CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 580

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id sigradi2016_449
id sigradi2016_449
authors Barnuevo, Thales; Sordi, Lucas De; Silva, Leandro; Silva, Neander Furtado; Aviani, Francisco Leite
year 2016
title Componente Responsivo para Fachadas: Analise e Validaç?o [Responsive component for Facades: analysis and validation]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.754-760
summary The following text reports to the development of a climatic responsive component for facades programmed to respond to the movement of the sun as a way to reduce solar gain and glare into the interior ambient with the aim to reduce building’s need for energy. This research is part of a methodology of tests to verify the relevance to develop, in the future, a real scale model into the Brazilian context.
keywords Ative facade; Responsive; Adaptive; Control
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2020_455
id sigradi2020_455
authors Bastian, Andrea Verri; Filho, Jarede Joaquim de Souza; Garcia, Júlia Assis de Souza Sampaio
year 2020
title Urban modelling for evaluating photovoltaic potential through solar radiation incidence
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 455-463
summary This study aims to better ascertain the influence that urbanistic parameters exert on the production of solar photovoltaic energy regarding different contexts in the city. Modifications implemented between the years of 2012 and 2016, especially on variables such as Maximum Lot Coverage, Floor Area Ratio, and Setbacks, have been evaluated through virtual models that cover areas in three different city districts. Amongst other implications, an increase in the area occupied by the buildings, as well as a decrease in the distance between them, occurred, causing more mutual shading and the loss of the photovoltaic potential associated with the building envelope.
keywords Urbanistic parameters, Photovoltaic solar energy, Virtual models, Architecture, Urbanism
series SIGraDi
email
last changed 2021/07/16 11:49

_id sigradi2016_637
id sigradi2016_637
authors Castro Arenas, Cristhian; Miralles, Monica
year 2016
title Naturaleza, Sinergia, Tensegridad y Biotensegridad, ?es 1 + 1 = 4? [Nature, Sinergy, Tensegrity and Biotensegrity, ?is 1 + 1 = 4?]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.118-122
summary The optimization of resources in nature has stimulated the creation of strategies to facilitate the interchange of energy, matter and information. Observation of these natural phenomena allowed Fuller to develop the concept of Tensegrity Systems in the 50's, generating a growing integration of multidisciplinary views on this subject. In this paper Tensegrity is postulated, given its peculiar synergistic qualities, as a paradigmatic and emergent concept in the projectual disciplines, both as a type of system displaying reciprocal interactions between a given number of nodes, and as a structural system with potential applications in multiple, evolving, scientific-technological fields.
keywords Sinergy; Tensegrity; Biotensegrity; Fuller; Systems
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_259
id caadria2016_259
authors Chen, Jia-Yih and Shao-Chu Huang
year 2016
title Adaptive Building Facade Optimisation: An integrated Green-BIM approach
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 259-268
doi https://doi.org/10.52842/conf.caadria.2016.259
summary This study focused on the optimal design of adaptive build- ing fac?ade for achieving better energy performance. Iterative fac?ade components design are studied between virtual and physical models with integrated tools of BIM, parametric design and sensor devices. The main objectives of this study are: (1) exploring systematic design process via the analysis of adaptive components in responsive fac?ade design; (2) developing compliance checking system for green building regulations; (3) developing optimization system for adaptive fac?ade design process. This paper demonstrated the integration of various digital design methods and concluded with the energy modelling re- sults of a demo project unit for various fac?ade component designs.
keywords Building fac?ade design; energy performance; design optimization; parametric design; BIM
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2016_095
id ecaade2016_095
authors Doumpioti, Christina
year 2016
title Material Agency and Physical Boundaries
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 521-528
doi https://doi.org/10.52842/conf.ecaade.2016.1.521
wos WOS:000402063700057
summary The research builds on the relationship between matter and energy and the idea of boundaries as sentient interfaces capable of affecting our bodily experience and perception of space due to their inherent physical attributes. Two key issues addressed are firstly, the revisiting of the architectural boundary as a thermodynamic zone and secondly, the identification of material behaviour in relation to energy stimuli. It is argued that the transient behaviour of materials can offer an instrumental reconsideration on how architecture establishes spatial articulation through boundaries and this is demonstrated through a design-led project.
keywords thermal field; responsive materials; passively active materials; heat transfer; thermodynamic; matter and energy
series eCAADe
email
last changed 2022/06/07 07:55

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id sigradi2021_345
id sigradi2021_345
authors Felipe, Bárbara L. and Nome, Carlos
year 2021
title Digitally Prefabricated Houses: A Comparative Analysis of Executed Projects
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 967–980
summary In Brazil, the application of wood in contemporary constructions is concentrated in the south and southeast. However, the entire country has area for cultivation and forest management, which is favorable for expansion in such applications. Wood is capable of absorbing CO2 and consumes little energy in production and manufacturing. During the COVID-19 pandemic, the deficiencies of the building typologies became evident. This research aims to analyze digitally executed prefabricated houses such as Instant House (1), Digitally Fabricated House (2) by Sass, and WikiHouse (3) by Parvin; under the categories of Cardoso (2016): modulation, reversibility, and flexibility. The deductive method was used to investigate assumptions among the three case studies; and grounded in scientific literature to analyze and collect data. In general, the solutions studied enabled customizable systems allied to wood panels, modules, and fittings as generators of architectural form.
keywords casa pré fabricadas digitalmente, fabricaçao digital, design paramétrico, arquitetura paramétrica
series SIGraDi
email
last changed 2022/05/23 12:11

_id ecaade2016_006
id ecaade2016_006
authors Gomaa, Mohamed and Jabi, Wassim
year 2016
title Evaluating Daylighting Analysis of Complex Parametric Facades
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 147-156
doi https://doi.org/10.52842/conf.ecaade.2016.2.147
wos WOS:000402064400014
summary Lighting analysis tools have proven their ability in helping designers provide functional lighting, increase comfort levels and reduce energy consumption in buildings. Consequently, the number of lighting analysis software is increasing and all are competing to provide credible and rigorous analysis. The rapid adoption of parametric design in architecture, however, has resulted in complex forms that make the evaluation of the accuracy of digital analysis more challenging. This study aims to evaluate and compare the performance of daylighting analysis in two industry standard software (Autodesk Revit and 3ds Max) when analysing the daylighting of complex parametric façade patterns. The study has shown that, generally, both Revit and 3ds Max underestimate illuminance values when compared to physical scaled models. 3ds Max was found to outperform Revit when simulating complex parametric patterns, while Revit was found to outperform 3ds Max when simulating simple fenestration geometries. As a general conclusion, the rapid progress of parametric modelling, integrated with fabrication technologies, has made daylighting analysis of complex geometries more challenging. There is a need for more sophisticated algorithms that can handle the increased level of complexity as well as further verification studies to evaluate the accuracy claims made by software vendors.
keywords Daylighting analysis evaluation; Parametric patterns; Revit; 3ds Max; Complex façades
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2016_663
id caadria2016_663
authors Hosokawa, Masahiro; Tomohiro Fukuda, Nobuyoshi Yabuki, Takashi Michikawa and Ali Motamedi
year 2016
title Integrating CFD and VR for indoor thermal environment design feedback
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 663-672
doi https://doi.org/10.52842/conf.caadria.2016.663
summary In the context of environmental consideration and im- provement of living standards, design of high performance buildings that are both comfortable and energy saving is important. Simulation tools (such as CFD) enables analysing and visualizing environmental factors (such as temperature and airflow) based on the design proper- ties and can be used to improve the building design for better perfor- mance. However, these tools have limitations in providing interactivi- ty with users for creating multiple CFD visualization results to be used for analysing design options. This research presents an integrated de- sign tool which consists of CFD and VR technologies. The proposed system visualizes CFD results in a VR environment together with ar- chitectural design. Additionally, it enables configuring CFD parame- ters within the VR environment and allows repeatedly executing simu- lation and visualizing updated results. The proposed system enables visualizing information in relationship with the actual architectural design, space configuration and thermal environment, and provides ef- ficient design feedbacks.
keywords Interdisciplinary computational design; design feedback; indoor thermal environment; Computational Fluid Dynamics (CFD); Virtual Reality (VR)
series CAADRIA
email
last changed 2022/06/07 07:50

_id ascaad2016_053
id ascaad2016_053
authors Khesroh, Mohammed
year 2016
title Virtual Landscape Assessment and Robotic Allocation Within Extreme Environments
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 527-536
summary The paper describes an iterated system, which explores the concept of a surveying, deploying, self-assembling robotic swarm system within an extreme environment, in a virtual robotics platform named VREP. The pure geometries that are the basis of this species, through study of locomotion in Fauna and energy transformations, produce several iterations of the proposed robot. The created species are used to generate a process in which the robotic swarms are able to make initial scans of landscapes using a series of visual and proximity sensors attached to each exposed face, in order to determine proper deployment zones for the making of a research facility. The explorations in locomotion and transfer of potential to kinetic energy would allow the geometrically pure robot to hop, flap, walk, flip or turn in order to move to achieve the desired location.
series ASCAAD
email
last changed 2017/05/25 13:34

_id ecaade2016_215
id ecaade2016_215
authors Kouchaki, Mohammad, Mahdavinejad, Mohammadjavad, Zali, Parastoo and Ahmadi, Shahab
year 2016
title Magnet-based Interactive Kinetic Bricks
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 213-218
doi https://doi.org/10.52842/conf.ecaade.2016.1.213
wos WOS:000402063700024
summary Brick has been used in construction since ancient times and has been respected among other tectonic materials through out the history. Novel technologies recently have opened new horizons in using brick in architectural design. This paper investigates innovative implementation of bricks in kinetic architecture. Kinetic structures usually employ complex and high-cost mechanisms to come into force and their movements might be limited to some conditions. By the use of magnet in digital design, this research examines new methods for performing simple and affordable kinetic structures so as to create interactive relations between architecture and human being. Magnetic energy is applied in two ways to move a roof made of brick which is considered a heavy and masonry material. Consequently, it represents the hidden potentials of magnet as a renewable source of energy.
keywords kinetic architecture; interactive design; parametric design; Bricklaying; magnet energy
series eCAADe
email
last changed 2022/06/07 07:51

_id ijac201614204
id ijac201614204
authors Lima, Fernando T; Jose R Kos and Rodrigo C Paraizo
year 2016
title Algorithmic approach toward Transit-Oriented Development neighborhoods: (Para)metric tools for evaluating and proposing rapid transit-based districts
source International Journal of Architectural Computing vol. 14 - no. 2, 131-146
summary This article focuses on the use of computational tools to provide dynamic assessment and optimized arrangements while planning and discussing interventions in urban areas. The objective is to address the use of algorithmic systems for generating and evaluating urban morphologies guided by Transit-Oriented Development principles. Transit- Oriented Development is an urban development model that considers geometric and measurable parameters for designing sustainable cities. It advocates compact mixed-use neighborhoods within walking distance to a variety of transportation options and amenities, seeking to result in optimized infrastructure provision and energy-efficient low- carbon districts. This article presents algorithmic experiments for the optimization of a rapid transit district, through its urban morphology and services’ location, providing an accurate Transit-Oriented Development modeling. The main findings of this study highlight that the combination of Transit-Oriented Development and algorithmic–parametric tools has the potential to significantly contribute to a process of responsible planning and, ultimately, to mitigate global warming.
keywords Transit Oriented Development, Optimization, Computational design, Urban planning
series journal
last changed 2016/06/13 08:34

_id caadria2016_229
id caadria2016_229
authors Liu, Yuezhong; Rudi Stouffs, Abel Tablada, Nyuk Hien Wong and Ji Zhang
year 2016
title Micro-scale weather data for energy performance assessment in Singapore
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 229-238
doi https://doi.org/10.52842/conf.caadria.2016.229
summary Weather data plays an important role for energy perfor- mance assessment in the design of buildings and urban environments. Many researches have been carried out to generate and analyse vari- ous weather files for different simulation platforms. However, investi- gations have been lacking in the development of weather files that ac- count for urban heat island (UHI) problems. As a result of global warming and the complexity of the urban environment, the weather file for a modern city cannot be simply based on climate information from 20 years ago. The objective of this research is to demonstrate a method for creating different micro-scale typical meteorological year (TMY) weather files based on different urban texture values. This re- search includes three steps: 1) Recent years weather data is obtained. 2) Considering the UHI impact, a series of new TMY weather files are generated for different micro-scale areas in Singapore based on rele- vant urban texture variables. 3) A comparison of the results shows that there is a big difference between the new and the old TMY. The tem- perature of the new TMY is 1-2°C higher, while the solar radiation is lower than the original TMY data. Hence the new weather files will be more credible than the original TMY for energy performance simula- tion in the design process.
keywords TMY; UHI; Sandia method; energy performance
series CAADRIA
email
last changed 2022/06/07 07:59

_id ascaad2016_025
id ascaad2016_025
authors Mohamadin, Mahmoud F.; Ahmed A. Abouaiana and Hala H. Wagih
year 2016
title Parametric Islamic Geometric Pattern for Efficient Daylight and Energy Performance - Façade retrofit of educational space in hot arid climate
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 227-236
summary The purpose of this paper is to reach an optimal Islamic geometric pattern (IGP) shading screen design in terms of daylight and energy performance in an existing educational design studio (EDS) using generative design and simulation techniques. The study was carried out in a hot arid climate, in a typical EDS in 6th October University, located in Cairo, Egypt, and the study focused on the north-east oriented façade. Grasshopper for Rhino was utilized to generate the IGP parametric variations. Diva-For-Rhino which performs daylight analysis using Radiance / DAYSIM, and Design Builder which performs thermal load simulations using EnergyPlus were utilized in simulation. The results of the study achieved the required daylight levels with significant reduction of energy consumption levels of cooling load. This shows the affordance of the parametric IGP shading screens in façade treatment for achieving both efficient daylight and energy performance in educational design studio in hot arid climates.
series ASCAAD
email
last changed 2017/05/25 13:31

_id sigradi2016_614
id sigradi2016_614
authors Ramos, Fernando da Silva; Linardi, Ana Beatriz de Araújo; Damiani, Vitor; Garotti, Flávio Valverde
year 2016
title Design e Acessibilidade para Educaç?o: Um caso de produç?o de material didático inclusivo, para o ensino de ci?ncias [Design and Accessibility to Education: A case of production of science inclusive teaching material]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.865-871
summary This article describes the methods of an inclusive design project developed by FACAMP’s NIEDA , as demanded by the UNICAMP Science Museum (Brazil). The objective was to create a multi-sensorial interface that would be capable of describing the process of energy generation and distribution in a hydro-power plant. It began with a scheme based on images and a narration was built out of audible and tactile systems so that it would be comprehensible for the blind public as well, without compromising the aesthetic and informative aspects. It also reveals the challenge of combining the use of multiple technological resources, such as 3D printing and laser cutting.
keywords Design; Education; Accessibility; Tecnology; Science
series SIGRADI
email
last changed 2021/03/28 19:59

_id sigradi2016_479
id sigradi2016_479
authors Santana Neto, Ernesto José de; Silva, Robson Canuto da
year 2016
title Computaç?o material: um estudo sobre a atualizaç?o geométrica de elementos vazados na arquitetura [Material computation: a study about the geometric updating of screenwalls in architecture]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.42-49
summary This paper deals with geometric update strategies of cobogós, aiming to expand its energy efficiency based on material computation, a design approach that seeks to achieve greater architectural performance through the investigation of material properties, comprising four aspects that structure the paper: materiality, material structure, material performance and materialisation. Analysis in ceramic, the most common material in the manufacturing of cobogós, showed voronoi microstructure geometry in the material. Incorporating this logic to the development of a new geometry of cobogó results a slight increase of its thermal performance comparing with commercial cobogós.
keywords Material computation; Cobogó; Energy efficiency
series SIGRADI
email
last changed 2021/03/28 19:59

_id caadria2016_517
id caadria2016_517
authors Shen, Yang Ting and Pei Wen Lu
year 2016
title Development of Kinetic Facade Units with BIM-Based Active Control System for the Adaptive Building Energy Performance Service
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 517-526
doi https://doi.org/10.52842/conf.caadria.2016.517
summary This paper proposes a novel concept and practice to engage the BIM model as a control system of building energy performance service. This issue can be divided into two sub-issues including the development of more eco-friendly fac?ade which can interact with its local environment, and the related active control system which can process the environmental parameters for eco-friendly actions. This research designs the Parametric Adaptive Skin System (PASS) to en- gage the adaption of natural sunlight use for higher building perfor- mance. PASS consists of kinetic fac?ade components dominated by the BIM-based parametric engine called Dynamo. The PASS prototype demonstrates that the workflows is successful in using a real light sen- sor plus simulated solar terms to drive the interaction of virtual Revit model and physical PASS model.
keywords Building information modelling (BIM); adaptive building; energy consumption; building performance; kinetic fac?ade
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2016_487
id caadria2016_487
authors Shin, Jihye; Inhan Kim and Jungsik Choi
year 2016
title Development of the Integrated Management Environment of BIM Property Information for BIM-based Sustainable Design
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 487-496
doi https://doi.org/10.52842/conf.caadria.2016.487
summary With the growing responsibility for the environmental load of building, the demand for sustainable building is increasing. Sus- tainable design requires an enormous amount of information, and most of this information can be captured by Building Information Modelling (BIM). In this context, the management of information in a BIM object as a container for exchanging information is necessary for analyzing a building’s sustainability. However, there are problems in generating a reliable sustainability simulation model from BIM, such as the inefficiency of required information and low accessibility to a proper BIM object. In order to provide a new approach for generating a reliable sustainability simulation model in a BIM-based design pro- cess, this study suggests the integrated management environment of the property information of a BIM object.
keywords Building information modelling (BIM); BIM object; energy analysis; sustainable design; property information
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia16_98
id acadia16_98
authors Smith, Shane Ida; Lasch, Chris
year 2016
title Machine Learning Integration for Adaptive Building Envelopes: An Experimental Framework for Intelligent Adaptive Control
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 98-105
doi https://doi.org/10.52842/conf.acadia.2016.098
summary This paper describes the development of an Intelligent Adaptive Control (IAC) framework that uses machine learning to integrate responsive passive conditioning at the envelope into a building’s comprehensive conventional environmental control system. Initial results show that by leveraging adaptive computational control to orchestrate the building’s mechanical and passive systems together, there exists a demonstrably greater potential to maximize energy efficiency than can be gained by focusing on either system individually, while the addition of more passive conditioning strategies significantly increase human comfort, health and wellness building-wide. Implicitly, this project suggests that, given the development and ever increasing adoption of building automation systems, a significant new site for computational design in architecture is expanding within the post-occupancy operation of a building, in contrast to architects’ traditional focus on the building’s initial design. Through the development of an experimental framework that includes physical material testing linked to computational simulation, this project begins to describe a set of tools and procedures by which architects might better conceptualize, visualize, and experiment with the design of adaptive building envelopes. This process allows designers to ultimately engage in the opportunities presented by active systems that govern the daily interactions between a building, its inhabitants, and their environment long after construction is completed. Adaptive material assemblies at the envelope are given special attention since it is here that a building’s performance and urban expression are most closely intertwined.
keywords model predictive control, reinforcement learning, energy performance, adaptive envelope, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_149792 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002