CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 616

_id sigradi2016_448
id sigradi2016_448
authors Afsari, Kereshmeh; Eastman, Charles M.; Shelden, Dennis R.
year 2016
title Data Transmission Opportunities for Collaborative Cloud-Based Building Information Modeling
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.907-913
summary Collaboration within Building Information Modeling process is mainly based on file transfer while BIM data being exchanged in either vendor specific file formats or neutral format using Industry Foundation Classes (IFC). However, since the Web enables Cloud-based BIM services, it provides an opportunity to exchange data via Web transfer services. Therefore, the main objective of this paper is to investigate what features of Cloud interoperability can assist a network-based BIM data transmission for a collaborative work flow in the Architecture, Construction, and Engineering (AEC) industry. This study indicates that Cloud-BIM interoperability needs to deploy major components such as APIs, data transfer protocols, data formats, and standardization to redefine BIM data flow in the Cloud and to reshape the collaboration process.
keywords BIM; Cloud Computing; Data Transmission; Interoperability; IFC
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia16_280
id acadia16_280
authors Thomsen, Mette Ramsgaard; Tamke, Martin; Karmon, Ayelet; Underwood, Jenny; Gengnagel, Christoph; Stranghoner, Natalie; Uhlemann, Jorg
year 2016
title Knit as bespoke material practice for architecture
doi https://doi.org/10.52842/conf.acadia.2016.280
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 280-289
summary This paper presents an inquiry into how to inform material systems that allow for a high degree of variation and gradation of their material composition. Presenting knit as a particular system of material fabrication, we discuss how new practices that integrate material design into the architectural design chain present new opportunities and challenges for how we understand and create cycles of design, analysis, specification and fabrication. By tracing current interdisciplinary efforts to establish simulation methods for knitted textiles, our aim is to question how these efforts can be understood and extended in the context of knitted architectural textiles. The paper draws on a number of projects that prototype methods for using simulation and sensing as grounds for informing the design of complex, heterogeneous and performative materials. It asks how these methods can allow feedback in the design chain and be interfaced with highly craft-based methods of fabrication.
keywords cross disciplinary collaboration, knitting, light weight simulation, idesign integrated fe simulation, interfacing, sensing, bespoke material fabrication
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2016_166
id ecaade2016_166
authors Trento, Armando and Fioravanti, Antonio
year 2016
title Human Behaviour Simulation to Enhance Workspace Wellbeing and Productivity - A BIM and Ontologies implementation path
doi https://doi.org/10.52842/conf.ecaade.2016.2.315
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 315-325
summary Three-quarters of the production value are generated during activities that involve thinking, conducting relational and brainstorming activities. Most of the European office buildings today have been designed on more than fifty year old architectural and psychosocial concepts. To improve wellbeing and productivity, design innovation focuses on human's use-process, evolving individual workspace to flexible and specialized ones, according to the users tasks - activity-based. BIM supports sophisticated behaviors simulation such as energy, acoustics, although the state of the art, this paradigm is not able to manage space use-processes. Compared to current research on simulation systems, the proposed method links spaces to user's Behavioral Knowledge including formalization of Personality Typologies and profiled behavioral patterns. A hybrid approach for computational technique has been identified, combining (big) data-driven algorithm with ontology-based context reasoning, in order to achieve both, the best performance from intensive data-driven methods, and the finest adaptation for ontological context awareness (including unexplored context capabilities and objects adaptations).
wos WOS:000402064400031
keywords Event Ontology; Design Knowledge Representation and Management; Human Behaviour, BIM
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2016_020
id ecaade2016_020
authors Cerovsek, Tomo and Martens, Bob
year 2016
title CumInCAD 2.0: A Redesigned Scalable Cloud Deployment - Towards higher impact with openness and novel features
doi https://doi.org/10.52842/conf.ecaade.2016.1.485
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 485-492
summary CumInCAD is a cumulative index of publications related to 'Computer Aided Architectural Design' (CAAD). It includes bibliographic data of approximately 12K records, which were predominantly derived from CAAD-related conferences, such as ACADIA, ASCAAD, CAADRIA, eCAADe, SiGraDi and CAAD futures. A brief historical overview of almost two decades of collaboration between the University of Ljubljana and the above-mentioned CAAD-associations is provided. After years of successful operation the previous interface became gradually outdated, which called for new developments to assure continuous support to open access to scientific knowledge. In this contribution, we explain the existing status of the systems, its use, and the transition process to a cloud deployment.
wos WOS:000402063700053
keywords Open access; Cloud deployment; Bibliometrics; Google Scholar
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia16_326
id acadia16_326
authors Wit, Andrew; Ng, Rashida; Zhang, Cheng; Kim Simon
year 2016
title Composite Systems for Lightweight Architectures: Case studies in large-scale CFRP winding
doi https://doi.org/10.52842/conf.acadia.2016.326
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 326-331
summary The introduction of lightweight Carbon Fiber Reinforced Polymer (CFRP) based systems into the discipline of architecture and design has created new opportunities for form, fabrication methodologies and material efficiencies that were previously difficult if not impossible to achieve through the utilization of traditional standardized building materials. No longer constrained by predefined material shapes, nominal dimensions, and conventional construction techniques, individual building components or entire structures can now be fabricated from a single continuous material through a means that best accomplishes the desired formal and structural objectives while creating minimal amounts of construction waste and disposable formwork. This paper investigates the design, fabrication and structural potentials of wound, pre-impregnated CFRP composites in architectural-scale applications through the lens of numeric and craft based composite winding implemented in two unique research projects (rolyPOLY + Cloud Magnet). Fitting into the larger research agenda for the CFRP-based robotic housing prototype currently underway in the “One Day House” initiative, these two projects also function as a proof of concept for CFRP monocoque and gridshell based structural systems. Through a rigorous investigation of these case studies, this paper strives to answer several questions about the integration of pre-impregnated CFRP in future full-scale interventions: What form-finding methodologies lend themselves to working with CFRP? What are the advantages and disadvantages of working with pre-impregnated CFRP tow in large-scale applications? What are efficient methods for the placement of CFRP fiber on-site? As well as how scalable is CFRP?
keywords form finding, winding, cfrp, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id ecaade2016_096
id ecaade2016_096
authors Chen, Nai Chun, Nagakura, Takehiko and Larson, Kent
year 2016
title Social Media as Complementary Tool to Evaluate Cities - Data Mining Innovation Districts in Boston
doi https://doi.org/10.52842/conf.ecaade.2016.2.447
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 447-456
summary High tech industries are playing an important role in the economic development in the United States. While some cities are shrinking, the "innovation" cities are growing. The attributes that cause some cities to successfully become innovative is a very relevant 21st century topic and will be investigated here.Previous work conduct city analysis through conventional government GIS or census data but such analyses do not answer questions about the perception of citizens inhabiting the city, and the activities they conduct. The novelty of this current project is to make use of large-scale bottom-up data available from social media. Several social media sources-CrunchBase, Twitter, Yelp, and Flickr- were data mined pertaining to four innovation districts in Boston. We found that the success of innovation districts in Boston were correlated with several important variables: the most successful districts tended to occur near research institutions, in very "mixed use" areas, and were unexpectedly not correlated with land and labor prices, unlike technology districts in the past. Based on our study, we make recommendations for the urban design that cities should put in place to increase the potential for "innovation".
wos WOS:000402064400044
keywords Smart Cities; Social Media; Innovation District; Spatial Analysis; Data Mining; Natural Language Processing
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2016_467
id caadria2016_467
authors Kim, Mikyoung; Seungyeul Ji, Eonyong Kim and Hanjong Jun
year 2016
title BIM-based File Synchronisation and Permission Management System for Architectural Design Collaboration
doi https://doi.org/10.52842/conf.caadria.2016.467
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 467-476
summary In building information modelling (BIM), the amount of in- formation increased and architectural design processes became more complex as projects expand. This is because while a collaboration en- vironment is important for smooth communication among experts, this has not been realised because of unclassified file synchronisation and permission settings among team members. Therefore, this study aims to support cooperation in BIM modelling projects by synchronising BIM data from different computers and rendering BIM project man- agement easier by providing a BIM model viewer and data through the Web. The proposed technology, which is a construction project- type, purpose-tailored browsing technology, provides BIM infor- mation related to construction environments and planning processes only to the relevant experts.
keywords Building information modelling (BIM); architectural design collaboration; process; file synchronisation; permission management system
series CAADRIA
email
last changed 2022/06/07 07:49

_id ijac201614403
id ijac201614403
authors Kontovourkis, Odysseas and George Tryfonos
year 2016
title Design optimization and robotic fabrication of tensile mesh structures: The development and simulation of a custom-made end-effector tool
source International Journal of Architectural Computing vol. 14 - no. 4, 333-348
summary This article presents an ongoing research, aiming to introduce a fabrication procedure for the development of tensile mesh systems. The purpose of current methodology is to establish an integrated approach that combines digital form- finding and robotic manufacturing processes by extracting data and information derived through elastic material behavior for physical implementation. This aspires to extend the capacity of robotically driven mechanisms to the fabrication of complex tensile structures and, at the same time, to reduce the defects that might occur due to the deformation of the elastic material. In this article, emphasis is given to the development of a custom-made end-effector tool, which is responsible to add elastic threads and create connections in the form of nodes. Based on additive fabrication logic, this process suggests the development of physical prototypes through a design optimization and tool-path verification.
keywords Robotic fabrication, tensile mesh structures, real-time response, end-effector tool, multi-objective gentic algorithms, structure optimization, form-finding
series journal
email
last changed 2016/12/09 10:52

_id ecaade2017_144
id ecaade2017_144
authors Lange, Christian J.
year 2017
title Elements | robotic interventions II
doi https://doi.org/10.52842/conf.ecaade.2017.1.671
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 671-678
summary Reviewing the current research trends in robotic fabrication around the world, the trajectory promises new opportunities for innovation in Architecture and the possible redefinition of the role of the Architect in the industry itself. New entrepreneurial, innovative start-ups are popping up everywhere challenging the traditional model of the architect. However, it also poses new questions and challenges in the education of the architect today. What are the appropriate pedagogical methods to instill enthusiasm for new technologies, materials, and craft? How do we avoid the pure application of pre-set tools, such as the use of the laser cutter has become, which in many schools around the world has caused problems rather than solving problems? How do we teach students to invent their tools especially in a society that doesn't have a strong background in the making? The primary focus of this paper is on how architectural CAAD/ CAM education through the use of robotic fabrication can enhance student's understanding, passion and knowledge of materiality, technology, and craftsmanship. The paper is based on the pedagogical set-up and method of an M. Arch I studio that was taught by the author in fall 2016 with the focus on robotic fabrication, materiality, traditional timber construction systems, tool design and digital and physical craftsmanship.
keywords CAAD Education, Digital Technology, Craftsmanship, Material Studies, Tool Design, Parametric Modeling, Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:52

_id ijac201614401
id ijac201614401
authors Mark, Earl and Zita Ultmann
year 2016
title Environmental footprint design tool: Exchanging geographical information system and computer-aided design data in real time
source International Journal of Architectural Computing vol. 14 - no. 4, 307-321
summary The pairing of computer-aided design and geographical information system data creates an opportunity to connect an architectural design process with a robust analysis of its environmental constraints. Yet, the geographical information system data may be too overwhelmingly complex to be fully used in computer-aided design without computer-assisted methods of filtering relevant information. This article reports on the implementation of an integrated environment for three-dimensional computer-aided design and environmental impact. The project focused on a two-way data exchange between geographical information system and computer-aided design in building design. While the two different technologies may rely on separate representational models, in combination they can provide a more complete view of the natural and built environment. The challenge in integration is that of bridging the differences in analytical methods and database formats. Our approach is rooted in part in constraint-based design methods, well established in computer-aided design (e.g. Sketchpad, Generative Components, and computer-aided three-dimensional interactive application). Within such computer-aided design systems, geometrical transformations may be intentionally constrained to help enforce a set of design determinants. Although this current implementation modestly relates to geometrical constraints, the use of probabilistic risk values is more central to its methodology.
keywords Boolean analysis, area overlay analysis, attribute classification, data transition using .csv, vectorization, risk analysis, site planning
series journal
email
last changed 2016/12/09 10:52

_id sigradi2016_000
id sigradi2016_000
authors Martin Iglesias, Rodrigo
year 2016
title Crowdthinking
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016
summary The topic "Crowdthinking" reveals the inquiries of researchers about collaborative work, distributed intelligence and collective research. The call focuses on transdisciplinary thinking as a construct based on multiplicity and diversity. All these topics are essential not only in the field of design and architecture, but also in emerging areas of human sciences and arts . Currently, the collaborative design is considered one of the key bases for change in the city and society. In its genesis, it manifests the notion that the world around us is inadequate for many of the needs of the society and from that design can be collectively improved. Such collective research, by combining distributed intelligence, sustainable social development, design cutting edge research, theories and computational strategies, generates a research partnership based on participation and distributed cognition of complex problems. This call proposes an approach in which the results of the experiences can build a model, define or apply axioms and lead to applications. It also looks for emerging conjectures about the process, the creation of computer models and the behaviour of the resulting designs. On the other hand, the need to find solutions that improve the quality of life for the community and sustainable development includes concerns about the integration of the physical and cultural context of cities, mass education and the inclusion of parametric design, digital manufacturing and digital prototyping, and BIM as a system that organizes and ensures the correspondence between the physical urban design and sustainable archetypes. These are some of the concerns in which technology has been contributing to improve the design process by integrating information. This integration optimizes resources and enables the various project professionals to work on the same model, run simulations, improve materializations and evaluate massive amount of data. Projects with greater social and environmental responsibility can be achieved adopting into the teaching and practice this new way of design that anticipates an extensive exchange that wilt foster self-evaluation and reformulation of educational paradigms.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_238
id ecaade2016_238
authors Meagher, Mark and Langley, Phillip
year 2016
title TopoBIM: Web-based Spatial Topology for Early Design Participation
doi https://doi.org/10.52842/conf.ecaade.2016.2.663
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 663-672
summary TopoBIM is a 3D web-based viewer for BIM data that facilitates the capture of stakeholder knowledge related to project requirements and constraints in early design. The software provides an interface for viewing 3D models and data for selected room types and adding topological annotations. The use of topological representation is proposed as a method for facilitating knowledge capture, allowing decisions about the details of plan layout to be deferred and widening the potential for participation in the early stage design process. Topological representation is widely employed in the engineering disciplines, but is not commonly used as a means of capturing schematic information in early design. TopoBIM is proposed as a methodology and workflow for the introduction of topology in early design, and as an example of lightweight, bespoke software that informs design by allowing stakeholders to perform specific tasks using BIM data, without the constraints and limiting complexity of BIM authoring environments.
wos WOS:000402064400067
keywords Early design; Topological representation; Participation; BIM; Knowledge capture
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2016_497
id caadria2016_497
authors Ryu, Jungrim; Jaehong Jun, Seunghyeon Lee and Seungyeon Choo
year 2016
title A Study on Development of the IFC-based Indoor Spatial Information for Data Visualisation
doi https://doi.org/10.52842/conf.caadria.2016.497
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 497-506
summary MOLIT authorised Indoor Spatial Information as Basic spa- tial information in 2013. It became a legal evidence for constructing and managing Indoor Spatial Information. Although it has a little ad- vantage to utilise as service level that Indoor Spatial Information by laser scan or measurement, it has a lot of problems such as consuming many resources, requiring additional progresses for inputting Object Information. In conclusion, it is inefficient to utilise for the mainte- nance and domestic AEC/FM field. The purposes of this study is to output Indoor Spatial Information by operating IFC model which based on open BIM and to improve availability of Indoor Spatial In- formation with data visualisation. The open-sources of IFC Exporter, an inner program of Revit, is used to output Indoor Spatial Infor- mation. Directs 3D Library is also operated to visualise Indoor Spatial Information. It is possible to inter-operate between XML format and the objects of Indoor Spatial Information. It can be utilised in various field as well. For example COBie linkage in facility management, construction of geo-database using air-photogrammetry of UA V , the simulation of large-scale military operations and the simulation of large-scale evacuation. The method that is purposed in this study has outstanding advantages such as conformance with national spatial in- formation policy, high level of interoperability as indoor spatial in- formation objects based on IFC, convenience of editing information, light level of data and simplifying progress of producing information.
keywords Indoor spatial information, data visualisation, open BIM, IFC
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2016_190
id ecaade2016_190
authors Siala, Aida, , Najla Allani, Halin, Gilles and , Mohamed Bouattour
year 2016
title Toward Space Oriented BIM Practices
doi https://doi.org/10.52842/conf.ecaade.2016.2.653
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 653-662
summary When performing design tasks, architects think in terms of space, and act on physical elements. They often use various representation means to shape and to communicate the complex aspects of space. Architectural representation is often driven by visual perception whilst current BIM practices seem to be based on semantics associated with scheduling building items (element, position, quantity, etc.). The reduction of architectural sensitive approaches to merely technical ones, reveals only quantitative and restrictive information that does not reflect the architect's multi-sensorial experience. This paper examines some recent model proposals which include descriptions of architectural space concept, and tries to suggest a possible synthesis of this work. It focuses on cooperative practices necessary to unveil the sensitive dimension of the architectural design, and presents a state of existing BIM tools based on relevant tasks used in these practices in order to acquire more knowledge about the concepts which ensure a cooperative work taking into account the sensitive spatial aspects.
wos WOS:000402064400066
keywords Cooperative design; Architectural space; BIM; Qualitative property; Topology
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2024_361
id ecaade2024_361
authors Sochůrková, Petra; Devyatkina, Svetlana; Kordová, Sára; Vaško, Imrich; Tsikoliya, Shota
year 2024
title Bioreceptive Parameters for Additive Manufacturing of Clay based Composites
doi https://doi.org/10.52842/conf.ecaade.2024.1.045
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 45–54
summary Due to climate change and the problematic amount of waste and CO2 emissions in the construction industry, non-human organisms and sustainable solutions are key motivators of the study. This paper focuses on developing a bioreceptive (Guillitte, 1995) composite suitable for additive manufacturing, composed to support growth of various organisms. It investigates key properties which have shown to be beneficial for promoting biological growth, such as water absorption, water permeability, humidity, and surface texture. The study evaluates the effect of two groups of clay-based waste additives, wooden sawdust (Arslan, et al., 2021) and sediment material sourced from local tunnel excavation in Prague. Simultaneously the need for intelligent reintegration and waste use is prevalent. Additive fabrication offers the ability to test a variety of composites and (re-)integrate them into the manufacturing processes. Current approach explores how to design artificial environments/skins for greenery and small life with the potential to improve both diversity and survivability while maintaining a better climate in its immediate surroundings. Bioreceptive design has the potential to improve the quality of the urban environment and bring new aesthetic influences into it (Cruz and Beckett 2016, p. 51-64).
keywords Digital Design, Material Research, Bioreceptive Design, Robotic Fabrication, Additive Manufacturing, Experimental Pastes, Bio compatibility, Waste Materials, Clay Composites
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaade2016_019
id ecaade2016_019
authors Thurow, Torsten, Langenhan, Christoph and Petzold, Frank
year 2016
title Assisting Early Architectural Planning Using a Geometry-Based Graph Search
doi https://doi.org/10.52842/conf.ecaade.2016.2.199
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 199-207
summary In early design phases of architecture ideas exist mostly on a vague level concerning the expectations for the building plan and the respective design parameters. One established method is to examine and develop ideas through existing designs, and to use these to clarify design parameters and be further inspired. Thus, the aim is a computer-based system like sketch-based query approach to show similar floor plans using semantic building fingerprints.During the search floor plans are compared in form of graphs, which means that the sketch-based floor plans are converted to graphs together with the existing floor plans. Herewith, a gradual condensation of the request is possible. The entry is condensed continuously through the repetitive process of entry and search. The challenges with this approach lie in the following mathematical model behind similar floor plans, Queries that satisfy complexity of the data and optimal way for the user to engage in search process.
wos WOS:000402064400019
keywords Semantic fingerprints; early architectural planning; geometry-based graph search; adjustment theory
series eCAADe
email
last changed 2022/06/07 07:58

_id ascaad2016_029
id ascaad2016_029
authors Hassan, Ramzi; Frode Saetre and Knut Andreas Oyvang
year 2016
title Trends and Practices Using 3D Visualizations for Large-Scale Landscape Projects in Norway
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 269-274
summary New advances in 3D modelling and visualization tools for large-scale landscape and construction projects have been achieved recently. The introduction of the new 3D digital modelling and visualization tools, e.g. CAD, VR, GIS and BIM initiated a huge shift in the way planners and designers develop, communicate and present project scenarios. This paper outlines the challenges, new trends and workflows connected to the use of new tools and how it’s been practiced and experienced by professionals and stakeholders as observed in Norway. The observation shows that the latest developments are providing new potentials for performing better communication and collaboration. Planners could now demonstrate many aspects of a project which exceed the usual minimum requirements. An important functionality is the capability to work with huge amount of data-sets for large-scale projects which were previously almost impossible to work with.
series ASCAAD
email
last changed 2017/05/25 13:31

_id sigradi2016_817
id sigradi2016_817
authors Holzer, Dominik
year 2016
title Pathways for Testing Environmental Building Performance
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.748-753
summary The research presented here reports on current advances in tying simulation and analysis of environmental building performance to design authoring software. A brief review of developments leading up to the convergence between design authoring and environmental performance testing helps to explain the current status-quo. Many of the applications available today are rooted in early research efforts that date back to the early days of Personal Computers (or even before). A small case study complements the historic review and offers some perspectives about tool selection in an educational design-studio setting.
keywords Parametric Design; BIM; Environmental Analysis, Design Ontology
series SIGRADI
email
last changed 2021/03/28 19:58

_id ascaad2016_018
id ascaad2016_018
authors Mallasi, Zaki
year 2016
title Integrating Physical and Digital Prototypes Using Parametric Bim in the Pursuit of Kinetic Façade
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 155-168
summary Architectural facades are designed to respond to environmental, social and functional considerations among others. Advancements in Digital Design Computation (DDC) emerged as an essential support for exploring and creating contemporary architectural facades. Current research into responsive kinetic facade suggests different methods of integrating kinetics into physical facade. However, research indicates that physical façades struggle to achieve the anticipated kinetic responses. In addition, the process is formal, prescribed, lacks flexibility and mostly assists the designer in the visualization of design. Consequently, the challenges in understanding the creative process that mediates between digital/physical kinetics are important to address in the early design stage. Digital and physical façade prototypes would allow designers to test the qualities of such system before constructing full size mock-ups and discover new modes of parametric design thinking in architecture.
series ASCAAD
email
last changed 2017/05/25 13:31

_id ecaade2016_147
id ecaade2016_147
authors Tamke, Martin, Zwierzycki, Mateusz, Evers, Henrik Leander, Ochmann, Sebastian, Vock, Richard and Wessel, Raoul
year 2016
title Tracking Changes in Buildings over Time - Fully Automated Reconstruction and Difference Detection of 3d Scan and BIM files
doi https://doi.org/10.52842/conf.ecaade.2016.2.643
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 643-651
summary Architectural and Engineering Communities are interested in the detection of differences between different representations of the same building. These can be the differences between the design and the as-built-state of a building, or the detection of changes that occur over time and that are documented by consecutive 3D scans. Current approaches for the detection of differences between 3D scans and 3D building models are however laborious and work only on the level of a building element. We demonstrate a novel highly automated workflow to detect differences between representations of the same building. We discuss the underlying tools and methods and the ways to communicate deviations and differences in an appropriate manner and evaluate our approach with a rich set of real world datasets.
wos WOS:000402064400065
keywords 3d scan; BIM; Machine learning; Point Clouds; Big Data
series eCAADe
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_337543 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002