CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id ecaade2016_087
id ecaade2016_087
authors Kepczynska-Walczak, Anetta
year 2016
title Building Information Modelling - the Quest for Simplicity Within Complexity
doi https://doi.org/10.52842/conf.ecaade.2016.1.299
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 299-308
wos WOS:000402063700034
summary There is a common expectation of technology to better help us manage the complexity of life and to simplify our daily tasks. However, these developments also raise a question of whether design technologies encourage complexity at the expense of simplicity in the design process. Does computation cause complexity? Or does it enable simplicity? This paper aims to answer these key questions, posed as the main focus of the eCAADe 2016 Conference, by confronting different approaches to teaching Building Information Modelling (BIM) in schools of Architecture. The scope of the paper is based on both the author's knowledge of recent BIM implementations in the academic curricula and experiments conducted at Lodz University of Technology. Necessary prerequisites enabling understanding the complex knowledge are discussed. What is more, the scheme for the integrated BIM pedagogy is proposed.
keywords Building Information Modelling; BIM; semantic model; information visualization; integrated design
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2016_507
id caadria2016_507
authors Choi, Jungsik; Inhan Kim and Jiyong Lee
year 2016
title Development of schematic estimation system through linking QTO with Cost DB
doi https://doi.org/10.52842/conf.caadria.2016.507
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 507-516
summary Cost estimate in architectural projects is an important factor for decision-making and financing the project in both early design phase and detailed design phase. In Korea, estimate work based on 2D drawing has generated problems of difference form QTO according to worker’s mistake and know-how. In addition, 2D-based estimation are obtained uncertainty factors of estimation depending on lack of infor- mation due to becoming larger and more complex than any other pro- ject of the architectural project. In order to solve limitations, this study is to suggest an open BIM-based schematic estimation process and a prototype system within the building frame through linking QTO and cost information. This study consists of the following steps: 1) Ana- lysing Level of Detail (LoD) to apply to the process and system, 2) BIM modelling for open BIM-based QTO, 3) Verifying the quality of the BIM model, 4) Developing a schematic estimation prototype sys- tem. This study is expected to improve work efficiency as well as reli- ability of construction cost.
keywords Cost DB; Industry Foundation Classes (IFC); Open Building Information Modelling (BIM); schematic estimation; Quantity Take-Off (QTO)
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2016_147
id caadria2016_147
authors Feist, S.; G. Barreto, B. Ferreira and A. Leita?o
year 2016
title Portable generative design for building information modelling
doi https://doi.org/10.52842/conf.caadria.2016.147
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 147-156
summary Generative Design (GD) is a valuable asset for architecture because it provides opportunities for innovation and improvement in the design process. Despite its availability for Computer-Aided De- sign (CAD), there are few applications of GD within the Building In- formation Modelling (BIM) paradigm, and those that exist suffer from portability issues. A portable program is one that will not only work in the application it was originally written for, but also in others with equivalent results. This paper proposes a solution that explores porta- ble GD in the context of BIM. We also propose a set of guidelines for a programming methodology for GD, adapted to the BIM paradigm. In the end, we evaluate our solution using a practical example.
keywords Building information modelling; generative design; porta- bility; programming
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2016_239
id ecaade2016_239
authors Janssen, Patrick, Chen, Kian Wee and Mohanty, Akshata
year 2016
title Automated Generation of BIM Models
doi https://doi.org/10.52842/conf.ecaade.2016.2.583
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 583-590
wos WOS:000402064400059
summary In early stages of architectural design, highly simplified minimal models are often preferred while in the later stages maximal Building Information Models (BIM) are required that include the relevant information for detailed design documentation. This research focuses on the transition from minimal to maximal models and proposes a semi-automated workflow that consist of two main steps: analysis and templating. The analysis step starts with the minimal geometric model and decorates this model with a set of semantic and topological attributes. The templating step starts the decorated model and generates a transitional BIM model which can then be readily altered and populated with high resolution building information. A demonstration of two test cases shows the feasibility of the approach.
keywords BIM; parametric modelling; interoperability
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2016_241
id ecaade2016_241
authors Janssen, Patrick, Stouffs, Rudi, Mohanty, Akshata, Tan, Elvira and Li, Ruize
year 2016
title Parametric Modelling with GIS
doi https://doi.org/10.52842/conf.ecaade.2016.2.059
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 59-68
wos WOS:000402064400005
summary Existing urban planning and design systems and workflows do not effectively support a fast iterative design process capable of generating and evaluating large-scale urban models. One of the key issues is the lack of flexibility in workflows to support iterative design generation and performance analyses, and easily integrate into design and planning processes. We present and demonstrate a parametric modelling system, Möbius, that can easily be linked to Geographic Information Systems for creating modular workflows, provides a novel approach for visual programming that integrates associative and imperative programming styles, uses a rich topological data structure that allows custom data attributes to be added to geometric entities at any topological level, and is fully web-based. The demonstration consists of five main stages that alternate between QGIS and Möbius, generating and analysing an urban model reflecting on site conditions and using a library of parametric urban typologies, and uses as a case study an urban design studio project in which the students sketched a set of rules that defined site coverage and building heights based on the proximity to various elements in the design.
keywords generative design; urban planning; Geographic Information Systems; parametric modelling
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2016_139
id ecaade2016_139
authors Tauscher, Helga and Scherer, Raimar J.
year 2016
title Divide and Conquer, Mix and Match - A top-down and bottom-up approach to building information visualization
doi https://doi.org/10.52842/conf.ecaade.2016.2.611
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 611-620
wos WOS:000402064400062
summary This paper seeks to explore the process of generating visual representations from building information models in a formal way. Based on the reference model of the visualization pipeline a more advanced model is developed which allows for the consideration of different levels of detail in all stages of the visualization pipeline. The construction of complex visualizations from simpler building blocks is complemented by the successive subdivision of building information to generate the partial visualizations from. The contributions of this paper are threefold. First, it provides a formal model for information models, for visualization models and for the connection between the two sides expressed with mathematical logic. Second, it generalizes the idea of construction multimodels and utilizes it in a new way in the context of visualizations. Third, it connects the multimodel concept as a model of complex information models to the visualization pipeline as a model of the visualization process.
keywords Building Information Modelling; Multimodel Visualization; Formal Model
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2016_114
id ecaade2016_114
authors Erdine, Elif and Kallegias, Alexandros
year 2016
title Calculated Matter - Algorithmic Form-Finding and Robotic Mold-Making
doi https://doi.org/10.52842/conf.ecaade.2016.1.163
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 163-168
wos WOS:000402063700018
summary The paper addresses a specific method for the production of custom-made, differentiated moulds for the realization of a complex, doubly-curved wall element during an international three-week architectural programme, Architectural Association (AA) Summer DLAB. The research objectives focus on linking geometry, structure, and robotic fabrication within the material agency of concrete. Computational workflow comprises the integration of structural analysis tools and real-time form-finding methods in order to inform global geometry and structural performance simultaneously. The ability to exchange information between various simulation, modelling, analysis, and fabrication software in a seamless fashion is one of the key areas where the creation of complex form meets with the simplicity of exchanging information throughout various platforms. The paper links the notions of complexity and simplicity throughout the design and fabrication processes. The aim to create a complex geometrical configuration within the simplicity of a single material system, concrete, presents itself as an opportunity for further discussion and development.
keywords robotic fabrication; custom form-work; generative design; structural analysis; concrete
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2016_448
id sigradi2016_448
authors Afsari, Kereshmeh; Eastman, Charles M.; Shelden, Dennis R.
year 2016
title Data Transmission Opportunities for Collaborative Cloud-Based Building Information Modeling
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.907-913
summary Collaboration within Building Information Modeling process is mainly based on file transfer while BIM data being exchanged in either vendor specific file formats or neutral format using Industry Foundation Classes (IFC). However, since the Web enables Cloud-based BIM services, it provides an opportunity to exchange data via Web transfer services. Therefore, the main objective of this paper is to investigate what features of Cloud interoperability can assist a network-based BIM data transmission for a collaborative work flow in the Architecture, Construction, and Engineering (AEC) industry. This study indicates that Cloud-BIM interoperability needs to deploy major components such as APIs, data transfer protocols, data formats, and standardization to redefine BIM data flow in the Cloud and to reshape the collaboration process.
keywords BIM; Cloud Computing; Data Transmission; Interoperability; IFC
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_063
id ecaade2016_063
authors Al-Qattan, Emad, Galanter, Philip and Yan, Wei
year 2016
title Developing a Tangible User Interface for Parametric and BIM Applications Using Physical Computing Systems.
doi https://doi.org/10.52842/conf.ecaade.2016.2.621
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 621-630
wos WOS:000402064400063
summary This paper discusses the development of an interactive and a responsive Tangible User-Interface (TUI) for parametric and Building Information Modeling (BIM) applications. The prototypes presented in this paper utilizes physical computing systems to establish a flexible and intuitive method to engage digital design processes.The prototypes are hybrid UIs that consist of a digital modeling tool and an artifact. The artifact consists of a control system (sensors, actuators, and microcontrollers) and physical objects (architectural elements). The link between both environments associates physical objects with their digital design information to assist users in the digital design process. The integration of physical computing systems will enable the objects to physically respond to analog input and provide real-time feedback to users. The research aims to foster tangible computing methods to extend the capabilities of digital design tools. The prototypes demonstrate a method that allows architects to simultaneously interact with complex architectural systems digitally and physically.
keywords Physical Computing; Parametric Design; BIM; Tangible UI
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_457
id caadria2016_457
authors Chen, Szu-Yin; Kokfu Lok and Taysheng Jeng
year 2016
title Smart BIM Objects for Design Intelligence
doi https://doi.org/10.52842/conf.caadria.2016.457
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 457-466
summary By enabling BIM technology, a building can be represented by a set of objects that carry detailed information about how they are constructed and also capture the relationship with other objects in the building model. Smart BIM objects can be classified as specific com- ponents encapsulating typical building rules and relations that can be predicted and defined by a few parameters and constraints. A frame- work is developed to show how a smart BIM object is developed. This paper presents the method of developing smart BIM object capable of better-informing design decision. To demonstrate the usefulness of smart BIM objects, a cloud BIM object library is developed and tested by academia and industry.
keywords Smart BIM object; cloud database; parametric modelling
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2016_074
id ecaade2016_074
authors Das, Subhajit, Day, Colin, Dewberry, Michael, Toulkeridou, Varvara and Hauck, Anthony
year 2016
title Automated Service Core Generator in Autodesk Dynamo - Embedded Design Intelligence aiding rapid generation of design options
doi https://doi.org/10.52842/conf.ecaade.2016.2.217
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 217-226
wos WOS:000402064400021
summary Building design entails an intuitive and informative exploration of an architect involving iterative refinement of design ideas till client objectives, and priorities are satisfied. Similarly, service cores in a building are designed through the exploration of multifarious design options each with different performative metrics regarding accessibility, efficiency, cost, feasibility, etc. As the current process is labor-intensive, manual & dependent on the expertise of the architect, the search space leading to the selection of an optimal design alternative is very limited. This paper describes Service Core Generator (SCG) library in Autodesk Dynamo enabling automated generation of service core models for varied building shell geometry types (limited to orthogonal profiles). The tool described encodes explicit and implicit domain knowledge into the system facilitating service core models for buildings across varied scale with use type's including offices, hotels or residential buildings.
keywords Design Alternatives; Geometry Analysis; Parametric Modelling; Design Tools; Design Automation;
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2016_007
id ecaade2016_007
authors ElGhazi, Yomna Saad and Mahmoud, Ayman Hassaan Ahmed
year 2016
title Origami Explorations - A Generative Parametric Technique For kinetic cellular façade to optimize Daylight Performance
doi https://doi.org/10.52842/conf.ecaade.2016.2.399
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 399-408
wos WOS:000402064400039
summary At present the kinetics is basic, but there is no doubt that research into the field of responsive building facades will continue, to find more sophisticated design and technical solutions. This research explores the possibilities of kinetic composition afforded by Origami different techniques using squared module. Origami and paper pleating techniques are one of the conceptual design approaches from which Kinetics can be developed. The paper examines the possibilities of different arrangements of folded modules to create environmental efficient kinetic morphed skins. The paper aims to achieve different Kinetic origami-based shading screens categorized by series of parameters to provide appropriate daylighting. The main tested parameters are the form of Origami folds, the module size and motion scenarios. Ten origami cases where explored first using conceptual folded paper maquette modules, then parametrically modelled and simulated at four times of the year, 21st of March, June, September and December, taken every hour of the working day.
keywords Kinetic cellular façade; Origami; Parametric modelling; Parametric simulations; Daylighting performance.
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2016_065
id ecaade2016_065
authors Henriques, Goncalo Castro
year 2016
title Responsive Systems: Foundations and Application - The importance of defining meta-systems and their methods
doi https://doi.org/10.52842/conf.ecaade.2016.1.511
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 511-520
wos WOS:000402063700056
summary Responsive architecture is often considered as one that merely adapts to change. This reflects its limited and still incipient application in architecture. Due to the current resource crisis, systemic building management is essential. This article argues that there are no established processes for creating and managing responsive architecture. To establish a foundation in this area, it claims that it is necessary to deepen knowledge about systems, computation, mathematics, biology and robotics. Despite being a vast subject, it proposes a state of the art of the systems, investigating how to operate them. A method for generating responsive systems is tested and implemented in a practical case. Two methods of adaptation are proposed and tested: static and dynamic adaptation. These methods reinforce the point that responsive architecture can use not only active mechanisms, but also passive methods embedded in its form as information. The research concludes that information management is critical to define what is designated in software engineering as architecture of the system. Thus, it suggests that it is necessary to define meta-systems and to define their methods to support the generation, fabrication, construction and operation of responsive systems.
keywords responsive systems; meta-systems; static adaptation; dynamic adaptation; heuristics
series eCAADe
email
last changed 2022/06/07 07:49

_id caadria2016_663
id caadria2016_663
authors Hosokawa, Masahiro; Tomohiro Fukuda, Nobuyoshi Yabuki, Takashi Michikawa and Ali Motamedi
year 2016
title Integrating CFD and VR for indoor thermal environment design feedback
doi https://doi.org/10.52842/conf.caadria.2016.663
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 663-672
summary In the context of environmental consideration and im- provement of living standards, design of high performance buildings that are both comfortable and energy saving is important. Simulation tools (such as CFD) enables analysing and visualizing environmental factors (such as temperature and airflow) based on the design proper- ties and can be used to improve the building design for better perfor- mance. However, these tools have limitations in providing interactivi- ty with users for creating multiple CFD visualization results to be used for analysing design options. This research presents an integrated de- sign tool which consists of CFD and VR technologies. The proposed system visualizes CFD results in a VR environment together with ar- chitectural design. Additionally, it enables configuring CFD parame- ters within the VR environment and allows repeatedly executing simu- lation and visualizing updated results. The proposed system enables visualizing information in relationship with the actual architectural design, space configuration and thermal environment, and provides ef- ficient design feedbacks.
keywords Interdisciplinary computational design; design feedback; indoor thermal environment; Computational Fluid Dynamics (CFD); Virtual Reality (VR)
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2016_068
id ecaade2016_068
authors Khalili-Araghi, Salman and Kolarevic, Branko
year 2016
title Captivity or Flexibility: Complexities in a Dimensional Customization System
doi https://doi.org/10.52842/conf.ecaade.2016.2.633
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 633-642
wos WOS:000402064400064
summary Houses are essentially one-of-a-kind products that should reflect individualized differences of inhabitants who live in them. Homebuyers and homebuilders alike are thus captivated by the difficulties of housing customization. Achieving customer satisfaction depends on the flexibility of customized solutions, though the challenge of flexibility lies in the complexity of design validation. Constraints may be seen as design limitations, but they could provide for the efficiency of design validation. This paper addresses the complexities in the adoption of mass customization in the housing industry, and presents a dimensional customization system which would effectively use building information modeling (BIM) software, parametric design, and automatic verification of dimensional constraints to merge customization and validation.
keywords Mass Customization; Housing Industry; Building Information Modeling; Parametric Modeling; Automatic Constraint Satisfaction
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2016_223
id ecaade2016_223
authors Khallaf, Mohamed and Jupp, Julie
year 2016
title Designing for Urban Microclimates: Towards A Generative Performance-based Approach to Wind Flow Optimization
doi https://doi.org/10.52842/conf.ecaade.2016.2.095
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 95-106
wos WOS:000402064400009
summary This paper presents the foundations of a multidisciplinary design optimisation method that addresses the problem of competing wind flow profiles within urban microclimates. The simultaneous integration of architectural and urban design parameters and their aerodynamic constraints are investigated. Differences in the height of tall buildings, which define the urban canopy layer are accounted for. The formulation that supports the simulation of aerodynamic forces at the architectural and urban scales includes multidisciplinary parameter specification of 2D and 3D building geometry, spatial morphology, spatial topology, wind flow settings, and wind flow compliance. The MDO framework and its development are discussed relative to their generative performance-based capacity and innovative approach to multidisciplinary wind flow optimization
keywords Urban microclimate; Multidisciplinary design optimisation; Generative performance-based design; Systems level perspective
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2016_467
id caadria2016_467
authors Kim, Mikyoung; Seungyeul Ji, Eonyong Kim and Hanjong Jun
year 2016
title BIM-based File Synchronisation and Permission Management System for Architectural Design Collaboration
doi https://doi.org/10.52842/conf.caadria.2016.467
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 467-476
summary In building information modelling (BIM), the amount of in- formation increased and architectural design processes became more complex as projects expand. This is because while a collaboration en- vironment is important for smooth communication among experts, this has not been realised because of unclassified file synchronisation and permission settings among team members. Therefore, this study aims to support cooperation in BIM modelling projects by synchronising BIM data from different computers and rendering BIM project man- agement easier by providing a BIM model viewer and data through the Web. The proposed technology, which is a construction project- type, purpose-tailored browsing technology, provides BIM infor- mation related to construction environments and planning processes only to the relevant experts.
keywords Building information modelling (BIM); architectural design collaboration; process; file synchronisation; permission management system
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2016_363
id caadria2016_363
authors Lee, Alexander; Suleiman Alhadidi and M. Hank Haeusler
year 2016
title Developing a Workflow for Daylight Simulation
doi https://doi.org/10.52842/conf.caadria.2016.363
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 363-372
summary Daylight simulations are occasionally used as active tools in regards to local governing regulations, which are necessary for providing documentation. Simulation tools have been avoided in the past due to their barriers. Daylight simulation tools are used within documentation design stages as ‘passive tools’, however they do not have a direct impact on the architecture design decisions, as passive tools are used by engineers usually to derive material and glass speci- fications. Recent developments within an online community have pro- vided designers with access to daylight simulation tools within a de- sign platform accessible data can be modified and represented with local governing codes to provide designers with relevant information. The paper aimed to develop an active daylight simulation tool within a design platform. Data is filtered with the Green Star benchmarks to export visual information as well as a voxel matrix instead of 2D lu- minance maps. This paper outlines a workflow of the simulation tool used to evaluate daylight performance of a selected building as a case study in real time. The paper also details potential problems and justi- fied suggestions derived from the analysis for the building to reach the requirements within the Green Star Multi Unit Residential.
keywords Data-driven design; computation environmental design; daylight simulation; Green Star
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2016_435
id caadria2016_435
authors Lin, Chieh-Jen
year 2016
title The STG Pattern: Application of a “Semantic-Topological-Geometric” Information Conversion Pattern to Knowledge Modeling in Architectural Conceptual Design
doi https://doi.org/10.52842/conf.caadria.2016.435
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 435-444
summary Generative modelling tools have become a popular means of composing algorithms to generate complex building forms at the conceptual design stage. However, composing algorithms in order to meet the requirements of general design criteria, and communicating those criteria with other disciplines by means of generative algorithms still faces technical challenges. This paper proposes the use of a “Se- mantic-Topological-Geometric (STG)” pattern to guide architects in composing algorithms for representing, modelling, and validating de- sign knowledge and criteria. The STG pattern aims to help architects for converting semantic information concerning the situations of a project into design criteria, which are usually composed of topological relations among design elements, in order to explore the geometric properties of building components by means of generated 3D models.
keywords Generative modelling; design criteria; design pattern; semantic ontology; BIM
series CAADRIA
email
last changed 2022/06/07 07:59

_id ijac201614401
id ijac201614401
authors Mark, Earl and Zita Ultmann
year 2016
title Environmental footprint design tool: Exchanging geographical information system and computer-aided design data in real time
source International Journal of Architectural Computing vol. 14 - no. 4, 307-321
summary The pairing of computer-aided design and geographical information system data creates an opportunity to connect an architectural design process with a robust analysis of its environmental constraints. Yet, the geographical information system data may be too overwhelmingly complex to be fully used in computer-aided design without computer-assisted methods of filtering relevant information. This article reports on the implementation of an integrated environment for three-dimensional computer-aided design and environmental impact. The project focused on a two-way data exchange between geographical information system and computer-aided design in building design. While the two different technologies may rely on separate representational models, in combination they can provide a more complete view of the natural and built environment. The challenge in integration is that of bridging the differences in analytical methods and database formats. Our approach is rooted in part in constraint-based design methods, well established in computer-aided design (e.g. Sketchpad, Generative Components, and computer-aided three-dimensional interactive application). Within such computer-aided design systems, geometrical transformations may be intentionally constrained to help enforce a set of design determinants. Although this current implementation modestly relates to geometrical constraints, the use of probabilistic risk values is more central to its methodology.
keywords Boolean analysis, area overlay analysis, attribute classification, data transition using .csv, vectorization, risk analysis, site planning
series journal
email
last changed 2016/12/09 10:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_897278 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002