CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ascaad2016_019
id ascaad2016_019
authors Ibrahim, Magdy M.
year 2016
title 3D Printed Architecture - A new practical frontier in construction methods
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 169-178
summary It is important to discuss and compare the rationale behind the success of the additive manufacturing technology in particular industries and at a particular scale versus full-scale building construction. The comparison should include structural qualities of the possible used materials, the cost effectiveness of the process, the time factor and its value in the construction process, the mass customization potential of the technology and its effect on building forms. The current state of technology in architecture, despite huge potential, has not produced new architectural forms.
series ASCAAD
email
last changed 2017/05/25 13:31

_id acadia16_332
id acadia16_332
authors Retsin, Gilles; Garcia, Manuel Jimenez
year 2016
title Discrete Computational Methods for Robotic Additive Manufacturing: Combinatorial Toolpaths
doi https://doi.org/10.52842/conf.acadia.2016.332
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 332-341
summary The research presented in this paper is part of a larger, emerging body of research into large-scale 3D printing. The research attempts to develop a computational design method specifically for large-scale 3D printing of architecture. Influenced by the concept of Digital Materials, this research is situated within a critical discussion of what fundamentally constitutes a digital object and process. This requires a holistic understanding, taking into account both computational design and fabrication. The intrinsic constraints of the fabrication process are used as opportunities and generative drivers in the design process. The paper argues that a design method specifically for 3D printing should revolve around the question of how to organize toolpaths for the continuous addition or layering of material. Two case-study projects advance discrete methods as efficient ways to compute a continuous printing process. In contrast to continuous models, discrete models allow users to serialize problems and errors in toolpaths. This allows a local optimization of the structure, avoiding the use of global, computationally expensive, problem-solving algorithms. Both projects make use of a voxel-based approach, where a design is generated directly from the combination of thousands of serialized toolpath fragments. The understanding that serially repeated elements can be assembled into highly complex and heterogeneous structures has implications stretching beyond 3D printing. This combinatorial approach for example also becomes highly valuable for construction systems based on modularity and prefabrication.
keywords prgrammable materials, simulation and design optimization, digital fabrication, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2016_065
id ecaade2016_065
authors Henriques, Goncalo Castro
year 2016
title Responsive Systems: Foundations and Application - The importance of defining meta-systems and their methods
doi https://doi.org/10.52842/conf.ecaade.2016.1.511
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 511-520
summary Responsive architecture is often considered as one that merely adapts to change. This reflects its limited and still incipient application in architecture. Due to the current resource crisis, systemic building management is essential. This article argues that there are no established processes for creating and managing responsive architecture. To establish a foundation in this area, it claims that it is necessary to deepen knowledge about systems, computation, mathematics, biology and robotics. Despite being a vast subject, it proposes a state of the art of the systems, investigating how to operate them. A method for generating responsive systems is tested and implemented in a practical case. Two methods of adaptation are proposed and tested: static and dynamic adaptation. These methods reinforce the point that responsive architecture can use not only active mechanisms, but also passive methods embedded in its form as information. The research concludes that information management is critical to define what is designated in software engineering as architecture of the system. Thus, it suggests that it is necessary to define meta-systems and to define their methods to support the generation, fabrication, construction and operation of responsive systems.
wos WOS:000402063700056
keywords responsive systems; meta-systems; static adaptation; dynamic adaptation; heuristics
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2017_144
id ecaade2017_144
authors Lange, Christian J.
year 2017
title Elements | robotic interventions II
doi https://doi.org/10.52842/conf.ecaade.2017.1.671
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 671-678
summary Reviewing the current research trends in robotic fabrication around the world, the trajectory promises new opportunities for innovation in Architecture and the possible redefinition of the role of the Architect in the industry itself. New entrepreneurial, innovative start-ups are popping up everywhere challenging the traditional model of the architect. However, it also poses new questions and challenges in the education of the architect today. What are the appropriate pedagogical methods to instill enthusiasm for new technologies, materials, and craft? How do we avoid the pure application of pre-set tools, such as the use of the laser cutter has become, which in many schools around the world has caused problems rather than solving problems? How do we teach students to invent their tools especially in a society that doesn't have a strong background in the making? The primary focus of this paper is on how architectural CAAD/ CAM education through the use of robotic fabrication can enhance student's understanding, passion and knowledge of materiality, technology, and craftsmanship. The paper is based on the pedagogical set-up and method of an M. Arch I studio that was taught by the author in fall 2016 with the focus on robotic fabrication, materiality, traditional timber construction systems, tool design and digital and physical craftsmanship.
keywords CAAD Education, Digital Technology, Craftsmanship, Material Studies, Tool Design, Parametric Modeling, Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:52

_id sigradi2016_655
id sigradi2016_655
authors Molinas, Isabel Sabina; Cuartas, Coppelia Herrán; Mazo, Ever Pati?o; Castagno, Julián Antonio Ossa
year 2016
title Estrategias para la promoción social en el Distrito de Innovación de Medellín, Colombia. Primer Taller de Dise?o Experimental para la Ciudad. [Strategies for social promotion in the District of Innovation in Medellin, Colombia. First Experi-mental Design Workshop for the City]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.227-230
summary One of the challenges of technological development in Latin American cities is to achieve social inclusion and contribute to build a more sustainable and inclusive habitat for its inhabitants. To contribute to this goal, an alliance between Academy and State was established to promote an intervention in the Innovation District. The work focuses on the construction of in-terdisciplinary knowledge and design strategies that contribute to the common welfare. This communication outlines the workshop held in 2015 and presents some proposals of experiential education in the north of Medellin.
keywords Collaborative Design; Innovation; City; Experiential Education
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2016_216
id ecaade2016_216
authors Zarzycki, Andrzej
year 2016
title Adaptive Designs with Distributed Intelligent Systems - Building Design Applications
doi https://doi.org/10.52842/conf.ecaade.2016.1.681
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 681-690
summary This paper discusses and demonstrates an integration of embedded electronic systems utilizing distributed sensors and localized actuators to increase the adaptability and environmental performance of a building envelope. It reviews state-of-the-art technologies utilized in other fields that could be adopted into smart building designs. The case studies discussed here, sensors are embedded in construction assemblies provide a greater resolution of gathered data with a finer degree of actuation. These case studies adopt the Internet of Things (IoT) framework based on machine-to-machine (M2M) communication protocols as a potential solution for embedded building systems. stract here by clicking this paragraph.
wos WOS:000402063700073
keywords Adaptable Designs; Arduino Microcontrollers; ESP8266; Smart Buildings; Internet of Things
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia16_318
id acadia16_318
authors Huang, Alvin
year 2016
title From Bones to Bricks: Design the 3D Printed Durotaxis Chair and La Burbuja Lamp
doi https://doi.org/10.52842/conf.acadia.2016.318
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 318-325
summary Drawing inspiration from the variable density structures of bones and the self-supported cantilvers of corbelled brick arches, the Durotaxis Chair and the La Burbuja lamp explore a material-based design process by responding to the challenge of designing a 3D print, rather than 3D printing a design. As such, the fabrication method and materiality of 3D printing define the generative design constraints that inform the geometry of each. Both projects are seen as experiments in the design of 3D printed three-dimensional space packing structures that have been designed specifically for the machines by which they are manufactured. The geometry of each project has been carefully calibrated to capitalize on a selection of specific design opportunities enabled by the capabilities and constraints of additive manufacturing. The Durotaxis Chair is a half-scale prototype of a fully 3D printed multi-material rocking chair that is defined by a densely packed, variable density three-dimensional wire mesh that gradates in size, scale, density, color, and rigidity. Inspired by the variable density structure of bones, the design utilizes principal stress analysis, asymptotic stability, and ergonomics to drive the logics of the various gradient conditions. The La Burbuja Lamp is a full scale prototype for a zero-waste fully 3D printed pendant lamp. The geometric articulation of the project is defined by a cellular 3D space packing structure that is constrained to the angles of repose and back-spans required to produce un-supported 3D printing.
keywords parametic design, digital fabrication, structural analysis, additive manufacturing, 3d printing
series ACADIA
type paper
email
last changed 2022/06/07 07:50

_id sigradi2016_801
id sigradi2016_801
authors Matson, Carrie Wendt; Sweet, Kevin
year 2016
title Simplified for Resilience: A parametric investigation into a bespoke joint system for bamboo
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.405-411
summary Research reveals that most of the structural failures in a natural disaster are related to improper construction assembly methodologies related to human errors. This paper aims to reduce human errors in the building process by taking advantage of computational tools, and using a renewable building material. The research investigates the creation of a novel structural system for bamboo that is able to be repaired, replaced, altered, and easily assembled to restore any damaged building structure. Bamboo is an organic product with diameters that are irregular and unpredictable. The inconsistency in this natural product requires an adaptable construction methodology that responds to its organic nature. A customised joint system is created using parametric software that quickly adapts to the irregularity of the bamboo and are then fabricated using additive printing techniques. The parametric software gives unlimited control of the joint system based on the programmed relationships between the differentiations of each unique bamboo connection. Fabricating each unique joint gives a secure connection at each intersection facilitating an adaptable architecture, whilst reducing construction waste. This paper introduces the groundwork for the implementation of “on-site” manufacturing of a framework joint system. The manufacturing utilises the power and performance of a parametric platform with the technology of bespoke three-dimensionally printed joints – a flexible system that can respond to organic materials and natural external conditions
keywords Parametric design; Three-dimensional printing; Bamboo construction
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2016_771
id sigradi2016_771
authors Raspall, Felix; Ba?ón, Carlos
year 2016
title vMESH : How to print Architecture?
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.394-398
summary The use of 3D printing in architectural research, education and practice has been almost exclusively destined to produce physical representations – models— of designed building. Recent advances in Additive Manufacturing (AM) have exponentially increased the mechanical properties of 3D printed parts, opening new opportunities for this technology to be directly applied to functional architectural components at an increasingly larger scale. Thus, this paper examines the design, structural and aesthetic implications, as well as the feasibility of advanced 3D printing technologies in the production of functional architectural components through the design and prototyping of a customized, non-regular spatial frame system.
keywords Metal 3D Printing, Volumetric Mesh, Digital Fabrication, Parametric Design, Spatial Frames
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2016_221
id ecaade2016_221
authors Retsin, Gilles
year 2016
title Discrete Assembly and Digital Materials in Architecture
doi https://doi.org/10.52842/conf.ecaade.2016.1.143
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 143-151
summary The paper will discuss two projects which explore the territory of discrete or digital material organisations in an architectural context. Taking inspiration from the field of Digital Materials, this paper presents an approach to architectural design which is fundamentally "digital" - not just in the process but also in its physical organisation. The use of discrete and digital materials in architecture is argued for from both an architectonic point of view, as well as from efficiencies related to automation of construction. Experiments with robotic assembly are caught between on the one hand the desire to increase speed, and on the other hand increased complexity. This paper argues that robotic assembly on the scale of architecture is only feasible and scalable in the context of digital materials and discrete computation, which has a limited set of connectivity problems. The two projects are a first attempt to translate the concept of Digital Materials to the domain of architecture. The result is an architecture which is digital in its physical organisation. It demonstrates how differentiated, complex and heterogeneous spaces can be achieved with just serialised, discrete elements.
wos WOS:000402063700016
keywords Discrete Computation; Robotic Assembly; mereology; Digital Materials; Additive Assembly
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2024_361
id ecaade2024_361
authors Sochùrková, Petra; Devyatkina, Svetlana; Kordová, Sára; Vaško, Imrich; Tsikoliya, Shota
year 2024
title Bioreceptive Parameters for Additive Manufacturing of Clay based Composites
doi https://doi.org/10.52842/conf.ecaade.2024.1.045
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 45–54
summary Due to climate change and the problematic amount of waste and CO2 emissions in the construction industry, non-human organisms and sustainable solutions are key motivators of the study. This paper focuses on developing a bioreceptive (Guillitte, 1995) composite suitable for additive manufacturing, composed to support growth of various organisms. It investigates key properties which have shown to be beneficial for promoting biological growth, such as water absorption, water permeability, humidity, and surface texture. The study evaluates the effect of two groups of clay-based waste additives, wooden sawdust (Arslan, et al., 2021) and sediment material sourced from local tunnel excavation in Prague. Simultaneously the need for intelligent reintegration and waste use is prevalent. Additive fabrication offers the ability to test a variety of composites and (re-)integrate them into the manufacturing processes. Current approach explores how to design artificial environments/skins for greenery and small life with the potential to improve both diversity and survivability while maintaining a better climate in its immediate surroundings. Bioreceptive design has the potential to improve the quality of the urban environment and bring new aesthetic influences into it (Cruz and Beckett 2016, p. 51-64).
keywords Digital Design, Material Research, Bioreceptive Design, Robotic Fabrication, Additive Manufacturing, Experimental Pastes, Bio compatibility, Waste Materials, Clay Composites
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaade2016_043
id ecaade2016_043
authors Wit, Andrew and Kim, Simon
year 2016
title rolyPOLY - A Hybrid Prototype for Digital Techniques and Analog Craft in Architecture
doi https://doi.org/10.52842/conf.ecaade.2016.1.631
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 631-638
summary The rapid emergence of computational design tools, advanced material systems and robotic fabrication within the disciplines of architecture and construction has granted designers immense freedom in form and assembly, while retaining pronounced control over output quality throughout the entirety of the design and fabrication process. Simultaneously, the complexity inherent within these tools and processes can lead to a loss of craft though the production of methodologies, forms and artifacts left with extremely recognizable residues from tooling processes utilized during their production. This paper investigates the fecund intersection of digital technologies and handcraft through core-less carbon fiber reinforced polymer (CFRP) winding as a means of creating a new typology of digital craft blurring the line between human and machine. Through the lens of an innovative wound CFRP shelter rolyPOLY completed during the winter of 2015, this paper will show the exigencies and affordances between the realms of digital and analog methodologies of CFRP winding on large-scale structures.
wos WOS:000402063700068
keywords additive manufacturing; composites; form finding; craft; analog / digital
series eCAADe
email
last changed 2022/06/07 07:57

_id sigradi2016_448
id sigradi2016_448
authors Afsari, Kereshmeh; Eastman, Charles M.; Shelden, Dennis R.
year 2016
title Data Transmission Opportunities for Collaborative Cloud-Based Building Information Modeling
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.907-913
summary Collaboration within Building Information Modeling process is mainly based on file transfer while BIM data being exchanged in either vendor specific file formats or neutral format using Industry Foundation Classes (IFC). However, since the Web enables Cloud-based BIM services, it provides an opportunity to exchange data via Web transfer services. Therefore, the main objective of this paper is to investigate what features of Cloud interoperability can assist a network-based BIM data transmission for a collaborative work flow in the Architecture, Construction, and Engineering (AEC) industry. This study indicates that Cloud-BIM interoperability needs to deploy major components such as APIs, data transfer protocols, data formats, and standardization to redefine BIM data flow in the Cloud and to reshape the collaboration process.
keywords BIM; Cloud Computing; Data Transmission; Interoperability; IFC
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_797
id caadria2016_797
authors Agusti?-Juan, Isolda and Guillaume Habert
year 2016
title An environmental perspective on digital fabrication in architecture and construction
doi https://doi.org/10.52842/conf.caadria.2016.797
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 797-806
summary Digital fabrication processes and technologies are becom- ing an essential part of the modern product manufacturing. As the use of 3D printing grows, potential applications into large scale processes are emerging. The combined methods of computational design and robotic fabrication have demonstrated potential to expand architectur- al design. However, factors such as material use, energy demands, du- rability, GHG emissions and waste production must be recognized as the priorities over the entire life of any architectural project. Given the recent developments at architecture scale, this study aims to investi- gate the environmental consequences and opportunities of digital fab- rication in construction. This paper presents two case studies of classic building elements digitally fabricated. In each case study, the projects were assessed according to the Life Cycle Assessment (LCA) frame- work and compared with conventional construction with similar func- tion. The analysis highlighted the importance of material-efficient de- sign to achieve high environmental benefits in digitally fabricated architecture. The knowledge established in this research should be di- rected to the development of guidelines that help designers to make more sustainable choices in the implementation of digital fabrication in architecture and construction.
keywords Digital fabrication; LCA; sustainability; environment
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2016_615
id sigradi2016_615
authors Almeida , Rafael Goffinet de; Santos, Fábio Lopes Souza
year 2016
title Um olhar sobre a relação entre sujeitos e meios técnicos: O público como construção social mediada [Looking at the relationship between subjects and technical means: The audience as mediated social construction]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.872-879
summary This article analyses some of the proposals produced in the late 1970´s by the American contemporary artist Dan Graham, in which he uses technical means to investigate the audience´s perception and behavior. The questions raised highlight reciprocity phenomena and identity constructions – factors that affect our experience and behavior in contemporary cities daily life. All of these issues derive from Graham´s investigations of the main information and communication technologies (media) produced at that time, and which continue to offer reflections on current relationship between technical means and the subject – that is, his/her condition as audience, observer, spectator or user.
keywords Dan Graham; Contemporary art; Contemporary Architecture and City; Technical means; Contemporary spatiality
series other
type normal paper
email
last changed 2017/06/21 14:49

_id lasg_whitepapers_2016_168
id lasg_whitepapers_2016_168
authors Asya Ilgun & Phil Ayres
year 2016
title Coupling Distinct Paradigms of Deposition-Based Construction for the Production of Co-occupied Boundaries
source Living Architecture Systems Group White Papers 2016 [ISBN 978-1-988366-10-4 (EPUB)] Riverside Architectural Press 2016: Toronto, Canada pp. 168 - 175
summary Living Architecture Systems Group "White Papers 2016" is a dossier produced for the occasion of the Living Architecture Systems Group launch event and symposium hosted on November 4 and 5 at the Sterling Road Studio in Toronto and the University of Waterloo School of Architecture at Cambridge. The "White Papers 2016" presents research contributions from the LASG partners, forming an overview of the partnership and highlighting oppportunities for future collaborations.
keywords design, dissipative methods, design methods, synthetic cognition, neuroscience, metabolism, STEAM, organicism, field work, responsive systems, space, visualizations, sensors, actuators, signal flows, art and technology, new media art, digital art, emerging technologies, citizen building, bioinspiration, performance, paradigms, artificial nature, virtual design, regenerative design, 4DSOUND, spatial sound, biomanufacturing, eskin, delueze, bees, robotics
last changed 2019/07/29 14:00

_id caadria2016_415
id caadria2016_415
authors Crolla, Kristof and Adam Fingrut
year 2016
title Protocol of Error: The design and construction of a bending-active gridshell from natural bamboo
doi https://doi.org/10.52842/conf.caadria.2016.415
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 415-424
summary This paper advocates alternative methods to overcome the impossibility of realising ‘perfect’ digital designs. It discusses Hong Kong’s 2015 ‘ZCB Bamboo Pavilion’ as a methodological case study for the design and construction of architecture from unprocessed natu- ral bamboo. The paper critically evaluates protocols set up to deal with errors resulting from precise digital design systems merging with inconsistent natural resources and onsite craftsmanship. The paper starts with the geometric and tectonic description of the project, illus- trating a complex and restrictive construction context. Bamboo’s unique growth pattern, structural build-up and suitability as a bending- active material are discussed and Cantonese bamboo scaffolding craftsmanship is addressed as a starting point for the project. The pa- per covers protocols, construction drawings and assembly methods developed to allow for the incorporation and of large building toler- ances and dimensional variation of bamboo. The final as-built 3d scanned structure is compared with the original digital model. The pa- per concludes by discussing the necessity of computational architec- tural design to proactively operate within a field of real-world inde- terminacy, to focus on the development of protocols that deal with imperfections, and to redirect design from the virtual world towards the latent opportunities of the physical.
keywords Bamboo; bending-active gridshells; physics simulation; form-finding; indeterminacy
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_752185 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002