CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id acadia16_12
id acadia16_12
authors Gerber, David Jason; Pantazis, Evangelos
year 2016
title A Multi-Agent System for Facade Design: A design methodology for Design Exploration, Analysis and Simulated Robotic Fabrication
doi https://doi.org/10.52842/conf.acadia.2016.012
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 12-23
summary For contemporary design practices, there still remains a disconnect between design tools used for early stage design exploration and performance analysis, and those used for fabrication and construction of complex tectonic architectural systems. The research brings forward downstream fabrication constraints into the up-stream design exploration and design decision making. This paper addresses the issues of developing an integrated digital design work-flow and details a research framework for the incorporation of environmental performance into a robotic fabrication for early stage design exploration and generation of intricate and complex alternative façade designs. The method allows the user to import a design surface, define design parameters, set a number of environmental performance objectives, and then simulate and select a robotic construction strategy. Based on these inputs, design alternatives are generated and evaluated in terms of their performance criteria in consideration of their robotically simulated constructability. In order to validate the proposed framework, an experimental case study of office building façade designs that are generatively created from a multi-agent system for design methodology is design explored and evaluated. Initial results define a heuristic function for improving simulated robotic constructability and illustrate the functionality of our prototype. Project limitations and future research steps are then discussed.
keywords generative design, multi-objective design optimization, robotic fabrication, simulation, design performance, design decision making
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ijac201614403
id ijac201614403
authors Kontovourkis, Odysseas and George Tryfonos
year 2016
title Design optimization and robotic fabrication of tensile mesh structures: The development and simulation of a custom-made end-effector tool
source International Journal of Architectural Computing vol. 14 - no. 4, 333-348
summary This article presents an ongoing research, aiming to introduce a fabrication procedure for the development of tensile mesh systems. The purpose of current methodology is to establish an integrated approach that combines digital form- finding and robotic manufacturing processes by extracting data and information derived through elastic material behavior for physical implementation. This aspires to extend the capacity of robotically driven mechanisms to the fabrication of complex tensile structures and, at the same time, to reduce the defects that might occur due to the deformation of the elastic material. In this article, emphasis is given to the development of a custom-made end-effector tool, which is responsible to add elastic threads and create connections in the form of nodes. Based on additive fabrication logic, this process suggests the development of physical prototypes through a design optimization and tool-path verification.
keywords Robotic fabrication, tensile mesh structures, real-time response, end-effector tool, multi-objective gentic algorithms, structure optimization, form-finding
series journal
email
last changed 2016/12/09 10:52

_id ascaad2016_047
id ascaad2016_047
authors Algeciras-Rodríguez, José
year 2016
title Trained Architectonics
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 461-468
summary The research presented here tests the capacity of artificial-neural-network (ANN) based multi-agent systems to be implemented in architectural design processes. Artificial Intelligence algorithms allow for a new approach to design, taking advantage of its generic functioning to produce meaningful outcomes. Experimentation within this project is based on Self-Organizing Maps (SOMs) and takes advantage of its behavior in topology to produce architectural geometry. SOMs as full stochastic processes involve randomness, uncertainty and unpredictability as key features to deal with during the design process. Following this behavior, SOMs are used to transmit information, which, instead of being copied, is reproduced after a learning (training) process. Pre-existent architectural objects are taken as learning models as they have been considered masterpieces. In this context, by defining the SOM input set, masterpieces become measurement elements and can be used to set a distance to the new element position in a comparatistic space. The characteristics of masterpieces get embedded within the code and are transmitted to 3D objects. SOM produced objects from a population with shared characteristics where the masterpiece position is its probabilistic center point.
series ASCAAD
email
last changed 2017/05/25 13:33

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia16_332
id acadia16_332
authors Retsin, Gilles; Garcia, Manuel Jimenez
year 2016
title Discrete Computational Methods for Robotic Additive Manufacturing: Combinatorial Toolpaths
doi https://doi.org/10.52842/conf.acadia.2016.332
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 332-341
summary The research presented in this paper is part of a larger, emerging body of research into large-scale 3D printing. The research attempts to develop a computational design method specifically for large-scale 3D printing of architecture. Influenced by the concept of Digital Materials, this research is situated within a critical discussion of what fundamentally constitutes a digital object and process. This requires a holistic understanding, taking into account both computational design and fabrication. The intrinsic constraints of the fabrication process are used as opportunities and generative drivers in the design process. The paper argues that a design method specifically for 3D printing should revolve around the question of how to organize toolpaths for the continuous addition or layering of material. Two case-study projects advance discrete methods as efficient ways to compute a continuous printing process. In contrast to continuous models, discrete models allow users to serialize problems and errors in toolpaths. This allows a local optimization of the structure, avoiding the use of global, computationally expensive, problem-solving algorithms. Both projects make use of a voxel-based approach, where a design is generated directly from the combination of thousands of serialized toolpath fragments. The understanding that serially repeated elements can be assembled into highly complex and heterogeneous structures has implications stretching beyond 3D printing. This combinatorial approach for example also becomes highly valuable for construction systems based on modularity and prefabrication.
keywords prgrammable materials, simulation and design optimization, digital fabrication, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2016_529
id caadria2016_529
authors Rust, Romana; David Jenny, Fabio Gramazio and Matthias Kohler
year 2016
title Spatial Wire Cutting: Cooperative robotic cutting of non-ruled surface geometries for bespoke building components
doi https://doi.org/10.52842/conf.caadria.2016.529
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 529-538
summary The research project Spatial Wire Cutting (SWC) investi- gates a multi-robotic cutting technique that allows for an efficient production of geometrically complex architectural components. Being pursued by the group of Gramazio Kohler Research at ETH Zurich, this approach involves a spatially coordinated movement of two six- axis robotic arms that control the curvature of a hot-wire, which adopts itself against the resistance of the processed material (e.g. pol- ystyrene). In contrast to standard CNC hot-wire cutting processes, in which the cutting medium remains linear, it allows the automated fab- rication of non-ruled, doubly curved surfaces. This pursuit includes the development of a custom digital design and robotic control framework that combines computational simulation and manufactur- ing feedback information. Ultimately, SWC enables a considerably expanded design and fabrication space for complex architectural ge- ometries and their construction through automated robotic technology. This paper addresses the applied workflow and technology 1) such as computational design and simulation, robotic control and adaptive fabrication, 2) results of application within a two-week design and building workshop, and 3) will conclude with further steps of future research.
keywords Computational design and digital fabrication; feedback-based automated manufacturing; multi-robot control; digital simulation; hot-wire cutting
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2016_209
id caadria2016_209
authors Wang, Likai; Zilong Tan and Guohua Ji
year 2016
title Toward the wind-related building performative design
doi https://doi.org/10.52842/conf.caadria.2016.109
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 109-218
summary The integration of optimization algorithms and building performance simulation tools make it possible to carry out performa- tive design or performance-driven design, which aims to guide the de- sign synthesis process of the simulation results to continuously im- prove the design. However, the associated research work of wind- related building performance is still deficient, resulting from lack of applicable interface and the time consumption. Meanwhile, in the in- dustrial design realm, the aero-dynamics or fluid-dynamics behaviour of the production under development has been vastly analysed and op- timized based on the multi-discipline optimization (MDO) techniques. Owing to offering numerous built-in interface and integrated optimi- zation algorithm, MDO application software has begun to be used in building optimization design with the complex relationship between various objectives. With the advantage of MDO tools and aimed to provide an efficient optimization approach from the perspective of ar- chitect, this paper proposes a wind-related building performance op- timization design system integrating Rhinoceros and Fluent based on iSIGHT - a MDO application software. In addition, the lighting per- formance is considered in this research as well for implementing the multi-objective optimization. Two case studies of tall building optimi- zation design based on varied generative approaches are introduced to investigate the effect and efficiency of this system.
keywords Performative design; wind-related building performance; MDO; parametric generating design
series CAADRIA
email
last changed 2022/06/07 07:58

_id ascaad2016_017
id ascaad2016_017
authors Yazici, Sevil; David J. Gerber
year 2016
title Prototyping Generative Architecture - Experiments on Multi-Agent Systems, Environmental Performance and 3D Printing
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 145-154
summary Computational design was developed to solve complex problems in architecture and to enable the establishment of systems with complex properties in a holistic manner. With the enhanced capabilities of computational design, there are possibilities to develop integrated approaches to adapt to multi-faceted design problems. Swarm-based multi-agent systems (MAS) are already used as generative bottom-up methods in various design operations, including form-finding and optimization. This study presents a systematic approach, in which multi-agent systems are informed by the environmental performance assessment data where the output is directly linked to the 3D printing process. The intent is to increase efficiency within the design and prototyping process by integrating performance and fabrication into the early stages of the design process. The proposed method has been applied as a case study to a diverse group of students and professionals. The results have proven that applying this systematic approach enabled the designers to achieve highly sophisticated, formal and organizational outputs, with enhanced spatial and geometric qualities.
series ASCAAD
email
last changed 2017/05/25 13:31

_id acadia16_298
id acadia16_298
authors Yu, Lei; Huang, Yijiang; Zhongyuan, Liu; Xiao, Sai; Liu, Ligang; Song, Guoxian; Wang, Yanxin
year 2016
title Highly Informed Robotic 3D Printed Polygon Mesh: A Nobel Strategy of 3D Spatial Printing
doi https://doi.org/10.52842/conf.acadia.2016.298
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 298-307
summary Though robotic 3D printing technology is currently undergoing rapid development, most of the research and experiments are still based on a bottom up layering process. This paper addresses long term research into a robotic 3D printed polygon mesh whose struts are directly built up and joined together as rapidly generated physical wireframes. This paper presents a novel “multi-threaded” robotic extruder, as well as a technical strategy to create a “printable” polygon mesh that is collision-free during robotic operation. Compared to standard 3D printing, architectural applications demand much larger dimensions at human scale, geometrically lower resolution and faster production speed. Taking these features into consideration, 3D printed frameworks have huge potential in the building industry by combining robot arm technology together with FDM 3D printing technology. Currently, this methodology of rapid prototyping could potentially be applied on pre-fabricated building components, especially ones with uniform parabolic features. Owing to the mechanical features of the robot arm, the most crucial challenge of this research is the consistency of non-stop automated control. Here, an algorithm is employed not only to predict and solve problems, but also to optimize for a highly efficient construction process in coordination of the robotic 3D printing system. Since every stroke of the wireframe contains many parameters and calculations in order to reflect its native organization and structure, this robotic 3D printing process requires processing an intensive amount of data in the back stage.
keywords interdisciplinary design, craft in design computation, digital fabrication
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id acadia16_196
id acadia16_196
authors Yuan, Philip F.; Chai, Hua; Yan, Chao; Zhou, Jin Jiang
year 2016
title Robotic Fabrication of Structural Performance-based Timber Gridshell in Large-Scale Building Scenario
doi https://doi.org/10.52842/conf.acadia.2016.196
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp 196-205
summary This paper investigates the potential of a digital geometry system to integrate structural performance-based design and robotic fabrication in the scenario of building a large-scale non-uniform timber shell. It argues that a synthesis of multi-objective optimization, design and construction phases is required in the realization of timber shell construction in architecture practice in order to fulfill the demands of building regulation. Confronting the structural challenge of the non-uniform shell, a digital geometry system correlates all the three phases by translating geometrical information between them. First, a series of structural simulations and experimentations with different objectives are executed to inform the particular shape and tectonic details of each shell component based on its local condition in the geometrical system. Then, controlled by the geometrical system, a hybrid process of different digital fabrication technologies, including a customized robotic timber mill, is established to enable the manufacture of the heterogeneous shell components. Ultimately, the Timber Structure Enterprise Pavilion as the demonstration and evaluation of this method is fabricated and assembled on site through a notational system to indicate the applicability of this research in practical scenarios.
keywords robotic fabrication, geometrical information modeling, simulation and design optimization, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id ecaade2016_062
id ecaade2016_062
authors Erioli, Alessio
year 2016
title Aesthetics of Decision - Unfolding the design process within a framework of complexity and self-organization
doi https://doi.org/10.52842/conf.ecaade.2016.1.219
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 219-228
summary Complexity-grounded paradigms and self-organization based strategies promise enormous potential when channeled in a design process, but their current stage of development (while delivering groundbreaking results in recent years) hasn't significantly impacted yet the widespread architectural practice. Still, the tendency (in the development of technology and society) is clearly towards an increase in complexity and distributed intelligence, henceforth it is of primary importance to adopt a design approach that allows the harnessing of such potential and convey it in the creation of outcomes that favor a richer and heterogeneous ecological entanglement. To tap this kind of potential in an open-ended process requires a design approach that re-defines the distribution of control, choices and information throughout the whole process (including materials and fabrication processes).The paper explores the possibility of such design approach in the territory that links education and research through a series of Master Thesis developed at the University of Bologna and comparing them to other case studies developed worldwide.
wos WOS:000402063700025
keywords continuity; tectonics; architecture; mereology; multi-agent systems; theory; robotic fabrication; computation; simulation
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2016_797
id caadria2016_797
authors Agusti?-Juan, Isolda and Guillaume Habert
year 2016
title An environmental perspective on digital fabrication in architecture and construction
doi https://doi.org/10.52842/conf.caadria.2016.797
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 797-806
summary Digital fabrication processes and technologies are becom- ing an essential part of the modern product manufacturing. As the use of 3D printing grows, potential applications into large scale processes are emerging. The combined methods of computational design and robotic fabrication have demonstrated potential to expand architectur- al design. However, factors such as material use, energy demands, du- rability, GHG emissions and waste production must be recognized as the priorities over the entire life of any architectural project. Given the recent developments at architecture scale, this study aims to investi- gate the environmental consequences and opportunities of digital fab- rication in construction. This paper presents two case studies of classic building elements digitally fabricated. In each case study, the projects were assessed according to the Life Cycle Assessment (LCA) frame- work and compared with conventional construction with similar func- tion. The analysis highlighted the importance of material-efficient de- sign to achieve high environmental benefits in digitally fabricated architecture. The knowledge established in this research should be di- rected to the development of guidelines that help designers to make more sustainable choices in the implementation of digital fabrication in architecture and construction.
keywords Digital fabrication; LCA; sustainability; environment
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2016_343
id caadria2016_343
authors Asriana, Nova and Aswin Indraprastha
year 2016
title Making Sense of Agent-based Simulation: Developing Design Strategy for Pedestrian-centric Urban Space
doi https://doi.org/10.52842/conf.caadria.2016.343
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 343-352
summary This study investigates the relationships of field observa- tion, multi-agent simulation and space-syntax theory in spatial config- uration for developing design strategy for a case study, a tourist hub area in Musi Riverside, Palembang. Having such potential advantage and to tackle existing social and urban issues, our study developed a design approach based on multi-agent simulation enhanced by space syntax theory. The goal of this study is a deep understanding of multi agent simulation through mechanism of validation using field obser- vation and by taking into account the existing urban features. The purpose is to develop design strategy of pedestrian-centric urban space to be functioned as a tourist hub based on computational modelling. Following the paths result of pedestrian flow by multi-agents simula- tion, we elaborated the analysis of facility programming by means of Space Syntax theory. It shows the ranking of facility programs based on their relative connectivity and integration. By merging this result, it assembles programs and their circulation spaces by means of compu- tational simulation. Experimenting in both fields show a novel ap- proach for pedestrian-centric design in urban scale, particularly since behavioural models rarely used in early stage of design process. It shows that multi-agent simulation should be coupled with field obser- vation.
keywords Multi-agents simulation; network analysis; Space Syntax theory; design strategy; urban space
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2016_079
id ecaade2016_079
authors Cheng, Chi-Li and Hou, June-Hao
year 2016
title Biomimetic Robotic Construction Process - An approach for adapting mass irregular-shaped natural materials
doi https://doi.org/10.52842/conf.ecaade.2016.1.133
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 133-142
summary Beaver dams are formed by two main processes. One is that beavers select proper woods for constructing. The other one is that streams aggregate those woods to be assembled. Using this approach to construction structure is suitable for natural environment. In this paper, we attempt to develop a construction process which is suitable for all-terrain construction robot in the future. This construction process is inspired by beavers' construction behavior in nature. Beavers select proper sticks to make the structure stable. We predict that particular properties of sticks contribute gravity-driven assembly of wood structure. Thus, we implement the system with machine learning to find proper properties of sticks to improve selection mechanism of construction process. During this construction process, 3D scanner on robotic arm scans and recognizes sticks on terrain, and then robot will select proper sticks and place them. After placement, the system will scan and record the results for learning mechanism.
wos WOS:000402063700015
keywords Biomimetic Design; Machine Learning; Natural Material; Point Cloud Analysis; Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia18_404
id acadia18_404
authors Clifford, Brandon; McGee, Wes
year 2018
title Cyclopean Cannibalism. A method for recycling rubble
doi https://doi.org/10.52842/conf.acadia.2018.404
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 404-413
summary Each year, the United States discards 375 million tons of concrete construction debris to landfills (U.S. EPA 2016), but this is a new paradigm. Past civilizations cannibalized their constructions to produce new architectures (Hopkins 2005). This paper interrogates one cannibalistic methodology from the past known as cyclopean masonry in order to translate this valuable method into a contemporary digital procedure. The work contextualizes the techniques of this method and situates them into procedural recipes which can be applied in contemporary construction. A full-scale prototype is produced utilizing the described method; demolition debris is gathered, scanned, and processed through an algorithmic workflow. Each rubble unit is then minimally carved by a robotic arm and set to compose a new architecture from discarded rubble debris. The prototype merges ancient construction thinking with digital design and fabrication methodologies. It poses material cannibalism as a means of combating excessive construction waste generation.
keywords full paper, cyclopean, algorithmic, robotic fabrication, stone, shape grammars, computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2016_559
id caadria2016_559
authors Cokcan, Baris; Johannes Braumann, W. Winter and Martin Trautz
year 2016
title Robotic Production of Individualised Wood Joints
doi https://doi.org/10.52842/conf.caadria.2016.559
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 559-568
summary Modern modular constructions can consist of highly indi- vidualised elements that are produced at nearly the same efficiency as serial manufacturing. This paper focuses on the project “WoodWaves” an Info-Point for the conference World Congress of Timber Engineer- ing, which was designed with this new conception of modularity. The process utilises a robotically operated milling cutter to form block- board panels out of spruce, which make up the multifunctional infor- mation point. The entire object is produced with only sliding dovetail joints. Parametric design methods were developed to automatically adjust each joint to fit the individual conditions. New CAD/CAM in- terfaces, linking design directly with fabrication, enabled the serial production of 108 different shaped elements with a 6-axis robotic arm.
keywords Computational design; robotic production; digital fabrication; wood joints; info-point
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2016_301
id caadria2016_301
authors Datta, S.; T. W. Chang and J. Hollick
year 2016
title Curating architectural collections: Interaction with immersive stereoscopic visualisation
doi https://doi.org/10.52842/conf.caadria.2016.301
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 301-310
summary We present our research on the use of immersive stereo- scopic visualisation in interaction with collections of architectural rep- resentations. We investigate the processing and visualisation of multi- ple model representations from architectural datasets. We develop two models for locating collections of datasets in spatial contexts, namely a realistic gallery and a synthetic landscape. We evaluate and report the qualitative interactive experience with two forms of contextual in- teraction within a novel stereoscopic immersive visualisation (cylin- drical projection) environment. The use of immersive stereoscopic visualisation conveys aspects and dimensions of the collections that would not be possible without the forms of contextual interaction, the gallery metaphor and the synthetic landscape to interact with the ar- chitectural collections. The combination of abstract representations with realistic sense of scale and interaction provide the user with an immersive experience to convey the collective form.
keywords Digital data acquisition; architectural reconstruction; geometry processing and algorithms; immersive stereoscopic visualisation; human computer interaction
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2016_114
id ecaade2016_114
authors Erdine, Elif and Kallegias, Alexandros
year 2016
title Calculated Matter - Algorithmic Form-Finding and Robotic Mold-Making
doi https://doi.org/10.52842/conf.ecaade.2016.1.163
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 163-168
summary The paper addresses a specific method for the production of custom-made, differentiated moulds for the realization of a complex, doubly-curved wall element during an international three-week architectural programme, Architectural Association (AA) Summer DLAB. The research objectives focus on linking geometry, structure, and robotic fabrication within the material agency of concrete. Computational workflow comprises the integration of structural analysis tools and real-time form-finding methods in order to inform global geometry and structural performance simultaneously. The ability to exchange information between various simulation, modelling, analysis, and fabrication software in a seamless fashion is one of the key areas where the creation of complex form meets with the simplicity of exchanging information throughout various platforms. The paper links the notions of complexity and simplicity throughout the design and fabrication processes. The aim to create a complex geometrical configuration within the simplicity of a single material system, concrete, presents itself as an opportunity for further discussion and development.
wos WOS:000402063700018
keywords robotic fabrication; custom form-work; generative design; structural analysis; concrete
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2016_224
id ecaade2016_224
authors Gerber, David and Pantazis, Evangelos
year 2016
title Design Exploring Complexity in Architectural Shells - Interactive form finding of reciprocal frames through a multi-agent system
doi https://doi.org/10.52842/conf.ecaade.2016.1.455
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 455-464
summary This paper presents an integrated workflow for interactive design of shell structures, which couples structural and environmental analysis through a multi-agent systems (MAS) for design. The work lies at the intersection of architecture, engineering and computer science research, incorporating generative design with analytical techniques. A brief review on architectural shell structures and the structural logic of reciprocal frames is described. Through the morphological study of reciprocal frames locally we seek to inform the behavior of a MAS, which integrates form-finding techniques, with daylight factor analysis (DFA) and finite element analysis (FEA) on a global configuration. An experimental design is developed in order to explore the solution space of large span free form shells with varying topologies and boundary conditions, as well as identify the relationships between local design parameters of the reciprocal frames (i.e. number of elements, profile) and the analyses (i.e. stress distribution, solar radiation) for enabling the generation of different global design alternatives. The research improves upon design decision-making latency and certainty through harnessing geometric complexity and structural form finding for early stage design. Additionally, the research improves upon design outcomes by establishing a feedback loop between design generation, analysis and performance.
wos WOS:000402063700050
keywords Generative design; computational design; multi-agent systems; shell structures; reciprocal frames; form finding; parametric design
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia16_72
id acadia16_72
authors Harrison, Paul
year 2016
title What Bricks Want: Machine Learning and Iterative Ruin
doi https://doi.org/10.52842/conf.acadia.2016.072
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 72-77
summary Ruin has a bad name. Despite the obvious complications, failure provides a rich opportunity—how better to understand a building’s physicality than to watch it collapse? This paper offers a novel method to exploit failure through physical simulation and iterative machine learning. Using technology traditionally relegated to special effects, we can now understand collapse on a granular level: since modern-day physics engines track object-object collisions, they enable a close reading of the spatial preferences that underpin ruin. In the case of bricks, that preference is relatively simple—to fall. By idealizing bricks as rigid bodies, one can understand the effects of gravitational force on each individual brick in a masonry structure. These structures are sometimes able to ‘settle,’ resulting in a stable equilibrium state; in many cases, it means that they will simply collapse. Analyzing ruin in this way is informative, to be sure, but it proves most useful when applied in series. The evolutionary solver described in this paper closely monitors the performance of constituent bricks and ensures that the most successful structures are emulated by later generations. The tool consists of two parts: a user interface for design and the solver itself. Once the architect produces a potential design, the solver performs an evolutionary optimization; after a few hundred iterations, the end result is a structurally sound version of the unstable original. It is hoped that this hybrid of top-down and bottom-up design strategies offers an architecture that is ultimately strengthened by its contingencies.
keywords rigid body analysis, machine learning, multi-agent structural optimization, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_718701 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002