CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 550

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2016_241
id ecaade2016_241
authors Janssen, Patrick, Stouffs, Rudi, Mohanty, Akshata, Tan, Elvira and Li, Ruize
year 2016
title Parametric Modelling with GIS
doi https://doi.org/10.52842/conf.ecaade.2016.2.059
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 59-68
summary Existing urban planning and design systems and workflows do not effectively support a fast iterative design process capable of generating and evaluating large-scale urban models. One of the key issues is the lack of flexibility in workflows to support iterative design generation and performance analyses, and easily integrate into design and planning processes. We present and demonstrate a parametric modelling system, Möbius, that can easily be linked to Geographic Information Systems for creating modular workflows, provides a novel approach for visual programming that integrates associative and imperative programming styles, uses a rich topological data structure that allows custom data attributes to be added to geometric entities at any topological level, and is fully web-based. The demonstration consists of five main stages that alternate between QGIS and Möbius, generating and analysing an urban model reflecting on site conditions and using a library of parametric urban typologies, and uses as a case study an urban design studio project in which the students sketched a set of rules that defined site coverage and building heights based on the proximity to various elements in the design.
wos WOS:000402064400005
keywords generative design; urban planning; Geographic Information Systems; parametric modelling
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2016_517
id caadria2016_517
authors Shen, Yang Ting and Pei Wen Lu
year 2016
title Development of Kinetic Facade Units with BIM-Based Active Control System for the Adaptive Building Energy Performance Service
doi https://doi.org/10.52842/conf.caadria.2016.517
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 517-526
summary This paper proposes a novel concept and practice to engage the BIM model as a control system of building energy performance service. This issue can be divided into two sub-issues including the development of more eco-friendly fac?ade which can interact with its local environment, and the related active control system which can process the environmental parameters for eco-friendly actions. This research designs the Parametric Adaptive Skin System (PASS) to en- gage the adaption of natural sunlight use for higher building perfor- mance. PASS consists of kinetic fac?ade components dominated by the BIM-based parametric engine called Dynamo. The PASS prototype demonstrates that the workflows is successful in using a real light sen- sor plus simulated solar terms to drive the interaction of virtual Revit model and physical PASS model.
keywords Building information modelling (BIM); adaptive building; energy consumption; building performance; kinetic fac?ade
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2016_019
id ecaade2016_019
authors Thurow, Torsten, Langenhan, Christoph and Petzold, Frank
year 2016
title Assisting Early Architectural Planning Using a Geometry-Based Graph Search
doi https://doi.org/10.52842/conf.ecaade.2016.2.199
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 199-207
summary In early design phases of architecture ideas exist mostly on a vague level concerning the expectations for the building plan and the respective design parameters. One established method is to examine and develop ideas through existing designs, and to use these to clarify design parameters and be further inspired. Thus, the aim is a computer-based system like sketch-based query approach to show similar floor plans using semantic building fingerprints.During the search floor plans are compared in form of graphs, which means that the sketch-based floor plans are converted to graphs together with the existing floor plans. Herewith, a gradual condensation of the request is possible. The entry is condensed continuously through the repetitive process of entry and search. The challenges with this approach lie in the following mathematical model behind similar floor plans, Queries that satisfy complexity of the data and optimal way for the user to engage in search process.
wos WOS:000402064400019
keywords Semantic fingerprints; early architectural planning; geometry-based graph search; adjustment theory
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2016_210
id ecaade2016_210
authors Abdelmohsen, Sherif, Massoud, Passaint and Elshafei, Ahmed
year 2016
title Using Tensegrity and Folding to Generate Soft Responsive Architectural Skins
doi https://doi.org/10.52842/conf.ecaade.2016.1.529
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 529-536
summary This paper describes the process of designing a prototype for a soft responsive system for a kinetic building facade. The prototype uses lightweight materials and mechanisms to generate a building facade skin that is both soft (less dependent on hard mechanical systems) and responsive (dynamically and simultaneously adapting to spatial and environmental conditions). By combining concepts stemming from both tensegrity structures and folding mechanisms, we develop a prototype that changes dynamically to produce varying facade patterns and perforations based on sensor-network data and feedback. We use radiation sensors and shape memory alloys to control the prototype mechanism and allow for the required parametric adaptation. Based on the data from the radiation sensors, the lengths of the shape memory alloys are altered using electric wires and are parametrically linked to the input data. The transformation in the resulting overall surface is directly linked to the desired levels of daylighting and solar exposure. We conclude with directions for future research, including full scale testing, advanced simulation, and multi-objective optimization.
wos WOS:000402063700058
keywords Soft responsive systems; tensegrity; folding; kinetic facades
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_507
id caadria2016_507
authors Choi, Jungsik; Inhan Kim and Jiyong Lee
year 2016
title Development of schematic estimation system through linking QTO with Cost DB
doi https://doi.org/10.52842/conf.caadria.2016.507
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 507-516
summary Cost estimate in architectural projects is an important factor for decision-making and financing the project in both early design phase and detailed design phase. In Korea, estimate work based on 2D drawing has generated problems of difference form QTO according to worker’s mistake and know-how. In addition, 2D-based estimation are obtained uncertainty factors of estimation depending on lack of infor- mation due to becoming larger and more complex than any other pro- ject of the architectural project. In order to solve limitations, this study is to suggest an open BIM-based schematic estimation process and a prototype system within the building frame through linking QTO and cost information. This study consists of the following steps: 1) Ana- lysing Level of Detail (LoD) to apply to the process and system, 2) BIM modelling for open BIM-based QTO, 3) Verifying the quality of the BIM model, 4) Developing a schematic estimation prototype sys- tem. This study is expected to improve work efficiency as well as reli- ability of construction cost.
keywords Cost DB; Industry Foundation Classes (IFC); Open Building Information Modelling (BIM); schematic estimation; Quantity Take-Off (QTO)
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia20_688
id acadia20_688
authors del Campo, Matias; Carlson, Alexandra; Manninger, Sandra
year 2020
title 3D Graph Convolutional Neural Networks in Architecture Design
doi https://doi.org/10.52842/conf.acadia.2020.1.688
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 688-696.
summary The nature of the architectural design process can be described along the lines of the following representational devices: the plan and the model. Plans can be considered one of the oldest methods to represent spatial and aesthetic information in an abstract, 2D space. However, to be used in the design process of 3D architectural solutions, these representations are inherently limited by the loss of rich information that occurs when compressing the three-dimensional world into a two-dimensional representation. During the first Digital Turn (Carpo 2013), the sheer amount and availability of models increased dramatically, as it became viable to create vast amounts of model variations to explore project alternatives among a much larger range of different physical and creative dimensions. 3D models show how the design object appears in real life, and can include a wider array of object information that is more easily understandable by nonexperts, as exemplified in techniques such as building information modeling and parametric modeling. Therefore, the ground condition of this paper considers that the inherent nature of architectural design and sensibility lies in the negotiation of 3D space coupled with the organization of voids and spatial components resulting in spatial sequences based on programmatic relationships, resulting in an assemblage (DeLanda 2016). These conditions constitute objects representing a material culture (the built environment) embedded in a symbolic and aesthetic culture (DeLanda 2016) that is created by the designer and captures their sensibilities.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2018_165
id ecaade2018_165
authors Fisher-Gewirtzman, Dafna and Bruchim, Elad
year 2018
title Considering Variant Movement Velocities on the 3D Dynamic Visibility Analysis (DVA) - Simulating the perception of urban users: pedestrians, cyclists and car drivers.
doi https://doi.org/10.52842/conf.ecaade.2018.2.569
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 569-576
summary The objective of this research project is to simulate and evaluate the effect of movement velocity and cognitive abilities on the visual perception of three groups of urban users: pedestrians, cyclists and car drivers.The simulation and analysis is based on the 3D Dynamic Visual Analysis (DVA) (Fisher-Gewirtzman, 2017). This visibility analysis model was developed in the Rhinoceros and Grasshopper software environments and is based on the conceptual model presented in Fisher-Gewirtzman (2016): a 3D Line of Sight (LOS) visibility analysis, taking into account the integrated effect of the 3D geometry of the environment and the variant elements of the view (such as the sky, trees and vegetation, buildings and building types, roads, water etc.). In this paper, the current advancement of the existing model considers the visual perception of human users employing three types of movement in the urban environment--pedestrians, cyclists and drivers--is explored.We expect this research project to exemplify the contribution of such a quantification and evaluation model to evaluating existing urban structures, and for supporting future human perception-based urban design processes.
keywords visibility analysis and simulation; predicting perception of space; movement in the urban environment; pedestrians; cyclists; car drivers
series eCAADe
email
last changed 2022/06/07 07:51

_id ascaad2016_042
id ascaad2016_042
authors Goud, Srushti
year 2016
title Parametrizing Indian Karnata-Dravida Temple Using Geometry
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 409-420
summary The Karnata-Dravida temple tradition flourished and evolved for 700 years. The evolution of the typology was demonstrated through the structure. However, as the Shastras or ancient texts proclaim, the underlying principles of geometry remain unchanged. Geometry and the unchanging principles of construction made the architects experiment with form, material and ornamentation. Geometry does not only mean shapes or two dimensional diagrams but it is a rule to amalgamate all the elements to form a dynamic form of a temple. The paper validates the use of geometry through an evolving sequence of Karnata-Dravida temples with the help of an analytical model created using the grasshopper software. The components of the model are based on the geometric rule (the basis for parametrizing) and parameters of the algorithm – plan forms, organizational compositions, vimana or superstructure composition – which result in a geometry. Even though building science is an old tradition, the use of computational procedures reveals the predictable nature of temples in the Dravidian clan and enables the analysis of existing temples, development of new possibilities or evolution of interpreted forms. Hence, enriching the existing understandings of previous scholarships in the field of temple architecture with an entirely new system of interpretation. In the age of technology where analytics plays a crucial role in almost all sectors, ancient temple architecture in India unfortunately falls behind when it comes to computational methods of restoration or reconstruction. This research questions the applicability of computational technology as a facilitator in preserving or reconstructing existing temples while maintaining its creative liberty.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ecaade2016_099
id ecaade2016_099
authors Guerritore, Camilla and Duarte, José Pinto
year 2016
title Manifold Façades - A grammar-based approach for the adaptation of office buildings into housing
doi https://doi.org/10.52842/conf.ecaade.2016.2.189
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 189-198
summary This article focuses on the use of shape grammars in rehabilitation processes to transform existing, obsolete building stocks into required building types. It is described how a grammar-based transformation methodology can lead to the development of a design tool that enables the exploration of preliminary design solutions and the evaluation of their impact in terms of massing, functional programme and, eventually, cost and energetic behaviour. The goal is to assess the capacity of an existing building to be adapted to a different use. The article is focused on the transformation grammar. In particular, it is investigated the transformation of "office building types" into "residential building types", aiming at defining a quicker and more informed decision-making process. Future work will be concerned with evaluating the performance of the solutions generated by the grammar.
wos WOS:000402064400018
keywords Rehabilitation; office buildings; adaptive reuse; addition strategy; shape grammars
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2016_087
id ecaade2016_087
authors Kepczynska-Walczak, Anetta
year 2016
title Building Information Modelling - the Quest for Simplicity Within Complexity
doi https://doi.org/10.52842/conf.ecaade.2016.1.299
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 299-308
summary There is a common expectation of technology to better help us manage the complexity of life and to simplify our daily tasks. However, these developments also raise a question of whether design technologies encourage complexity at the expense of simplicity in the design process. Does computation cause complexity? Or does it enable simplicity? This paper aims to answer these key questions, posed as the main focus of the eCAADe 2016 Conference, by confronting different approaches to teaching Building Information Modelling (BIM) in schools of Architecture. The scope of the paper is based on both the author's knowledge of recent BIM implementations in the academic curricula and experiments conducted at Lodz University of Technology. Necessary prerequisites enabling understanding the complex knowledge are discussed. What is more, the scheme for the integrated BIM pedagogy is proposed.
wos WOS:000402063700034
keywords Building Information Modelling; BIM; semantic model; information visualization; integrated design
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2016_037
id ecaade2016_037
authors Khabazi, Zubin and Budig, Michael
year 2016
title Adaptive Fabrication - Cellular Concrete Casting Using Digital Moulds
doi https://doi.org/10.52842/conf.ecaade.2016.1.083
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 83-92
summary Computational design and digital fabrication have expanded the use of digital manufacturing machineries for the realization of architecture, yet they have their own limitations of material use. These limitations caused some materials like cement, plaster and clay become marginal in this new digital context, despite their vast use in the building industry. In this context, this paper will present a research, focusing on the use of concrete through the development of a custom-designed device, which is an adjustable digital mould. This digital mould has been designed specifically for a project called Procrystalline Wall and has been 'adapted' to the conditions of its agenda in terms of size, shape, typology, and even technical matters. However, this adaptability means that the device is not aimed to work for any other project and remain exclusive to this particular design only. This paper will further discuss the validity and obstacles of the presented method in a more global context.
wos WOS:000402063700010
keywords Concrete Fabrication; Digital Casting; Digital Adjustable Mould; Cellular Concrete Casting; Cellular Solid Morphologies
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia16_270
id acadia16_270
authors Korner, Axel; Mader, Anja; Saffarian, Saman; Knippers, Jan
year 2016
title Bio-Inspired Kinetic Curved-Line Folding for Architectural Applications
doi https://doi.org/10.52842/conf.acadia.2016.270
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp.270-279
summary This paper discusses the development of a bio-inspired compliant mechanism for architectural applications and explains the methodology of investigating movements found in nature. This includes the investigation of biological compliant mechanisms, abstraction, and technical applications using computational tools such as finite element analysis (FEA). To demonstrate the possibilities for building envelopes of complex geometries, procedures are presented to translate and alter the disclosed principles to be applicable to complex architectural geometries. The development of the kinetic façade shading device flectofold, based on the biological role-model Aldrovanda vesiculosa, is used to demonstrate the process. The following paper shows results of FEA simulations of kinetic curved-line folding mechanisms with pneumatic actuation and provides information about the relationship between varying geometric properties (e.g. curved-line fold radii) and multiple performance metrics, such as required actuation force and structural stability.
keywords composite forming process, form-finding, biomimetics and biological design, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaade2016_152
id ecaade2016_152
authors Mohamed, Basem Eid, Gemme, Frederic and Sprecher, Aaron
year 2016
title Information and Construction: Advanced Applications of Digital Prototyping in the Housing Industry
doi https://doi.org/10.52842/conf.ecaade.2016.2.591
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 591-600
summary This study elaborates on recent efforts in applying Digital Prototyping strategies to realize a prefabricated construction system that allows for significant flexibility and adaptability in housing design. The rational of the described model is based on combining advanced BIM modeling with structural analysis, towards achieving high accuracy in the design phase, leading to subsequent precision in fabrication and assembly of a specific building system; the BONE Structure. Such an application aims at delivering significant levels of detailing in design and production of the system's components, thus supporting the intention of pre-defined assembly on jobsites, leveraging quality, and reducing waste. The paper represents a phase from a continuous research endeavor that aims at exploring technological enablers for mass customization in the housing realm, based on advanced levels of digitization of the design and production processes.
wos WOS:000402064400060
keywords Housing; Prefabrication; Digital Prototyping
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2016_042
id ecaade2016_042
authors Narangerel, Amartuvshin, Lee, Ji-Hyun and Stouffs, Rudi
year 2016
title Daylighting Based Parametric Design Exploration of 3D Facade Patterns
doi https://doi.org/10.52842/conf.ecaade.2016.2.379
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 379-388
summary A building façade plays an important role of reducing artificial lighting by introducing natural light into the interior space. A majority of research and current technology heavily focuses on the optimization of window properties such as the size, location, and glazing with the consideration of external shading device as well as the building wall in order to obtain appropriate natural lit space. In the present work, we propose a 3-dimensional approach that can explore the trade-offs between two objectives, daylight performance and electricity generation, by means of paramedic modeling and multi-objective optimization algorithm. The case study was simulated under the environmental setting of the geographical location of Incheon, Korea without any urban context. Using the proposed methods, 50 pareto-front optimal solutions were derived and investigated based on the achieved daylighting and generated electricity.
wos WOS:000402064400037
keywords Parametric design; façade design; daylight performance; building-integrated photovoltaics; multi-objective optimization
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2016_190
id ecaade2016_190
authors Siala, Aida, , Najla Allani, Halin, Gilles and , Mohamed Bouattour
year 2016
title Toward Space Oriented BIM Practices
doi https://doi.org/10.52842/conf.ecaade.2016.2.653
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 653-662
summary When performing design tasks, architects think in terms of space, and act on physical elements. They often use various representation means to shape and to communicate the complex aspects of space. Architectural representation is often driven by visual perception whilst current BIM practices seem to be based on semantics associated with scheduling building items (element, position, quantity, etc.). The reduction of architectural sensitive approaches to merely technical ones, reveals only quantitative and restrictive information that does not reflect the architect's multi-sensorial experience. This paper examines some recent model proposals which include descriptions of architectural space concept, and tries to suggest a possible synthesis of this work. It focuses on cooperative practices necessary to unveil the sensitive dimension of the architectural design, and presents a state of existing BIM tools based on relevant tasks used in these practices in order to acquire more knowledge about the concepts which ensure a cooperative work taking into account the sensitive spatial aspects.
wos WOS:000402064400066
keywords Cooperative design; Architectural space; BIM; Qualitative property; Topology
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2016_425
id caadria2016_425
authors Sjarifudin, Firza Utama
year 2016
title Adaptive Decorative Building Skin
doi https://doi.org/10.52842/conf.caadria.2016.425
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 425-434
summary Traditional decorative ornaments were commonly used on the building skin of traditional architecture. Nowadays in urban areas, those ornaments become less popular for they are considered old- fashioned and due to the lack of technical function that matches with the modern building designs. Based on those issue, this paper pro- posed a type of building skin that aimed to revive a new expression of traditional decorative elements by applying digital design tools and technology as well as having an adaptive function. Traditional decora- tive ornaments merged in an adaptive skin that used traditional pat- terns as a controller of the effect of environmental changes in a build- ing could provide a new expression of the use of traditional ornaments on a building in accordance with the times. Most of the adaptive building skin used kinetic techniques in order to make its formation and pattern transformable. This paper proposed a parametric-cam mechanism to transform the pattern of traditional ornament using pre- programmed analysis data of environmental changes to parametrically drive the number of rotation phase and length of nose that generated the shape of the cams. In conclusion, this paper has developed a proto- typical tool that facilitates the new approach to kinetic decorative or- naments on building skin.
keywords Decorative ornaments; adaptive building skin; camshaft mechanism; kinetic building; building technology
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2016_728
id sigradi2016_728
authors Sáez Gutiérrez, Nicolás Antonio; Gatica Laurie, Braulio
year 2016
title Réplica Virtual. Ca?mara obscura con disen?o paramétrico y fabricación digital. Una arquitectura de la imagen virtual [Virtual Replica. Camera Obscure With Parametric Design and Digital Fabrication. An Architecture of the Virtual Image]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.885-891
summary Virtual Replica is a contemporary artistic project that reflects upon our relation with the world. It is a camera (room) obscuradesigned with the aid of parametric software in order to be fabricated with CNC technology based on thin layers of plywood. An ephemeral architecture that creates an immersive experience for the visitor who is surrounded by a number of “virtual screens” exhibiting inverted images of the immediate exterior. This paper proposes the phenomenon of camera obscura as a proto building that gives life to an architecture of the image, using it as its built as well as its theoretical fundamental reference.
keywords Camera Oscura; Image Architecture; Parametric Design; Digital Fabrication; Contemporary Art
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2016_139
id ecaade2016_139
authors Tauscher, Helga and Scherer, Raimar J.
year 2016
title Divide and Conquer, Mix and Match - A top-down and bottom-up approach to building information visualization
doi https://doi.org/10.52842/conf.ecaade.2016.2.611
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 611-620
summary This paper seeks to explore the process of generating visual representations from building information models in a formal way. Based on the reference model of the visualization pipeline a more advanced model is developed which allows for the consideration of different levels of detail in all stages of the visualization pipeline. The construction of complex visualizations from simpler building blocks is complemented by the successive subdivision of building information to generate the partial visualizations from. The contributions of this paper are threefold. First, it provides a formal model for information models, for visualization models and for the connection between the two sides expressed with mathematical logic. Second, it generalizes the idea of construction multimodels and utilizes it in a new way in the context of visualizations. Third, it connects the multimodel concept as a model of complex information models to the visualization pipeline as a model of the visualization process.
wos WOS:000402064400062
keywords Building Information Modelling; Multimodel Visualization; Formal Model
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2016_036
id ecaade2016_036
authors Varinlioglu, Guzden, Halici, Suheyla Muge and Alacam, Sema
year 2016
title Computational Thinking and the Architectural Curriculum - Simple to Complex or Complex to Simple?
doi https://doi.org/10.52842/conf.ecaade.2016.1.253
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 253-259
summary Recent trends in architectural education and practice have encouraged the use of computational tools and methods for solving complex design problems. Newer technology can augment the design process by applying progressively more-advanced computational tools. However, the complex nature of these tools can lead to students getting lost at the skill-building stage, they can become trapped in computational design terminology, leading to designs of limited spatial quality. This paper introduces a pilot study from Izmir University of Economics (IUE) for the integration of computational design technology in the undergraduate architectural curricula, based on a workshop series using a top-down teaching strategy.
wos WOS:000402063700028
keywords Basic design; learning outcomes; keyword analysis; visual scripting environment (VSE)
series eCAADe
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_337769 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002