CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 401

_id sigradi2016_805
id sigradi2016_805
authors Cormack, Jordan; Sweet, Kevin S.
year 2016
title Parametrically Fabricated Joints: Creating a Digital Workflow
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.412-417
summary Timber joinery for furniture and architectural purpose has always been identified as a skill or craft. The craft is the demonstration of hand machined skill and precision which is passed down or developed through the iteration of creation and refined reflection. Using digital fabrication techniques provides new, typically unexplored ways of creating and designing joints. It is as if these limitations which bind the ratio of complexity and use are stretched. This means that these joints, from a technical standpoint, can be more advanced than historically hand-made joints as digital machines are not bound by the limitations of the human. The research investigated in this paper explores the ability to create sets of joints in a parametric environment that will be produced with CNC machines, thus redefining the idea of the joint through contemporary tools of creation and fabrication. The research also aims to provide a seamless, digital workflow from the flexible, parametric creation of the joint to the final physical fabrication of it. Traditional joints, more simple in shape and assembly, were first digitally created to ease the educational challenges of learning a computational workflow that entailed the creation and fabrication of geometrically programmed joints. Following the programming and manufacturing of these traditional joints, more advanced and complex joints were created as the understanding of the capabilities of the software and CNC machines developed. The more complex and varied joints were taken from a CAD virtual environment and tested on a 3-axis CNC machine and 3D printer. The transformation from the virtual environment to the physical highlighted areas that required further research and testing. The programmed joint was then refined using the feedback from the digital to physical process creating a more robust joint that was informed by reality.
keywords Joinery; digital fabrication; parametric; scripting; machining
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_161
id ecaade2016_161
authors Nan, Cristina, Patterson, Charlie and Pedreschi, Remo
year 2016
title Digital Materialization: Additive and Robotical Manufacturing with Clay and Silicone
doi https://doi.org/10.52842/conf.ecaade.2016.1.345
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 345-354
wos WOS:000402063700039
summary Through the use of algorithmic design methods and an ever growing variety of digital fabrication tools the complexity of process in the architectural discipline seems to be increasing. As this statement might apply to a variety of different areas of computational design and process management, this perceived growing complexity does not have to be viewed as unnecessary complication of design processes, if palpable and justifiable benefits occur. This paper intends to analyse and investigate the potential arising from digital tools of fabrication, specifically robots and 3D printers, and from open source platforms on exploring and managing complexity while enabling both simplicity of process and simplicity of implementation through emerging open source cultures. Building on this assumptions, this paper explores the professional possibilities generated the implementation of robotics as part of the academic curriculum. The theoretical concept of Machinecraft will be introduced and showcased on two research project, both focussing on advanced digital tools, additive manufacturing and machine engineering. Please write your abstract here by clicking this paragraph.
keywords Additive Manufacturing; 3D Printing; Robotics; Digital Fabrication; Open Source; Architectural Education
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2016_043
id ecaade2016_043
authors Wit, Andrew and Kim, Simon
year 2016
title rolyPOLY - A Hybrid Prototype for Digital Techniques and Analog Craft in Architecture
doi https://doi.org/10.52842/conf.ecaade.2016.1.631
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 631-638
wos WOS:000402063700068
summary The rapid emergence of computational design tools, advanced material systems and robotic fabrication within the disciplines of architecture and construction has granted designers immense freedom in form and assembly, while retaining pronounced control over output quality throughout the entirety of the design and fabrication process. Simultaneously, the complexity inherent within these tools and processes can lead to a loss of craft though the production of methodologies, forms and artifacts left with extremely recognizable residues from tooling processes utilized during their production. This paper investigates the fecund intersection of digital technologies and handcraft through core-less carbon fiber reinforced polymer (CFRP) winding as a means of creating a new typology of digital craft blurring the line between human and machine. Through the lens of an innovative wound CFRP shelter rolyPOLY completed during the winter of 2015, this paper will show the exigencies and affordances between the realms of digital and analog methodologies of CFRP winding on large-scale structures.
keywords additive manufacturing; composites; form finding; craft; analog / digital
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia16_362
id acadia16_362
authors Beesley, Philip; Ilgun, Zeliha, Asya; Bouron, Giselle; Kadish, David; Prosser, Jordan; Gorbet, Rob; Kulic, Dana; Nicholas, Paul; Zwierzycki, Mateusz
year 2016
title Hybrid Sentient Canopy: An implementation and visualization of proprioreceptive curiosity-based machine learning
doi https://doi.org/10.52842/conf.acadia.2016.362
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 362-371
summary This paper describes the development of a sentient canopy that interacts with human visitors by using its own internal motivation. Modular curiosity-based machine learning behaviour is supported by a highly distributed system of microprocessor hardware integrated within interlinked cellular arrays of sound, light, kinetic actuators and proprioreceptive sensors in a resilient physical scaffolding system. The curiosity-based system involves exploration by employing an expert system composed of archives of information from preceding behaviours, calculating potential behaviours together with locations and applications, executing behaviour and comparing result to prediction. Prototype architectural structures entitled Sentient Canopy and Sentient Chamber developed during 2015 and 2016 were developed to support this interactive behaviour, integrating new communications protocols and firmware, and a hybrid proprioreceptive system that configured new electronics with sound, light, and motion sensing capable of internal machine sensing and externally- oriented sensing for human interaction. Proprioreception was implemented by producing custom electronics serving photoresistors, pitch-sensing microphones, and accelerometers for motion and position, coupled to sound, light and motion-based actuators and additional infrared sensors designed for sensing of human gestures. This configuration provided the machine system with the ability to calculate and detect real-time behaviour and to compare this to models of behaviour predicted within scripted routines. Testbeds located at the Living Architecture Systems Group/Philip Beesley Architect Inc. (LASG/PBAI, Waterloo/Toronto), Centre for Information Technology (CITA, Copenhagen) National Academy of Sciences (NAS) in Washington DC are illustrated.
keywords intedisciplinary/collaborative design, intelligent environments, artificial intelligence, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2016_079
id ecaade2016_079
authors Cheng, Chi-Li and Hou, June-Hao
year 2016
title Biomimetic Robotic Construction Process - An approach for adapting mass irregular-shaped natural materials
doi https://doi.org/10.52842/conf.ecaade.2016.1.133
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 133-142
wos WOS:000402063700015
summary Beaver dams are formed by two main processes. One is that beavers select proper woods for constructing. The other one is that streams aggregate those woods to be assembled. Using this approach to construction structure is suitable for natural environment. In this paper, we attempt to develop a construction process which is suitable for all-terrain construction robot in the future. This construction process is inspired by beavers' construction behavior in nature. Beavers select proper sticks to make the structure stable. We predict that particular properties of sticks contribute gravity-driven assembly of wood structure. Thus, we implement the system with machine learning to find proper properties of sticks to improve selection mechanism of construction process. During this construction process, 3D scanner on robotic arm scans and recognizes sticks on terrain, and then robot will select proper sticks and place them. After placement, the system will scan and record the results for learning mechanism.
keywords Biomimetic Design; Machine Learning; Natural Material; Point Cloud Analysis; Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:55

_id ascaad2016_027
id ascaad2016_027
authors Cocho-Bermejo, Ana
year 2016
title Time in Adaptable Architecture - Deployable emergency intelligent membrane
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 249-258
summary The term "Parametricism" widespread mainly by Patrick Schumacher (Schumacher, 2008) is worthy of study. Developing the concept of Human Oriented Parametric Architecture, the need of implementing time as the lost parameter in current adaptive design techniques will be discussed. Morphogenetic processes ideas will be discussed through the principle of an adaptable membrane as a case study. A model implementing a unique Arduino[i] on the façade will control its patterns performance through an Artificial Neural Network that will understand the kind of scenario the building is in, activating a Genetic Algorithm that will optimize the insulation performance of the ETFE pillows. The system will work with a global behavior for façade pattern performance and with a local one for each pillow, giving the option of individual sun-shading control. Machine learning implementation will give the façade the possibility to learn from the efficacy of its decisions through time, eliminating the need of a general on-off behavior.
series ASCAAD
email
last changed 2017/05/25 13:31

_id acadia16_116
id acadia16_116
authors Davis, Daniel
year 2016
title Evaluating Buildings with Computation and Machine Learning
doi https://doi.org/10.52842/conf.acadia.2016.116
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 116-123
summary Although computers have significantly impacted the way we design buildings, they have yet to meaningfully impact the way we evaluate buildings. In this paper we detail two case studies where computation and machine learning were used to analyze data produced by building inhabitants. We find that a building’s ‘data exhaust’ provides a rich source of information for longitudinally analyzing people’s architectural preferences. We argue that computation-driven evaluation could supplement traditional post occupancy evaluations.
keywords spatial analytics, machine learning, post occupancy evaluation
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id caadria2024_186
id caadria2024_186
authors Huang, Jingfei and Tu, Han
year 2024
title Inconsistent Affective Reaction: Sentiment of Perception and Opinion in Urban Environments
doi https://doi.org/10.52842/conf.caadria.2024.2.395
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 395–404
summary The ascension of social media platforms has transformed our understanding of urban environments, giving rise to nuanced variations in sentiment reaction embedded within human perception and opinion, and challenging existing multidimensional sentiment analysis approaches in urban studies. This study presents novel methodologies for identifying and elucidating sentiment inconsistency, constructing a dataset encompassing 140,750 Baidu and Tencent Street view images to measure perceptions, and 984,024 Weibo social media text posts to measure opinions. A reaction index is developed, integrating object detection and natural language processing techniques to classify sentiment in Beijing Second Ring for 2016 and 2022. Classified sentiment reaction is analysed and visualized using regression analysis, image segmentation, and word frequency based on land-use distribution to discern underlying factors. The perception affective reaction trend map reveals a shift toward more evenly distributed positive sentiment, while the opinion affective reaction trend map shows more extreme changes. Our mismatch map indicates significant disparities between the sentiments of human perception and opinion of urban areas over the years. Changes in sentiment reactions have significant relationships with elements such as dense buildings and pedestrian presence. Our inconsistent maps present perception and opinion sentiments before and after the pandemic and offer potential explanations and directions for environmental management, in formulating strategies for urban renewal.
keywords Urban Sentiment, Affective Reaction, Social Media, Machine Learning, Urban Data, Image Segmentation.
series CAADRIA
email
last changed 2024/11/17 22:05

_id ecaade2016_023
id ecaade2016_023
authors Olascoaga, Carlos Sandoval, Xu, Wenfei and Flores, Hector
year 2016
title Crowd-Sourced Neighborhoods - User-Contextualized Neighborhood Ranking
doi https://doi.org/10.52842/conf.ecaade.2016.2.019
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 19-30
wos WOS:000402064400001
summary Finding an attractive or best-fit neighborhood for a new resident of any city is not only important from the perspective of the resident him or herself, but has larger implications for developers and city planners. The environment or mood of the right neighborhood is not simply created through traditional characteristics such as income, crime, or zoning regulations - more ephemeral traits related to user-perception also have significant weight. Using datasets and tools previously unassociated with real-estate decision-making and neighborhood planning, such as social media and machine learning, we create a non-deterministic and customized way of discovering and understanding neighborhoods. Our project creates a customizable ranking system for the 195 neighborhoods in New York City that helps users find the one that best matches their preferences. Our team has developed a composite weighted score with urban spatial data and social media data to rank all NYC neighborhoods based on a series of questions asked to the user. The project's contribution is to provide a scientific and calibrated understanding of the impact that socially oriented activities and preferences have towards the uses of space.
keywords Textual Semantic analysis; machine learning; participatory planning; community detection; neighborhood definition
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2016_281
id caadria2016_281
authors Pinochet, Diego
year 2016
title Making - Gestures: Continuous design through real time Human Machine interaction
doi https://doi.org/10.52842/conf.caadria.2016.281
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 281-290
summary Design is “something that we do” that is related to our unique human condition as creative individuals, so as “making” is related to how we manifest and impress that uniqueness into our surrounding environment. As designers, the way we impress our ideas into the material world is tightly connected to a ‘continuous creative performance’ and with concepts often missing in digital design and fabrication techniques –yet present in analog processes - such as ambiguity, improvisation and imprecision. In this paper, a model of human-machine interaction is proposed, that seeks to transcend the ‘hylomorphic’ model imperative in today’s digital architectural design practice to a more performative and reciprocal form of computational making. By using body gestures and imbuing fabrication machines with behaviour, the research seeks to embrace the concept of ‘performance and error’ as promoters of creativity and cognition about the things we create, installing human as the bond of the interrelations between designing and making.
keywords Human machine interaction; computational making; machine learning; digital design and fabrication
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2016_881
id caadria2016_881
authors Silvestre, Joaquim; Yasushi Ikeda and Franc?ois Gue?na
year 2016
title Artificial Imagination of Architecture with Deep Convolutional Neural Network
doi https://doi.org/10.52842/conf.caadria.2016.881
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 881-890
summary This paper attempts to determine if an Artificial Intelli- gence system using deep convolutional neural network (ConvNet) will be able to “imagine” architecture. Imagining architecture by means of algorithms can be affiliated to the research field of generative archi- tecture. ConvNet makes it possible to avoid that difficulty by automat- ically extracting and classifying these rules as features from large ex- ample data. Moreover, image-base rendering algorithms can manipu- late those abstract rules encoded in the ConvNet. From these rules and without constructing a prior 3D model, these algorithms can generate perspective of an architectural image. To conclude, establishing shape grammar with this automated system opens prospects for generative architecture with image-base rendering algorithms.
keywords Machine learning; convolutional neural network; generative design; image-based rendering
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia16_98
id acadia16_98
authors Smith, Shane Ida; Lasch, Chris
year 2016
title Machine Learning Integration for Adaptive Building Envelopes: An Experimental Framework for Intelligent Adaptive Control
doi https://doi.org/10.52842/conf.acadia.2016.098
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 98-105
summary This paper describes the development of an Intelligent Adaptive Control (IAC) framework that uses machine learning to integrate responsive passive conditioning at the envelope into a building’s comprehensive conventional environmental control system. Initial results show that by leveraging adaptive computational control to orchestrate the building’s mechanical and passive systems together, there exists a demonstrably greater potential to maximize energy efficiency than can be gained by focusing on either system individually, while the addition of more passive conditioning strategies significantly increase human comfort, health and wellness building-wide. Implicitly, this project suggests that, given the development and ever increasing adoption of building automation systems, a significant new site for computational design in architecture is expanding within the post-occupancy operation of a building, in contrast to architects’ traditional focus on the building’s initial design. Through the development of an experimental framework that includes physical material testing linked to computational simulation, this project begins to describe a set of tools and procedures by which architects might better conceptualize, visualize, and experiment with the design of adaptive building envelopes. This process allows designers to ultimately engage in the opportunities presented by active systems that govern the daily interactions between a building, its inhabitants, and their environment long after construction is completed. Adaptive material assemblies at the envelope are given special attention since it is here that a building’s performance and urban expression are most closely intertwined.
keywords model predictive control, reinforcement learning, energy performance, adaptive envelope, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id acadia19_392
id acadia19_392
authors Steinfeld, Kyle
year 2019
title GAN Loci
doi https://doi.org/10.52842/conf.acadia.2019.392
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 392-403
summary This project applies techniques in machine learning, specifically generative adversarial networks (or GANs), to produce synthetic images intended to capture the predominant visual properties of urban places. We propose that imaging cities in this manner represents the first computational approach to documenting the Genius Loci of a city (Norberg-Schulz, 1980), which is understood to include those forms, textures, colors, and qualities of light that exemplify a particular urban location and that set it apart from similar places. Presented here are methods for the collection of urban image data, for the necessary processing and formatting of this data, and for the training of two known computational statistical models (StyleGAN (Karras et al., 2018) and Pix2Pix (Isola et al., 2016)) that identify visual patterns distinct to a given site and that reproduce these patterns to generate new images. These methods have been applied to image nine distinct urban contexts across six cities in the US and Europe, the results of which are presented here. While the product of this work is not a tool for the design of cities or building forms, but rather a method for the synthetic imaging of existing places, we nevertheless seek to situate the work in terms of computer-assisted design (CAD). In this regard, the project is demonstrative of a new approach to CAD tools. In contrast with existing tools that seek to capture the explicit intention of their user (Aish, Glynn, Sheil 2017), in applying computational statistical methods to the production of images that speak to the implicit qualities that constitute a place, this project demonstrates the unique advantages offered by such methods in capturing and expressing the tacit.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2016_147
id ecaade2016_147
authors Tamke, Martin, Zwierzycki, Mateusz, Evers, Henrik Leander, Ochmann, Sebastian, Vock, Richard and Wessel, Raoul
year 2016
title Tracking Changes in Buildings over Time - Fully Automated Reconstruction and Difference Detection of 3d Scan and BIM files
doi https://doi.org/10.52842/conf.ecaade.2016.2.643
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 643-651
wos WOS:000402064400065
summary Architectural and Engineering Communities are interested in the detection of differences between different representations of the same building. These can be the differences between the design and the as-built-state of a building, or the detection of changes that occur over time and that are documented by consecutive 3D scans. Current approaches for the detection of differences between 3D scans and 3D building models are however laborious and work only on the level of a building element. We demonstrate a novel highly automated workflow to detect differences between representations of the same building. We discuss the underlying tools and methods and the ways to communicate deviations and differences in an appropriate manner and evaluate our approach with a rich set of real world datasets.
keywords 3d scan; BIM; Machine learning; Point Clouds; Big Data
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2016_210
id ecaade2016_210
authors Abdelmohsen, Sherif, Massoud, Passaint and Elshafei, Ahmed
year 2016
title Using Tensegrity and Folding to Generate Soft Responsive Architectural Skins
doi https://doi.org/10.52842/conf.ecaade.2016.1.529
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 529-536
wos WOS:000402063700058
summary This paper describes the process of designing a prototype for a soft responsive system for a kinetic building facade. The prototype uses lightweight materials and mechanisms to generate a building facade skin that is both soft (less dependent on hard mechanical systems) and responsive (dynamically and simultaneously adapting to spatial and environmental conditions). By combining concepts stemming from both tensegrity structures and folding mechanisms, we develop a prototype that changes dynamically to produce varying facade patterns and perforations based on sensor-network data and feedback. We use radiation sensors and shape memory alloys to control the prototype mechanism and allow for the required parametric adaptation. Based on the data from the radiation sensors, the lengths of the shape memory alloys are altered using electric wires and are parametrically linked to the input data. The transformation in the resulting overall surface is directly linked to the desired levels of daylighting and solar exposure. We conclude with directions for future research, including full scale testing, advanced simulation, and multi-objective optimization.
keywords Soft responsive systems; tensegrity; folding; kinetic facades
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2016_383
id caadria2016_383
authors Beorkrem, C.; J. Ellinger, P. Bernstein and A. Hauck
year 2016
title Multivariate Schematic Design Tooling
doi https://doi.org/10.52842/conf.caadria.2016.383
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 383-394
summary This paper will examine the results from a research collaboration between (BIM Software Manufacturer) and (School), whose problem statement focused on supporting robust interoperability by defining goals focused on multivariate conceptual design tools. The collaboration included design faculty, students and software professionals, the latter providing access to a broad range of design simulation tools either commercially available or currently in development. The tools were developed first through case studies and background research, followed by the design and implementation of novel computational methods advancing the architectural design workflow by seeking to create comparative tools which allow a designer to connect multiple data typologies in a single model. With advanced computational tools employed both as standalone resources and embedded in parametric loops, we sought to provide immediate feedback on design goals.
keywords Building information modelling; simulation and prediction; education; optimization; scripting
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2017_134
id ecaade2017_134
authors Del Signore, Marcella
year 2017
title pneuSENSE - Transcoding social ecologies
doi https://doi.org/10.52842/conf.ecaade.2017.2.537
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 537-544
summary Cities are continuously produced through entropic processes that mediate between complex networked systems and the immediacy urban life. Emergent media technologies inform new relationships between information and matter, code and space to redefine new urban ecosystems. Modes of perceiving, experiencing and inhabiting cities are radically changing along with a radical transformation of the tools that we use to design. Cities as complex and systemic organisms require approaches that engage new multi-scalar strategies to connect the physical layer with the system of networked ecologies. This paper aims at investigating emerging and novel forms of reading and producing urban spaces reimagining the physical city through intelligent and mediated processes. Through data agency and responsive urban processes, the design methodology explored the materialization of a temporary pneumatic structure and membrane that tested material performance through fabrication and sensing practices through the pneuSENSE project developed in July 2016 in New York at the Brooklyn Navy Yard during the 'HyperCities' IaaC- Institute for Advanced Architecture of Catalonia - Global Summer School.
keywords responsive urban processes; data agency ; reciprocity between micro (body) and macro (environment); dynamics of social ecologies; mapped-environment
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2016_611
id caadria2016_611
authors Dritsas, Stylianos
year 2016
title An Advanced Parametric Modelling Library for Architectural and Engineering Design
doi https://doi.org/10.52842/conf.caadria.2016.611
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 611-620
summary This paper presents a design computation system support- ing scientific computing methods relevant to architectural and engi- neering design under the paradigm of visual programming. The objec- tive of this research work is to expand and advance the palette of methods employed in academic and professional design environments. The tools contain methods for linear algebra, non-linear solvers, net- work analysis and algorithms for classical operational research prob- lems such as cutting and packing, clustering and routing. A few dec- ades ago the idea that computing would become so pervasive in the realm of architecture and engineering as it is today was confronted with deep scepticism. The thesis of this paper is that while it may be equally implausible that such methods are relevant today it may be the next natural evolution in the direction of design computation. The cur- rent state of the presented software package is still in early alpha ver- sion and it is available online for evaluation.
keywords Design computation; parametric modelling; visual programming
series CAADRIA
email
last changed 2022/06/07 07:55

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 20HOMELOGIN (you are user _anon_15824 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002