CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 616

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia16_352
id acadia16_352
authors Farahi, Behnaz
year 2016
title Caress of the Gaze: A Gaze Actuated 3D Printed Body Architecture
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 352-361
doi https://doi.org/10.52842/conf.acadia.2016.352
summary This paper describes the design process behind Caress of the Gaze, a project that represents a new approach to the design of a gaze-actuated, 3D printed body architecture—as a form of proto-architectural study—providing a framework for an interactive dynamic design. The design process engages with three main issues. Firstly, it aims to look at form or geometry as a means of controlling material behavior by exploring the tectonic properties of multi-material 3D printing technologies. Secondly, it addresses novel actuation systems by using Shape Memory Alloy (SMA) in order to achieve life-like behavior. Thirdly, it explores the possibility of engaging with interactive systems by investigating how our clothing could interact with other people as a primary interface, using vision-based eye-gaze tracking technologies. In so doing, this paper describes a radically alternative approach not only to the production of garments but also to the ways we interact with the world around us. Therefore, the paper addresses the emerging field of shape-changing 3D printed structures and interactive systems that bridge the worlds of robotics, architecture, technology, and design.
keywords eye-gaze tracking, interactive design, 3d printing, smart material, programmable matter, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id ascaad2016_014
id ascaad2016_014
authors Ahmed, Zeeshan Y.; Freek P. Bos, Rob J.M. Wolfs and Theo A.M. Salet
year 2016
title Design Considerations Due to Scale Effects in 3D Concrete Printing
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 115-124
summary The effect of scale on different parameters of the 3D printing of concrete is explored through the design and fabrication of a 3D concrete printed pavilion. This study shows a significant gap exists between what can be generated through computer aided design (CAD) and subsequent computer aided manufacturing (generally based on CNC technology). In reality, the 3D concrete printing on the one hand poses manufacturing constraints (e.g. minimum curvature radii) due to material behaviour that is not included in current CAD/CAM software. On the other hand, the process also takes advantage of material behaviour and thus allows the creation of shapes and geometries that, too, can’t be modelled and predicted by CAD/CAM software. Particularly in the 3D printing of concrete, there is not a 1:1 relation between toolpath and printed product, as is the case with CNC milling. Material deposition is dependent on system pressure, robot speed, nozzle section, layer stacking, curvature and more – all of which are scale dependent. This paper will discuss the design and manufacturing decisions based on the effects of scale on the structural design, printed and layered geometry, robot kinematics, material behaviour, assembly joints and logistical problems. Finally, by analysing a case study pavilion, it will be explore how 3D concrete printing structures can be extended and multiplied across scales and functional domains ranging from structural to architectural elements, so that we can understand how to address questions of scale in their design.
series ASCAAD
email
last changed 2017/05/25 13:31

_id ecaade2016_073
id ecaade2016_073
authors Borhani, Alireza and Kalantar, Negar
year 2016
title Material Active Geometry - Constituting Programmable Materials for Responsive Building Skins
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 639-648
doi https://doi.org/10.52842/conf.ecaade.2016.1.639
wos WOS:000402063700069
summary This paper is part of a body of research developing an exploratory dialogue between the built form and the environment, via experimentation with performative geometry and material. Here, geometry is considered a design material with the specific capacity to contribute to the performative aspects and kinetic capabilities of building skins.This work opens with a review of emerging opportunities for architects to design materials. It then discusses the concept of Material Active Geometry (MAG) as a means of designing new properties for existing materials. This is followed by a discussion of MAG principles that inform the concepts of flexibility and rigidity in a 3D-printed textile called Flexible Textile Structure (FTS). This research characterizes two FTS types and discusses their potential to be employed in building skins; it also considers combinatory approaches to computational models and physical prototyping. The work concludes with a discussion of the advantages of using FTS, and provides a trajectory for future research in the field of responsive materials and systems.
keywords Programmable Material; Material Active Geometry; Flexible Textile Structures; Responsive Building Skins; Flexible yet Rigid
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia16_154
id acadia16_154
authors Brugnaro, Giulio; Baharlou, Ehsan; Vasey, Lauren; Menges, Achim
year 2016
title Robotic Softness: An Adaptive Robotic Fabrication Process for Woven Structures
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 154-163
doi https://doi.org/10.52842/conf.acadia.2016.154
summary This paper investigates the potential of behavioral construction strategies for architectural production through the design and robotic fabrication of three-dimensional woven structures inspired by the behavioral fabrication logic used by the weaverbird during the construction of its nest. Initial research development led to the design of an adaptive robotic fabrication framework composed of an online agent-based system, a custom weaving end-effector and a coordinated sensing strategy utilizing 3D scanning.The outcome of the behavioral weaving process could not be predetermined a priori in a digital model, but rather emerged out of the negotiation among design intentions, fabrication constraints, performance criteria, material behaviors and specific site conditions. The key components of the system and their role in the fabrication process are presented both theoretically and technically, while the project serves as a case study of a robotic production method envisioned as a soft system: a flexible and adaptable framework in which the moment of design unfolds simultaneously with fabrication, informed by a constant flow of sensory information.
keywords soft systems, agent-based systems, robotic fabrication, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia16_318
id acadia16_318
authors Huang, Alvin
year 2016
title From Bones to Bricks: Design the 3D Printed Durotaxis Chair and La Burbuja Lamp
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 318-325
doi https://doi.org/10.52842/conf.acadia.2016.318
summary Drawing inspiration from the variable density structures of bones and the self-supported cantilvers of corbelled brick arches, the Durotaxis Chair and the La Burbuja lamp explore a material-based design process by responding to the challenge of designing a 3D print, rather than 3D printing a design. As such, the fabrication method and materiality of 3D printing define the generative design constraints that inform the geometry of each. Both projects are seen as experiments in the design of 3D printed three-dimensional space packing structures that have been designed specifically for the machines by which they are manufactured. The geometry of each project has been carefully calibrated to capitalize on a selection of specific design opportunities enabled by the capabilities and constraints of additive manufacturing. The Durotaxis Chair is a half-scale prototype of a fully 3D printed multi-material rocking chair that is defined by a densely packed, variable density three-dimensional wire mesh that gradates in size, scale, density, color, and rigidity. Inspired by the variable density structure of bones, the design utilizes principal stress analysis, asymptotic stability, and ergonomics to drive the logics of the various gradient conditions. The La Burbuja Lamp is a full scale prototype for a zero-waste fully 3D printed pendant lamp. The geometric articulation of the project is defined by a cellular 3D space packing structure that is constrained to the angles of repose and back-spans required to produce un-supported 3D printing.
keywords parametic design, digital fabrication, structural analysis, additive manufacturing, 3d printing
series ACADIA
type paper
email
last changed 2022/06/07 07:50

_id caadria2016_539
id caadria2016_539
authors Lublasser, E.; J. Braumann, D. Goldbach and S. Brell-Cokcan
year 2016
title Robotic Forming: Rapidly Generating 3D Forms and Structures through Incremental Forming
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 539-548
doi https://doi.org/10.52842/conf.caadria.2016.539
summary The past years have seen significant developments in the area of robotic design interfaces. Building upon visual programming environments, these interfaces now allow the creative industry to de- fine even complex fabrication processes in an easy, accessible way, while providing instant, production-immanent feedback. However, while these software tools greatly speed up the programming of robot- ic arms, many processes are still inherently slow: Subtractive process- es need to remove a large amount of material with comparably small tools, while additive processes are limited by the speed of the extruder and the properties of the extruded material. In this research we present a new method for incrementally shaping transparent polymer materi- als with a robotic arm, without requiring heat or dies for deep- drawing, thus allowing us to rapidly fabricate individual panels within a minimum of time.
keywords Incremental forming; robotic fabrication; visual programming
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2016_510
id sigradi2016_510
authors Tapia, Clara
year 2016
title Análisis comparativo de prendas y estructuras textiles realizadas por impresión 3D [Comparative analysis of the structures of 3D printed clothes and textiles]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.331-336
summary This work is an analysis about contemporary 3D printed textiles and clothes. The goal is to facilitate the work of those who want to design clothes by giving them an organized and categorized map of this new features. The categorization it is done by typologies focused into identify the minimum unit of the structures and the way that they grow to build the surfaces. As a conclusion this papers includes a discussion about what is digital fabrication good for, and the possibilities of personalized production.
keywords 3D Printing; Textiles Structures; Fashion; Parametric Design; Personalized Fabrication
series SIGRADI
email
last changed 2021/03/28 19:59

_id ijac201614105
id ijac201614105
authors Ahlquist, Sean
year 2016
title Sensory material architectures: Concepts and methodologies for spatial tectonics and tactile responsivity in knitted textile hybrid structures
source International Journal of Architectural Computing vol. 14 - no. 1, 63-82
summary As the knowledge of material computation advances, continuing the seamless integration of design and fabrication, questions beyond materialization can be addressed with a focus on sensing, feedback, and engagement as critical factors of design exploration. This article will discuss a series of prototypes, design methodologies, and technologies that articulate a textile’s micro-architecture, at the scale of fibers and stitches, to instrumentalize simultaneous structural, spatial, and sensory-responsive qualities. The progression of research displays an ever-deepening instrumentalization of fiber structure and its implications to form definition and responsivity, in creating form- and bending-active structures. The research results in a more refined definition of material behavior as the innate phenomena which emerge at the moment of textile fabrication. Ultimately, the architecture, in its materiality and physical, visual, and auditory responsivity, is designed to address specific challenges for children in filtering multiple sensory inputs, an underlying factor of autism spectrum disorder.
keywords CNC Knitting, Form-active, Bending-active, Textile hybrid, Mutli-sensory
series journal
last changed 2016/06/13 08:34

_id caadria2016_271
id caadria2016_271
authors Khoo, Chin Koi and Flora Salim
year 2016
title Painterface: An integrated responsive architectural interface
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 271-280
doi https://doi.org/10.52842/conf.caadria.2016.271
summary Interface design is one of the main research areas in human- computer interaction (HCI). In computer science, many HCI research- ers and designers explore novel interface designs with cutting-edge technology, but few investigate alternative interfaces for existing built environments, especially in the area of architecture. In this paper, we investigate alternative interface designs for existing architectural ele- ments—such as walls, floors, and ceilings—that can be created with off-the-shelf materials. Instead of merely serving as discrete sensing and display devices integrated to an existing building’s surface, these liquid and thin materials act as interventions that can be ‘painted’ on a surface, transforming it into an architectural interface. This interface, Painterface, is a responsive material intervention that serves as an an- alogue, wall-type media interface that senses and responds to people’s actions. Painterface is equipped with three sensing and responsive ca- pacities: touch, sound, and light. While the interface’s touch capacity performs tactile sensing, its sound-production and illumination capaci- ties emit notes and light respectively. The outcomes of this research suggest the possibility of a simple, inexpensive, replaceable, and even disposable interface that could serve as an architectural intervention applicable to existing building surfaces.
keywords Human-computer interaction; integrated interface; sensing and responsive architectural interface
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2016_477
id caadria2016_477
authors Ma, Y. P.; M. C. Lin and C. C. Hsu
year 2016
title Enhance Architectural Heritage Conservation Using BIM Technology
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 477-486
doi https://doi.org/10.52842/conf.caadria.2016.477
summary Common problems tend to surface during the restoration and maintenance of wooden structures for architectural heritage: (1) recording and communicating geometric and non-geometric infor- mation, (2) integrating and managing the multiple phases of construc- tion and (3) the structural damage that can be incurred during the dis- mantling process. This leads to less confidence in the quality of restoration and maintenance. This study considers the traditional wooden structures in Taiwan as a basis to discuss the issues faced dur- ing restoration and the gap in communication between designers and builders. Using new techniques, resources and the concept of BIM, a plugin is developed for guiding restoration. It serves as a BIM-based communication platform for designers and builders, enabling the real- time exchange of information to minimise any gaps that may exist be- tween the designers’ information and that of the builders. This allows information related to the restoration to be more accurate and offers the assurance that the traditional architecture retains its original struc- ture and value.
keywords Architectural heritage; conservation; digital achievement; BIM; wooden frameworks
series CAADRIA
email
last changed 2022/06/07 07:59

_id ijac201614104
id ijac201614104
authors Wood, Dylan Marx; David Correa, Oliver David Krieg and Achim Menges
year 2016
title Material computation—4D timber construction: Towards building-scale hygroscopic actuated, self-constructing timber surfaces
source International Journal of Architectural Computing vol. 14 - no. 1, 49-62
summary The implementation of active and responsive materials in architecture and construction allows for the replacement of digitally controlled mechanisms with material-based systems that can be designed and programmed with the capacity to compute and execute a behavioral response. The programming of such systems with increasingly specific response requires a material-driven computational design and fabrication strategy. This research presents techniques and technologies for significantly upscaling hygroscopically actuated timber-based systems for use as self-constructing building surfaces. The timber’s integrated hygroscopic characteristics combined with computational design techniques and existing digital fabrication methods allow for a designed processing and reassembly of discrete wood elements into large-scale multi element bilayer surfaces. This material assembly methodology enables the design and control of the encoded direction and magnitude of humidity-actuated responsive curvature at an expanded scale. Design, simulation, and material assembly tests are presented together with formal and functional configurations that incorporate self-constructing and self-rigidizing surface strategies. The presented research and prototypes initiate a shift toward a large-scale, self-construction methodology.
keywords Hygroscopic, self-forming, computational design, autonomous actuation, wood structures
series journal
last changed 2016/06/13 08:34

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2016_415
id caadria2016_415
authors Crolla, Kristof and Adam Fingrut
year 2016
title Protocol of Error: The design and construction of a bending-active gridshell from natural bamboo
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 415-424
doi https://doi.org/10.52842/conf.caadria.2016.415
summary This paper advocates alternative methods to overcome the impossibility of realising ‘perfect’ digital designs. It discusses Hong Kong’s 2015 ‘ZCB Bamboo Pavilion’ as a methodological case study for the design and construction of architecture from unprocessed natu- ral bamboo. The paper critically evaluates protocols set up to deal with errors resulting from precise digital design systems merging with inconsistent natural resources and onsite craftsmanship. The paper starts with the geometric and tectonic description of the project, illus- trating a complex and restrictive construction context. Bamboo’s unique growth pattern, structural build-up and suitability as a bending- active material are discussed and Cantonese bamboo scaffolding craftsmanship is addressed as a starting point for the project. The pa- per covers protocols, construction drawings and assembly methods developed to allow for the incorporation and of large building toler- ances and dimensional variation of bamboo. The final as-built 3d scanned structure is compared with the original digital model. The pa- per concludes by discussing the necessity of computational architec- tural design to proactively operate within a field of real-world inde- terminacy, to focus on the development of protocols that deal with imperfections, and to redirect design from the virtual world towards the latent opportunities of the physical.
keywords Bamboo; bending-active gridshells; physics simulation; form-finding; indeterminacy
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2016_164
id ecaade2016_164
authors Dobiesz, Sebastian and Grajper, Anna
year 2016
title Animating the Static. Case Study of The Project "Urbanimals" - Enhancing play in the cities through an augmented and interactive environment
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 691-700
doi https://doi.org/10.52842/conf.ecaade.2016.1.691
wos WOS:000402063700074
summary This article delineates the process of developing the project "Urbanimals" - an interactive installation designed and realised in Bristol, UK, in 2015. As the case study research, it draws attention to the difficulties in designing interactive structures in urban spaces - from an architects' idea to a construction stage. There are four areas that are being investigated: (1) Modelling interactions, (2) Negotiating locations and logistics, (3) Developing hardware and (4) Performing the on-site observations. The project draws from the idea of Smart City (SC) as the concept of the urban environment with a certain level of responsiveness through implementing a technology-driven matter that expands city offer perceivable, but gentle and not hindering way. It highlights the possible applications of projection technology and the utilisation of the 3D modelling software which provides complex tools for creating animations, movements and interactions with future users. The article gives clues how to design more engaging interactions and how to deal with implementing them in public realm.
keywords Smart Cities; Interactive Architecture; public realm; art installations
series eCAADe
email
last changed 2022/06/07 07:55

_id ascaad2016_009
id ascaad2016_009
authors Elbasdi, Gulay; Sema Alaçam
year 2016
title An Investigation on Growth Behaviour of Mycelium in a Fabric Formwork
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 65-74
summary Most progress in designing mycelium-based material to date has been made by using petri dish and 3d printed geometries. In this study, reshaping capabilities of mycelium-based materials using fabric formwork is being discussed. This ongoing study is the result of a series of experiments about mycelium-based material that aims to investigate its potentials as free- form geometry. In this paper, we aim to make a comparison between initial and end shapes by implementing digital and analogue tools based on mycelium-based fabric formwork experiment. The physical experiment setup consists of different initial geometry alternatives and the deformation will be observed and measured numerically by time-based recording on top and section views. With the help of digital tools, experiments will be documented as a process of formation. We aim to discuss the potential of the usage of mycelium as a binding agent in free form geometry since mycelium acts as natural self-assembling glue. By doing so, structural potentials of the material, which is strengthened by mycelium hyphae, were examined. This study aims to contribute to the design research studies and scientific knowledge together to integrate living systems into the material design as encouraging collaborative interdisciplinary research, thereby positioning designer as a decision-maker from the very beginning of material design process.
series ASCAAD
email
last changed 2017/05/25 13:13

_id caadria2016_549
id caadria2016_549
authors Fischer, Thomas and Christiane M. Herr
year 2016
title Parametric Customisation of A 3D Concrete Printed Pavilion
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 549-558
doi https://doi.org/10.52842/conf.caadria.2016.549
summary Advances in 3D printing technology have reached architectural scales with 3D concrete printing, a digitally controlled fabrication process in which fibre-reinforced concrete is deposited layer-by-layer to fabricate building elements. In this paper we present a brief overview of key concrete 3D printing related research development efforts, followed by a report on a research project into the parametric online customisation and fabrication of small 3D concrete printed pavilions. The research project is set in, and addresses possibilities and constraints of, the developing local Chinese construction context.
keywords 3D concrete printing; parametric design; digital fabrication; online customisation; China
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2018_165
id ecaade2018_165
authors Fisher-Gewirtzman, Dafna and Bruchim, Elad
year 2018
title Considering Variant Movement Velocities on the 3D Dynamic Visibility Analysis (DVA) - Simulating the perception of urban users: pedestrians, cyclists and car drivers.
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 569-576
doi https://doi.org/10.52842/conf.ecaade.2018.2.569
summary The objective of this research project is to simulate and evaluate the effect of movement velocity and cognitive abilities on the visual perception of three groups of urban users: pedestrians, cyclists and car drivers.The simulation and analysis is based on the 3D Dynamic Visual Analysis (DVA) (Fisher-Gewirtzman, 2017). This visibility analysis model was developed in the Rhinoceros and Grasshopper software environments and is based on the conceptual model presented in Fisher-Gewirtzman (2016): a 3D Line of Sight (LOS) visibility analysis, taking into account the integrated effect of the 3D geometry of the environment and the variant elements of the view (such as the sky, trees and vegetation, buildings and building types, roads, water etc.). In this paper, the current advancement of the existing model considers the visual perception of human users employing three types of movement in the urban environment--pedestrians, cyclists and drivers--is explored.We expect this research project to exemplify the contribution of such a quantification and evaluation model to evaluating existing urban structures, and for supporting future human perception-based urban design processes.
keywords visibility analysis and simulation; predicting perception of space; movement in the urban environment; pedestrians; cyclists; car drivers
series eCAADe
email
last changed 2022/06/07 07:51

_id ascaad2016_019
id ascaad2016_019
authors Ibrahim, Magdy M.
year 2016
title 3D Printed Architecture - A new practical frontier in construction methods
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 169-178
summary It is important to discuss and compare the rationale behind the success of the additive manufacturing technology in particular industries and at a particular scale versus full-scale building construction. The comparison should include structural qualities of the possible used materials, the cost effectiveness of the process, the time factor and its value in the construction process, the mass customization potential of the technology and its effect on building forms. The current state of technology in architecture, despite huge potential, has not produced new architectural forms.
series ASCAAD
email
last changed 2017/05/25 13:31

_id caadria2016_063
id caadria2016_063
authors Kawiti, Derek; Marc Aurel Schnabel and James Durcan
year 2016
title Indigenous Parametricism - Material Computation.
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 63-72
doi https://doi.org/10.52842/conf.caadria.2016.063
summary The use of computational formats and digital tools includ- ing machine fabrication by indigenous people worldwide to augment traditional practices and material culture is becoming more and more commonplace. However within the practice of architecture while there are indigenous architectural practitioners utilizing digital tools, it is unclear as to whether there is motivation to implement traditional in- digenous knowledge in conjunction with these computational instru- ments and methodologies. This paper explores how the tools might be used to investigate the potential for indigenous development, cultural empowerment and innovation. It also describes a general methodology whereby capacity can be shared between academia and indigenous groups to foster new knowledge through a recently implemented in- digenous focused design research entity, SITUA. The importance and significant research potential of what we term 'domain based research' is reinforced through the exploration of emergent materials and build- ing systems located within specific tribal domains. A recent project employing 3D clay extrusion printing is used to illustrate this ap- proach.
keywords Indigenous domain based research: Maori; materials; digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_302170 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002