CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 87

_id caadria2016_073
id caadria2016_073
authors Park, Seokyung and Jin-Kook Lee
year 2016
title Definition of a Domain-specific Language to Represent Korea Building Act Sentences as an Explicit Computable Form
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 73-82
doi https://doi.org/10.52842/conf.caadria.2016.073
summary This paper aims to define the syntax of KBimCode Lan- guage as a domain-specific computer language to represent Korea Building Act sentences. KBimCode Language represents building permit requirements in Korea Building Act as explicit computable rules. KBimCode aims to accomplish the neutral and standardized way of rule-making in an easy-to-use syntax. This paper introduces the approach of language design and definition. The main concerns handled in the paper are: 1) features of building permit-related regula- tions in Korea Building Act are reflected in the strategy for the lexical and syntactic design of KBimCode Language; 2) specification of KBimCode based on the context-free EBNF notation is introduced; and evaluation of the language definition is performed. KBimCode is an ongoing project. Together with newly developed rule checking ap- plications, KBimCode will establish automated design quality assess- ment system in Korea.
keywords Automated building permit system; automated design assessment; rule checking; rule-making; domain-specific language
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2016_405
id caadria2016_405
authors Liuti, Alessandro; Keryn Liew and Lian Chen Ng
year 2016
title In(flatable) Mod(uli): Air-buoyant, form-resistant, temporary structures
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 405-414
doi https://doi.org/10.52842/conf.caadria.2016.405
summary Conventional inflatable material systems offer a quick and reversible means of construction, however presenting limitations in terms of adaptability. Conventional, discrete, form-resistant structures feature stability through the complex organisation of discrete ele- ments, however featuring inertias in terms of flexibility and disecon- omies if applied to projects with a short lifespan. This paper discusses an alternative application of inflatable buoyant moduli to a discrete form-resistant structure in order to provide an adaptive installation for temporary events. Numerical and physical models are developed through a series of benchmarks, first, and a design project application eventually. The inherent predictability of this complex system is stud- ied in terms of constructability, costs, flexibility and spatial quality.
keywords Inflatable; buoyant; form-finding; modular; structure
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2016_579
id caadria2016_579
authors Tan, Rachel and Stylianos Dritsas
year 2016
title Clay Robotics: Tool making and sculpting of clay with a six-axis robot
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 579-588
doi https://doi.org/10.52842/conf.caadria.2016.579
summary The objective of the project is to design a reproducible clay sculpting process with an industrial robotic arm using parametric con- trol to directly translate mesh geometry from Computer Aided Design (CAD) environment into a lump of clay. This is accomplished through an algorithmic design process developed in Grasshopper using the C# programming language. The design process is enabled by our robotics modelling and simulation library which provides tools for kinematics modelling, motion planning, visual simulation and networked com- munication with the robotic system. Our process generates robot joint axis angle instructions through inverse kinematics which results into linear tool paths realised in physical space. Unlike common subtrac- tive processes such as Computer Numeric Control (CNC) milling where solid material is often pulverised during machining operations, our process employs a carving technique to remove material by dis- placement and deposition due to the soft and self-adhesive nature of the clay material. Optimisation of self-cleaning paths are implemented and integrated into the sculpting process to increase pathing efficiency and end product quality. This paper documents the process developed, the obstacles faced in motion planning of the robotic system and dis- cusses the potential for creative applications in digital fabrication us- ing advanced machines that in certain terms exceed human capability yet in others are unable to reach the quality of handmade works of art.
keywords Design computation; digital fabrication; architectural robotics
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2020_354
id caadria2020_354
authors Tomarchio, Ludovica, He, Peijun, Herthogs, Pieter and Tuncer, Bige
year 2020
title Cultural-Smart City: Establishing New Data-informed Practices to Plan Culture in Cities
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 81-90
doi https://doi.org/10.52842/conf.caadria.2020.2.081
summary The idea of the Creative City has encouraged planners to develop cultural policies to support creative economies, city branding, urban identity and urban quality. On the other side, the concept of Smart City introduced the possibility to create, collect and analyse data to inform decisions on cities. The two city agendas overlap in different ways, creating a Smart cultural city nexus, that propose similar goals and mixed methodologies, like the possibility to inform planning processes with big data-based technologies. In line with this direction, we introduced conceptual and methodological tools: the first tool is the definition of Hybrid Art Spaces, the second tool is the Singapore Art Maps (SAM), which uses social media data to locate art venues in cities (Tomarchio et al. 2016); the third tool is the Social Media Art Model, which establishes a relationship between social media production and art venues features. While these tools have already shown interesting analytics outcomes (Tomarchio et al. 2016), it is important to validate their utility among practitioners and to set protocols of practices. This paper presents results from semi-structured interviews and a focus group, as a first step towards assessing the usefulness of our three tools for cultural planning practice.
keywords social media; art; cultural planning; urban planning
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia16_106
id acadia16_106
authors Das, Subhajit; Day, Colin; Hauck, John; Haymaker, John; Davis, Diana
year 2016
title Space Plan Generator: Rapid Generationn & Evaluation of Floor Plan Design Options to Inform Decision Making
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 106-115
doi https://doi.org/10.52842/conf.acadia.2016.106
summary Design exploration in architectural space planning is often constrained by tight deadlines and a need to apply necessary expertise at the right time. We hypothesize that a system that can computationally generate vast numbers of design options, respect project constraints, and analyze for client goals, can assist the design team and client to make better decisions. This paper explains a research venture built from insights into space planning from senior planners, architects, and experts in the field, coupled with algorithms for evolutionary systems and computational geometry, to develop an automated computational framework that enables rapid generation and analysis of space plan layouts. The system described below automatically generates hundreds of design options from inputs typically provided by an architect, including a site outline and program document with desired spaces, areas, quantities, and adjacencies to be satisfied. We envision that this workflow can clarify project goals early in the design process, save time, enable better resource allocation, and assist key stakeholders to make informed decisions and deliver better designs. Further, the system is tested on a case study healthcare design project with set goals and objectives.
keywords healthcare spaces, facility layout design, design optimization, decision making, binary data tree structure, generative design, automated space plans
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id ecaade2016_199
id ecaade2016_199
authors Caetano, In?s and Leit?o, António
year 2016
title Using Processing with Architectural 3D Modelling
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 405-412
doi https://doi.org/10.52842/conf.ecaade.2016.1.405
wos WOS:000402063700045
summary Although programming was considered a specialized task in the past, we have been witnessing an increasing use of algorithms in the architectural field, which has opened up a wide range of new design possibilities. This was possible in part due to programming languages that were designed to be easy to learn and use by designers and architects, such as Processing. Processing is widely used for academic purposes, whereas in the architectural practice it is not as used as other programming languages due to its limitations for 3D modeling. In this paper, we describe the use of an extended Processing implementation to generate three 3D models inspired in existing case studies, which can be visualized and edited in different CAD and BIM applications.
keywords Generative design; Programming; Processing; 3D modeling
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2016_656
id sigradi2016_656
authors Heidrich, Felipe Etchegaray
year 2016
title Refer?ncias Digitais para Visualizaç?o de Possibilidades de Organizaç?o do Espaço Arquitetônico [Digital References to See Different Possibilities for the Organization of Architectural Space]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.539-543
summary This paper is part of a study that develops interactive three-dimensional models that will be used as digital references of different possibilities of organizing architectural space. Therefore, in this paper, was developed digital models that represent five possible circulations within an art gallery. These models were converting a model with the possibility of interaction and visualization in the third person. The software used in this conversion was chosen because generate a models with easy processing for rendering in real-time and having a viewer freeware, which allowed the intended use.
keywords Architectural Space; Interactive Three-Dimensional Models; Digital References
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_197
id ecaade2016_197
authors Jovanovic, Marko, Stojakovic, Vesna, Tepavcevic, Bojan, Mitov, Dejan and Bajsanski, Ivana
year 2016
title Generating an Anamorphic Image on a Curved Surface Utilizing Robotic Fabrication Process
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 185-191
doi https://doi.org/10.52842/conf.ecaade.2016.1.185
wos WOS:000402063700021
summary The integration of industrial robots in the creative art industry has increased in recent years. Implementing both brick stacking robotic fabrication, following a curved wall, and generating an image viewed from a single point, by rotating the bricks around their centres, has yet to be studied. The goal of this research is to develop a functional, parametric working model and a workflow that ensure easy manipulation and control of the desired outcome via parameters. This paper shows a workflow for the automatic generation of anamorphic structures on a curved wall by utilizing modular brick-like elements. As a result, a code for the robot controller and the position of the structure during fabrication are provided.
keywords anamorphosis; brick lying; robotic fabrication; generative design
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia16_130
id acadia16_130
authors Koschitz, Duks; Ramagosa, Bernat; Rosenbaum, Eric
year 2016
title Beetle Blocks: A New Visual Language for Designers and Makers
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 130-139
doi https://doi.org/10.52842/conf.acadia.2016.130
summary We are introducing a new teaching tool to show designers, architects, and artists procedural ways of constructing objects and space. Computational algorithms have been used in design for quite some time, but not all tools are very accessible to novice programmers, especially undergraduate students. ‘Beetle Blocks’ (beetleblocks.com) is a software environment that combines an easy-to-use graphical programming language with a generative model for 3D space, drawing on ‘turtle geometry,’ a geometry paradigm introduced by Abelson and Disessa, that uses a relative as opposed to an absolute coordinate system. With Beetle Blocks, designers are able to learn computational concepts and use them for their designs with more ease, as individual computational steps are made visually explicit. The beetle, the relative coordinate system, follows instructions as it moves about in 3D space. Anecdotal evidence from studio teaching in undergraduate programs shows that despite the early introduction of digital media and tools, architecture students still struggle with learning formal languages today. Beetle Blocks can significantly simplify the teaching of complex geometric ideas and we explain how this can be achieved via several examples. The blocks-based programming language can also be used to teach fundamental concepts of manufacturing and digital fabrication and we elucidate in this paper which possibilities are conducive for 2D and 3D designs. This project was previously implemented in other languages such as Flash, Processing and Scratch, but is now developed on top of Berkeley’s ‘Snap!’
keywords generative design, design pedagogy, digital fabrication, tool-building, pedagogical tools
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id caadria2016_539
id caadria2016_539
authors Lublasser, E.; J. Braumann, D. Goldbach and S. Brell-Cokcan
year 2016
title Robotic Forming: Rapidly Generating 3D Forms and Structures through Incremental Forming
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 539-548
doi https://doi.org/10.52842/conf.caadria.2016.539
summary The past years have seen significant developments in the area of robotic design interfaces. Building upon visual programming environments, these interfaces now allow the creative industry to de- fine even complex fabrication processes in an easy, accessible way, while providing instant, production-immanent feedback. However, while these software tools greatly speed up the programming of robot- ic arms, many processes are still inherently slow: Subtractive process- es need to remove a large amount of material with comparably small tools, while additive processes are limited by the speed of the extruder and the properties of the extruded material. In this research we present a new method for incrementally shaping transparent polymer materi- als with a robotic arm, without requiring heat or dies for deep- drawing, thus allowing us to rapidly fabricate individual panels within a minimum of time.
keywords Incremental forming; robotic fabrication; visual programming
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2016_213
id ecaade2016_213
authors Raducanu, Vlad Andrei, Cojocaru, Vasile Danut and Raducanu, Doina
year 2016
title Structural Architectural Elements Made of Curved Folded Sheet Metal
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 409-416
doi https://doi.org/10.52842/conf.ecaade.2016.2.409
wos WOS:000402064400040
summary To deviate from conventional metallic structural elements is not an easy achievement, especially if free forms with curved surfaces are wanted. One approach that makes sinuous volumetric metallic shapes accessible is curved folded sheet metal.The aim of the current application is to create a reinterpretation of the classical column, an architectural element which is both decorative and structural. This is achieved through curved crease folding of steel sheet metal. To aid the form-finding process, a virtual simulation of the bending process is done using computational means.
keywords curved crease folding; metallic material behaviour; computational design; digital stress analysis
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2016_561
id sigradi2016_561
authors Rodríguez Barros, Diana; Pablo Pellizzoni
year 2016
title Cultura Hacedor, Modelizador Paramétrico y Prototipado Digital. Un caso de prácticas didácticas en entorno post-digital en la carrera de Dise?o Industrial [Maker Movement, Parametric Modeling, Digital Prototype. A case of teaching]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.201-205
summary In post-digital, virtual and interconnected web environments, happen participatory actions and practices related to the concept of Collective Intelligence. Collaborative habits of creation and validation of knowledge are stimulated. Cognitive ecosystems are enabled facilitating participation in egalitarian environments. Are seen as propitius environments for the development of the Culture Maker / Maker Movement redefining innovative relationships between society, culture and technology. In this direction, we present a teaching practice done in the tii1-2 FAUD UNMdP, developed from the perspective of Design Thinking, in design lab mode and digital fabrication FabLab. Therefore, it enabled us to explore this trend that makes it easy to share the what, how and why is created.
keywords Didactics practices; Industrial Design; Maker Movement; Parametric Modeling; Digital Prototype
series SIGRADI
email
last changed 2021/03/28 19:59

_id caadria2016_735
id caadria2016_735
authors Sousa, Jose Pedro; Pedro Martins and Pedro De Azambuja Varela
year 2016
title The CorkCrete Arch Project: The digital design and robotic fabrication of a novel building system made out of cork and glass-fibre reinforced concrete
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 735-744
doi https://doi.org/10.52842/conf.caadria.2016.735
summary The CorkCrete arch is a 1:1 scale construction aiming at testing the use of robotic fabrication technologies in the production of a novel building system made out of two different materials – cork and concrete (GRC). The combination of these materials is promising since it merges the sustainable and performative properties of first with the structural efficiency of the second one. The result is a materi- al system suited for customized prefabrication and easy on-site instal- lation. The current paper describes the design and fabrication process of the arch, which employed a single parametric design environment to bridge design and fabrication, and an innovative sequence of differ- ent robotic processes. The success of this experience invites the team to continue this research into the future construction of larger scale applications.
keywords Cork; concrete; computational design; digital fabrication; robotics
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2016_695
id sigradi2016_695
authors Stofella, Arthur; Bertoli, Luiza Figueredo;Vaz, Carlos Eduardo Verzola; Kós, José Ripper
year 2016
title O desenvolvimento de um sistema de proteç?o de fachadas cinéticos: um protótipo responsivo ao comportamento do usuário [Developing a kinect façade protection system: a prototype responsive to the user behaviour]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.550-555
summary This article presents the new results of a work originally prepared by undergraduate students of the Federal University of Pernambuco that developed a functional physical prototype of a responsive façade. At first, the system only changed itself accordingly to the modifications of the environmental parameters, such as temperature, humidity and luminosity. In this new research stage, a simplified version of the façade was developed to make the system responsive to the behaviour of those who are using the indoor spaces of buildings. The physical prototype was built with LEDs that represent the actuators responsible for modifying the position of the responsive façade parts, and the Kinect’s motion sensor was used to capture the human behaviour. The prototype here presented was developed with simple, easy to acquire materials, making it an element that can be easily reproduced and employed as an educational tool of automation applied to architecture.
keywords Responsive design, human activities, computer vision
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2016_055
id ecaade2016_055
authors Baranovskaya, Yuliya, Prado, Marshall, Dörstelmann, Moritz and Menges, Achim
year 2016
title Knitflatable Architecture - Pneumatically Activated Preprogrammed Knitted Textiles
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 571-580
doi https://doi.org/10.52842/conf.ecaade.2016.1.571
wos WOS:000402063700062
summary Textiles are widely used in architecture for tensile structures, as they are lightweight and can easily span large distances. These structures typically require an external framework for a support. Inflatable structures are self-supporting but are limited to relatively simple forms or require complex and predetermined cut patterns. The development of an adaptive and programmable textile system with an integrative method for pneumatic activation would create a novel self-supporting structure with high degree of design and architectural potential. This creates a highly integrative hybrid system where the generic pneumatic membranes are constrained by the differentiated knitted textile skin that is stretched in several directions under air pressure. This allows for an innovative, lightweight, easily transportable design, where the preprogrammed knitting pattern defines the structure, geometry and formation, activated under pneumatic pressure.
keywords programming textiles; binary textiles; analogue computing; air inflation; grading textile properties
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_693
id caadria2016_693
authors Fernando, Ruwan; Karine Dupre and Henry Skates
year 2016
title Tangible User Interfaces for Teaching Building Physics: Towards continuous designing in education
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 693-702
doi https://doi.org/10.52842/conf.caadria.2016.693
summary This paper follows our evaluation and research into designing tangible physical media for the purposes of teaching building physics to undergraduate architecture students. These media interfaces make use of a virtual environment to promote an understanding of the cycles, which govern architectural and urban projects (for example solar studies, the flow of heat, air and water). This project aims to create an ecology of devices which can be used by students to self-direct themselves and harbour critical making in their research methods (with the explicit intent of dissolving the barrier between design and research). The basic premise of this research, is that in light of growing student numbers, more students lacking confidence in numeracy skills as well as the desire to have self-directed or group-directed learning, tangible media has a promising role to play. There are several reasons for this optimism. The first is that a better sense of intuition is gained from an interactive model over reading notes from a lecture or textbook. The second is that tangible media engages in other modes of learning, being valuable to students who have an aptitude for kinesthetic and spatial learning over text-dominant learning.
keywords Pedagogy; tangible user interfaces; augmented reality; internet of things; designing for teaching
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2016_219
id caadria2016_219
authors Latifi, Mehrnoush; Daniel Prohasky, Jane Burry, Rafael Moya, Jesse Mccarty and Simon Watkins
year 2016
title Breathing skins for wind modulation through morphology
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 219-228
doi https://doi.org/10.52842/conf.caadria.2016.219
summary This study aims to investigate the design power to manipu- late the behaviour and characteristics of air through geometrical ma- nipulation of building skins. The simple cubic cells in the global sys- tem of a porous screen were manipulated to investigate the impacts of screen’s morphology on the air movement pattern within and around it. The results we discovered from the evaluation of several screen systems revealed trends in response to the careful manipulation of ef- fective shape parameters within a designed matrix of variations as a Matrix of Possible Effective Typologies (MPET). In this research, the main principles of framing the initial matrix were based on: a) Creat- ing pressure differences across the screens as a result of surface intru- sion and extrusion compositions. b) Changing the nature of the airflow (velocity and turbulence variation) with geometrical manipulations of the inlet and outlet of the screens’ components. Experimental and nu- merical studies were undertaken in parallel including the use of a wind tunnel with very smooth flow with precision wind sensors and the numerical studies by Computational Fluid Dynamics. The aim of this paper is to present part of the empirical investigations to demonstrate the power of geometry in shaping the air patterns, altering pressure and velocity through geometrical modification of porous surfaces for future applications.
keywords Porous screens; microturbulance; facade component; microclimate; parametric CFD
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2016_015
id ecaade2016_015
authors Nováková, Kateøina and Achten, Henri
year 2016
title From Interactivity Towards Ambience Through a Bottle-brick
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 613-619
doi https://doi.org/10.52842/conf.ecaade.2016.1.613
wos WOS:000402063700066
summary According to the dictionary ambient architecture should be kind of object or space that relies to its surrounding or spontaneously reacts on the presence of human. Ambient architecture can also be musically expressed [1] or painted [2]. We developed special architectural building units that offer space for incorporation of intelligence and media for human interaction and for ambience.We are introducing an object called PET(ch)air made of PET(b)rick [3], a hollow transparent bottle-brick. The first intention was to generate new building unit from recycled PET material. Now that we observe its qualities, we can see it is well prepared for ambient intelligence application, especially in combination with light. For the purpose of a brick we are transforming old recycled plastic into new bottle-bricks. Using the bottle-brick as building unit we build interior objects that are ready to turn spaces into ambient rooms, places that can be customized by their visitors or spontaneously react on them. Together with this, we opened a design studio, where students were asked to develop ambient interior pieces for a special event using the method of learning by doing.
keywords Interactivity; ambient architecture; waste reuse ; bottle-brick; PET(b)rick; PET(ch)air
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2016_497
id caadria2016_497
authors Ryu, Jungrim; Jaehong Jun, Seunghyeon Lee and Seungyeon Choo
year 2016
title A Study on Development of the IFC-based Indoor Spatial Information for Data Visualisation
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 497-506
doi https://doi.org/10.52842/conf.caadria.2016.497
summary MOLIT authorised Indoor Spatial Information as Basic spa- tial information in 2013. It became a legal evidence for constructing and managing Indoor Spatial Information. Although it has a little ad- vantage to utilise as service level that Indoor Spatial Information by laser scan or measurement, it has a lot of problems such as consuming many resources, requiring additional progresses for inputting Object Information. In conclusion, it is inefficient to utilise for the mainte- nance and domestic AEC/FM field. The purposes of this study is to output Indoor Spatial Information by operating IFC model which based on open BIM and to improve availability of Indoor Spatial In- formation with data visualisation. The open-sources of IFC Exporter, an inner program of Revit, is used to output Indoor Spatial Infor- mation. Directs 3D Library is also operated to visualise Indoor Spatial Information. It is possible to inter-operate between XML format and the objects of Indoor Spatial Information. It can be utilised in various field as well. For example COBie linkage in facility management, construction of geo-database using air-photogrammetry of UA V , the simulation of large-scale military operations and the simulation of large-scale evacuation. The method that is purposed in this study has outstanding advantages such as conformance with national spatial in- formation policy, high level of interoperability as indoor spatial in- formation objects based on IFC, convenience of editing information, light level of data and simplifying progress of producing information.
keywords Indoor spatial information, data visualisation, open BIM, IFC
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2016_048
id ecaade2016_048
authors Abramovic, Vasilija and Achten, Henri
year 2016
title From Moving Cube to Urban Interactive Structures - A case study
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 661-668
doi https://doi.org/10.52842/conf.ecaade.2016.1.661
wos WOS:000402063700071
summary When thinking about the future vision of a city, having in mind recent development in digital technologies and digital design tools we are inclined to expect new building structures which incorporate this technology to better help us manage the complexity of life, and to simplify our daily lives and tasks. The idea behind this research paper lies in design of such structures, which could be put inside an urban context and engage in creating a built environment that can add more to the quality of life. For us Interactive architecture is architecture that is responsive, flexible, changing, always moving and adapting to the needs of today. The world is becoming more dynamic, society is constantly changing and the new needs it develops need to be accommodated. As a result architecture has to follow. Spaces have to become more adaptive, responsive and nature concerned, while having the ability for metamorphosis, flexibility and interactivity. Taken as a starting point of this idea is a specific module from graduation project in 2014 "The Unexpected city", where it was possible to test out first ideas about interactive and flexible objects in an urban environment.
keywords Flexible architecture; Interactive architecture; Responsive systems
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4HOMELOGIN (you are user _anon_644559 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002