WOS:000402063700031
summary New lighting technologies may fulfill a need for holistic design methods by offering opportunities for both architects and engineers to apply methods and knowledge from media technology that combine daylight and interactive light, in order to complement and deepen an understanding of context. The framework combines daylight and interactive light and includes human needs analysis, spatial understanding, qualitative analysis, qualitative tests and visual assessments. A transdisciplinary model termed the "Architectural Experiment" is applied in a specific case by combining serial, parallel and iterative processes which include contextual analysis, architectural design, simulation, C++ programming, implementation of the dynamic smart-film diffuser, programming of voltage ranges on Arduino boards, rapid prototype construction and lighting technology.
keywords Design Tools, CAAD Education, Design Concepts ; Lighting Design
series eCAADe
email
last changed 2022/06/07 07:50

_id ijac201614403
id ijac201614403
authors Kontovourkis, Odysseas and George Tryfonos
year 2016
title Design optimization and robotic fabrication of tensile mesh structures: The development and simulation of a custom-made end-effector tool
source International Journal of Architectural Computing vol. 14 - no. 4, 333-348
summary This article presents an ongoing research, aiming to introduce a fabrication procedure for the development of tensile mesh systems. The purpose of current methodology is to establish an integrated approach that combines digital form- finding and robotic manufacturing processes by extracting data and information derived through elastic material behavior for physical implementation. This aspires to extend the capacity of robotically driven mechanisms to the fabrication of complex tensile structures and, at the same time, to reduce the defects that might occur due to the deformation of the elastic material. In this article, emphasis is given to the development of a custom-made end-effector tool, which is responsible to add elastic threads and create connections in the form of nodes. Based on additive fabrication logic, this process suggests the development of physical prototypes through a design optimization and tool-path verification.
keywords Robotic fabrication, tensile mesh structures, real-time response, end-effector tool, multi-objective gentic algorithms, structure optimization, form-finding
series journal
email
last changed 2016/12/09 10:52

_id caadria2016_363
id caadria2016_363
authors Lee, Alexander; Suleiman Alhadidi and M. Hank Haeusler
year 2016
title Developing a Workflow for Daylight Simulation
doi https://doi.org/10.52842/conf.caadria.2016.363
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 363-372
summary Daylight simulations are occasionally used as active tools in regards to local governing regulations, which are necessary for providing documentation. Simulation tools have been avoided in the past due to their barriers. Daylight simulation tools are used within documentation design stages as ‘passive tools’, however they do not have a direct impact on the architecture design decisions, as passive tools are used by engineers usually to derive material and glass speci- fications. Recent developments within an online community have pro- vided designers with access to daylight simulation tools within a de- sign platform accessible data can be modified and represented with local governing codes to provide designers with relevant information. The paper aimed to develop an active daylight simulation tool within a design platform. Data is filtered with the Green Star benchmarks to export visual information as well as a voxel matrix instead of 2D lu- minance maps. This paper outlines a workflow of the simulation tool used to evaluate daylight performance of a selected building as a case study in real time. The paper also details potential problems and justi- fied suggestions derived from the analysis for the building to reach the requirements within the Green Star Multi Unit Residential.
keywords Data-driven design; computation environmental design; daylight simulation; Green Star
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2016_132
id ecaade2016_132
authors Mohite, Ashish and Kotnik, Toni
year 2016
title Model Translations - Studies of translations between physical and digital architectural models
doi https://doi.org/10.52842/conf.ecaade.2016.1.561
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 561-570
wos WOS:000402063700061
summary With the rise of the digital in architecture and the availability of digital fabrication tools, the interest in the material aspect of the model has intensified. At the same time, the design space for exploration of material behavior and its design potential has been extended from the physical into the digital. This has resulted in a cyclic set of translations from the physical realm into the digital by means of mathematical descriptions and back from the digital realm into the physical by means of digitally controlled fabrication processes. Despite the availability of more and more computational power and improvement of precision in simulation, these translations from the physical into the digital and vice versa can never be exact (Eco 2006), the translations from the physical model into a digital model and from the digital into the physical are "spaces of instability" (Evans 2000). The current paper explores in more detail this space of instability between physical and digital models, its potential for architectural design, and the central role of the mathematical description in this reciprocal set of translations.
keywords Architectural model; simulation; digital fabrication; material computation; material behavior
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
doi https://doi.org/10.52842/conf.acadia.2016.140
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id ijac201614208
id ijac201614208
authors Roudavski, Stanislav and Gwyllim Jahn
year 2016
title Activist systems: Futuring with living models
source International Journal of Architectural Computing vol. 14 - no. 2, 182-196
summary This article considers how computational simulation can be used to amplify imagination and make its effects sharable, persuasive and activist. It argues that this is not only possible but important for the future of design and introduces the concept of living models as a device that can express the futuring potential of such simulations. Developing this argument, the article explores whether, by postponing top-down rationalisms in favour of a ‘methodological naivete?’, designers can gain the capacity to uncover and engage with the unusual participants of the complex dynamic assemblages they aim to change. When designers collaborate with the agencies of the living models they deploy, the outcomes prove useful for the exploration of alternative values and worldviews. Explorations of this kind are significant because human designs need to improve their integrations with existing complex systems and are innovative in their ambition to see creative agency in non-human actors. In a practical demonstration of such approaches, the experiments in generative computation presented in this article illustrate that design creativity occurs through humans but not entirely because of them.
keywords Speculative design, generative design, design activism, simulation, creative computing
series journal
last changed 2016/06/13 08:34

_id acadia16_62
id acadia16_62
authors Rusenova, Gergana; Dierichs, Karola; Baharlou, Ehsan; Menges, Achim
year 2016
title Feedback- and Data-driven Design for Aggregate Architectures: Analyses of Data Collections for Physical and Numerical Prototypes of Designed Granular Materials
doi https://doi.org/10.52842/conf.acadia.2016.062
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp.62-72
summary This project contributes to the investigations in the field of aggregate architectures by linking two research areas: the numerical simulation of aggregate formations, and a concept for an online-controlled pneumatic formwork system. This paper introduces a novel approach for constructing with designed particles based on a feedback process. The overall aim was to investigate the capacity of aggregates as an architectural material system, which create emergent spatial formations. Initially the particles´ micro-mechanical behavior and the fragile stability of the formations were analyzed using numerical simulations. Based on this, an online-controlled inflatable formwork system was developed. The formwork was designed to react to the actual stability state of an aggregate formation; for this, a statistical set of simulation data was gathered, which directly informed the physical system. This overall concept was proven and verified in a one-to-one scaled physical model. The methods developed within this research provide a first set of baselines for comparison between the behavior of simulated and physical designed granular materials.
keywords simulations, designed particles, feedback-driven design, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_195564 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002