CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id ijac201614202
id ijac201614202
authors Jutraz, Anja and Julie Le Moine
year 2016
title Breaking out: New freedoms in urban (re)design work by adding immersive environments
source International Journal of Architectural Computing vol. 14 - no. 2, 103-118
summary Nowadays, urban planning and urban design are facing big changes in the use of different digital tools. Reaching out and engaging citizens and other stakeholders in urban design process are significant for good practice. Main problem discussed in this article is the lack of suitable tools/interfaces for instant collaboration between government, profession, and public. Article focuses on immersive environments, as full immersion could offer better notion of different proposals of urban design. As a case study, Immersive Terf is chosen; more exactly, article focuses on new approach and new development of tool Urban Redesign Terf. Deep immersive collaboration on design could free participant’s mind and increase level of freedom in design/planning process. Immersive environments have already been used in building information modeling (BIM) managment, but innovation part, presented here, are technological: significant changes in the software and walk-through big models, which is the base for urban design and urban planning process.
keywords Urban planning, immersive environments, virtual worlds, digital tools, public participation
series journal
last changed 2016/06/13 08:34

_id sigradi2016_356
id sigradi2016_356
authors Borges, Marina Ferreira
year 2016
title A Fabricaç?o Digital e o Papel da Arquitetura para uma Mudança de Paradigma Tecno-Econômico no Setor da Construç?o Civil [Digital Fabrication in Brazil and the Role of Architecture for a Techno Economic Paradigm Shift in the Sector of Building Construction]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.290-296
summary This paper analyzes the possibilities brought by new digital technologies, architectural design and production for a paradigm shift in the construction sector. The methodology proposes to use evolutionary economy theory, that puts innovation as a key agent for change paradigms, to see connections between existing firms in the current paradigm and the connections that could be established for a new production paradigm through digital fabrication. For this, the role of the university and its potential for innovation, will also be analyzed, both to develop product technology, and to contextualize the technology being imported into a regional context.
keywords Building Construction; Digital Fabrication; Evolutionary Economy Theory
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2016_448
id sigradi2016_448
authors Afsari, Kereshmeh; Eastman, Charles M.; Shelden, Dennis R.
year 2016
title Data Transmission Opportunities for Collaborative Cloud-Based Building Information Modeling
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.907-913
summary Collaboration within Building Information Modeling process is mainly based on file transfer while BIM data being exchanged in either vendor specific file formats or neutral format using Industry Foundation Classes (IFC). However, since the Web enables Cloud-based BIM services, it provides an opportunity to exchange data via Web transfer services. Therefore, the main objective of this paper is to investigate what features of Cloud interoperability can assist a network-based BIM data transmission for a collaborative work flow in the Architecture, Construction, and Engineering (AEC) industry. This study indicates that Cloud-BIM interoperability needs to deploy major components such as APIs, data transfer protocols, data formats, and standardization to redefine BIM data flow in the Cloud and to reshape the collaboration process.
keywords BIM; Cloud Computing; Data Transmission; Interoperability; IFC
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia16_124
id acadia16_124
authors Ferrarello, Laura
year 2016
title The Tectonic of the Hybrid Real: Data Manipulation, Oxymoron Materiality, and Human-Machine Creative Collaboration
doi https://doi.org/10.52842/conf.acadia.2016.124
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 124-129
summary This paper describes the latest progress of the design platform Digital Impressionism (DI), created by staff and students in the Information Experience Design programme at the Royal College of Art in London. DI aims to bridge human creative thinking with machine computation, under the theoretical method/concept of oxymoron tectonic. Oxymoron tectonic describes the process under which hybrid materiality, that is the materiality created between the digital and the physical, takes form in human-machine creative interactions. The methodology intends to employ multimaterial 3D printers in combination with data manipulation (a process that gives data physical substance), pointclouds, and the influence of intangible environmental data (like sound and wind) to model physical forms by interfacing digital and physical making. In DI, modeling is a hybrid set of actions that take place at the boundary of the physical and digital. Through this interactive platform, design is experienced as a complex, hybrid process, which we call a digital tectonic; forms are constructed via a creative feedback loop of human engagement with nonhuman agents to form a creative network of sustainable and interactive design and fabrication. By developing a mutual understanding of design, machines and humans work together in the process of design and making.
keywords human-computer interaction and design, craft in design computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ascaad2016_030
id ascaad2016_030
authors Güler, Büsra; Hülya Yasak
year 2016
title Experimental Geometry - Redefining way of design by human factor
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 275-280
summary Designing by rules and limitations can minimize the variations of design generation. The paradigm demonstrates how design concepts could be formed and produced by humans as an experience. A system, both digitally and physically, built as a spatial environment offers a tool to compare possible design products by people themselves. At the same time, it offers an opportunity to understand the implications of user interface and to compare technologies that further bridge the digital and physical. We also discuss conceptual foundations of the design process, interaction, collaboration, gamification, in an attempt to explore geometry and its potentials.
series ASCAAD
email
last changed 2017/05/25 13:31

_id acadia23_v1_40
id acadia23_v1_40
authors Imai, Nate; Conway, Matthew; Lee, Rachel
year 2023
title The Colors We Share
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 40-47.
summary The Colors We Share is the winning proposal for a permanent public art installation that will be built in Los Angeles’s Little Tokyo (Figure 1). Selected through a rigorous open Request for Proposals (RFP) process organized by the city, the project honors the community’s rich and multivalent history and celebrates the voices of its next generation. In collaboration with the Little Tokyo Service Center (LTSC), the installation will feature a digital archive and will incorporate imagery gathered through social media to connect with other Nihonmachi (Japanese-descendant) communities across the globe in real time (Densho, n.d.). The vision for the project is two-fold: 1) to construct a vertical gateway that connects with the adjacent neighborhood, and 2) to create a dynamic display that allows community members to see themselves in the structure and connect with other Nihonmachi through locally, nationally, and internationally collected images and colors (Figure 2). In reference to the conference theme, this digital interface draws upon Dana Cuff and Jennifer Wolch’s Urban Humanities framework and creates a physical landmark that parses through an abundance of information to reveal the scarce voices and stories of a minority population (Cuff and Wolch 2016).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2016_467
id caadria2016_467
authors Kim, Mikyoung; Seungyeul Ji, Eonyong Kim and Hanjong Jun
year 2016
title BIM-based File Synchronisation and Permission Management System for Architectural Design Collaboration
doi https://doi.org/10.52842/conf.caadria.2016.467
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 467-476
summary In building information modelling (BIM), the amount of in- formation increased and architectural design processes became more complex as projects expand. This is because while a collaboration en- vironment is important for smooth communication among experts, this has not been realised because of unclassified file synchronisation and permission settings among team members. Therefore, this study aims to support cooperation in BIM modelling projects by synchronising BIM data from different computers and rendering BIM project man- agement easier by providing a BIM model viewer and data through the Web. The proposed technology, which is a construction project- type, purpose-tailored browsing technology, provides BIM infor- mation related to construction environments and planning processes only to the relevant experts.
keywords Building information modelling (BIM); architectural design collaboration; process; file synchronisation; permission management system
series CAADRIA
email
last changed 2022/06/07 07:49

_id acadia16_382
id acadia16_382
authors Lopez, Deborah; Charbel, Hadin; Obuchi, Yusuke; Sato, Jun; Igarashi, Takeo; Takami, Yosuke; Kiuchi, Toshikatsu
year 2016
title Human Touch in Digital Fabrication
doi https://doi.org/10.52842/conf.acadia.2016.382
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 382-393
summary Human capabilities in architecture-scaled fabrication have the potential of being a driving force in both design and construction processes. However, while intuitive and flexible, humans are still often seen as being relatively slow, weak, and lacking the exacting precision necessary for structurally stable large-scale outputs—thus, hands-on involvement in on-site fabrication is typically kept at a minimum. Moreover, with increasingly advanced computational tools and robots in architectural contexts, the perfection and speed of production cannot be rivaled. Yet, these methods are generally non-engaging and do not necessarily require a skilled labor workforce, bringing to question the role of the craftsman in the digital age. This paper was developed with the focus of leveraging human adaptability and tendencies in the design and fabrication process, while using computational tools as a means of support. The presented setup consists of (i) a networked scanning and application of human movements and human on-site positioning, (ii) a lightweight and fast-drying extruded composite material, (iii) a handheld “smart” tool, and (iv) a structurally optimized generative form via an iterative feedback system. By redistributing the roles and interactions of humans and machines, the hybridized method makes use of the inherently intuitive yet imprecise qualities of humans, while maximizing the precision and optimization capabilities afforded by computational tools—thus incorporating what is traditionally seen as “human error” into a dynamically engaging and evolving design and fabrication process. The interdisciplinary approach was realized through the collaboration of structural engineering, architecture, and computer science laboratories.
keywords human computer interaction and design, craft in design, tool streams and tool building, cognate streams, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id caadria2016_683
id caadria2016_683
authors Schnabel, Marc Aurel; Serdar Aydin, Tane Moleta, Davide Pierini and Toma?S Dorta
year 2016
title Unmediated cultural heritage via Hyve-3D: Collecting individual and collective narratives with 3D sketching
doi https://doi.org/10.52842/conf.caadria.2016.683
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 683-692
summary Cultural heritage is traditionally mediated through institu- tional bodies that are authorised to broadcast heritage information, whereas new media technologies such as social media platforms con- tinue to enforce individual storytelling and information sharing. Therefore GLAMs (Galleries, Libraries, Archives and Museums) have to cope with a shift of public interest from their services to more ac- cessible, entertaining and democratic engagements available as ‘liv- ing’ media. Unmediated cultural heritage is the paramount aim of this work and, in a theoretical sense, a utopia for generation of authenticity or meaning-making. Within the realm of digital heritage, this study explores the nature of engagement with cultural heritage using an in- novative means. In this phase of the research, a photogrammetric model of Kashgar’s narrow alleys is deployed in a system, called Hy- brid Virtual Environment 3D (Hyve-3D). Via its 3D cursor technolo- gy, the concept of unmediated cultural heritage is unfolded through active participation, collaboration and interaction. Thus, in the context of heritage, this research explores a hitherto undocumented frontier of Hyve-3D designated to immersive collaborative 3D sketching.
keywords Digital heritage; Hyve-3D; photogrammetry; authenticity; 3D sketching
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia16_184
id acadia16_184
authors Vasey; Lauren; Long Nguyen; Tovi Grossman; Heather Kerrick; Danil Nagy; Evan Atherton; David Thomasson; Nick Cote; David Benjamin; George Fitzmaurice; Achim Menges
year 2016
title Collaborative Construction: Human and Robotic Collaboration Enabling the Fabrication and Assembly of a Filament-Wound Structure
doi https://doi.org/10.52842/conf.acadia.2016.184
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 184-195
summary In this paper, we describe an interdisciplinary project and live-exhibit that investigated whether untrained humans and robots could work together collaboratively towards the common goal of building a large-scale structure composed out of robotically fabricated modules using a filament winding process. We describe the fabrication system and exhibition setup, including a custom end effector and tension control mechanism, as well as a collaborative fabrication process in which instructions delivered via wearable devices enable the trade-off of production and assembly tasks between human and robot. We describe the necessary robotic developments that facilitated a live fabrication process, including a generic robot inverse kinematic solver engine for non-spherical wrist robots, and wireless network communication connecting hardware and software. In addition, we discuss computational strategies for the fiber syntax generation and robotic motion planning which mitigated constraints such as reachability, axis limitations, and collisions, and ensured predictable and therefore safe motion in a live exhibition setting. We discuss the larger implications of this project as a case study for handling deviations due to non-standardized materials or human error, as well as a means to reconsider the fundamental separation of human and robotic tasks in a production workflow. Most significantly, the project exemplifies a hybrid domain of human and robot collaboration in which coordination and communication between robots, people, and devices can enhance the integration of robotic processes and computational control into the characteristic processes of construction.
keywords machin vision, cyber-physical systems, internet of things, robotic fabrication, human robot collaboration, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id ascaad2016_032
id ascaad2016_032
authors Alhadidi, Suleiman; Justin Mclean, Luchlan Sharah, Isabel Chia, Roger Sam
year 2016
title Multiflight - Creating Interactive Stairs through Positive Technology
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 295-308
summary This paper details a pedagogical project which calls for an improved design performance of the existing built environment through the use of smart technology and data-driven design. The project is an investigation into ways in which to improve the performance of a ‘pre-selected university building’ through the use of a media facade that allows for interactive experiences. Existing problems of the selected building have been identified through observation and research using a rich picture and agile approach. An underutilised staircase was selected as the focus site for a series of computational design and interactive design studies. The brief of this mini-research project aims to encourage more people to use the stairs and create a memorable experience with a technological approach through the application of a site specific interactive media installation. The project is an interactive staircase which utilises LED strips and generative sound. The project features a series of light boxes which are connected to the existing staircase balustrade. Arduino, passive infra-red sensors, and other motion detection sensors were used to allow for light and generative sound interaction with users using visual scripting tools and a generative design platform. Sensing technology was used as a real-time data-gathering device during the site analysis phase as well as an input device for the designed prototype to allow the testing of the data-driven design. This paper details the study and resultant interactive prototypes. It also discusses the exploration of performance based design ideas into design workflows and the integration of sensing tools into the design process. It concludes by identifying possible implications on using the Internet of Things concepts to facilitate the design of interactive architecture.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2016_641
id caadria2016_641
authors Baerlecken, D.; K. Wright, J. Reitz, N. Mueller and B. Heiermann
year 2016
title Performative Agency of Materials: Matter agency of vernacular African pattern systems
doi https://doi.org/10.52842/conf.caadria.2016.641
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 641-650
summary This paper investigates an agency of materials through a design methodology that follows Martin Heidegger’s process of “Entbergen” or “unconcealing” as a non-instrumentalist understanding of tools and materials. This investigation takes place through the de- sign of a children’s theatre in South Africa where material innovation for architectural components is needed. The research studies vernacu- lar African patterns and their inherent behaviour when transferred to materials. The transference of pattern systems to architectural proto- types is discussed alongside the discussion of their technical and ar- chitectural performance criteria. Following Heidegger’s theory of “Entbergen” (“unconcealing”) the paper will demonstrate how making in this methodology becomes an “unconcealing”, which includes both digital and analogue means, linking the four causalities - causa mate- rialis, causa formalis, causa finalis, and causa efficiens – through the agency of material within an integrated process between all four caus- es. Making becomes a process in which form is generated through in- terventions within fields of forces and currents of materials, taking cause and agency into account, and standing in opposition to methods that are defined by a premeditated notion of an ideal outcome.
keywords African patterns, making, design build, design methodology
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2020_455
id sigradi2020_455
authors Bastian, Andrea Verri; Filho, Jarede Joaquim de Souza; Garcia, Júlia Assis de Souza Sampaio
year 2020
title Urban modelling for evaluating photovoltaic potential through solar radiation incidence
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 455-463
summary This study aims to better ascertain the influence that urbanistic parameters exert on the production of solar photovoltaic energy regarding different contexts in the city. Modifications implemented between the years of 2012 and 2016, especially on variables such as Maximum Lot Coverage, Floor Area Ratio, and Setbacks, have been evaluated through virtual models that cover areas in three different city districts. Amongst other implications, an increase in the area occupied by the buildings, as well as a decrease in the distance between them, occurred, causing more mutual shading and the loss of the photovoltaic potential associated with the building envelope.
keywords Urbanistic parameters, Photovoltaic solar energy, Virtual models, Architecture, Urbanism
series SIGraDi
email
last changed 2021/07/16 11:49

_id sigradi2016_724
id sigradi2016_724
authors Bomfim, Carlos Alberto Andrade; Lisboa, Bruno Teixeira Wildberger; Matos, Pedro Cesar Correia de
year 2016
title Gest?o de Obras com BIM – Uma nova era para o setor da Construç?o Civil [Construction Management with BIM – A new era for the Construction sector]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.556-560
summary The update in the design process associated with a constant search for efficient construction methods, budgets and actual schedules, passes through common terms the planning engineering and constructability, rationalization and integration. This article is based on literature review on the topic and interview with the experience of BIM core of a company in Brazil. BIM involves more than just 3D modeling and is also commonly defined into more dimensions, such as 4D (time), 5D (cost), 6D (the built - operation) and 7D (sustainability). The use of BIM can now be considered a reality that will promote changes to Construction.
keywords Project Management; Construction Management; Digital Modeling; Design Process; Simulation
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2016_096
id ecaade2016_096
authors Chen, Nai Chun, Nagakura, Takehiko and Larson, Kent
year 2016
title Social Media as Complementary Tool to Evaluate Cities - Data Mining Innovation Districts in Boston
doi https://doi.org/10.52842/conf.ecaade.2016.2.447
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 447-456
summary High tech industries are playing an important role in the economic development in the United States. While some cities are shrinking, the "innovation" cities are growing. The attributes that cause some cities to successfully become innovative is a very relevant 21st century topic and will be investigated here.Previous work conduct city analysis through conventional government GIS or census data but such analyses do not answer questions about the perception of citizens inhabiting the city, and the activities they conduct. The novelty of this current project is to make use of large-scale bottom-up data available from social media. Several social media sources-CrunchBase, Twitter, Yelp, and Flickr- were data mined pertaining to four innovation districts in Boston. We found that the success of innovation districts in Boston were correlated with several important variables: the most successful districts tended to occur near research institutions, in very "mixed use" areas, and were unexpectedly not correlated with land and labor prices, unlike technology districts in the past. Based on our study, we make recommendations for the urban design that cities should put in place to increase the potential for "innovation".
wos WOS:000402064400044
keywords Smart Cities; Social Media; Innovation District; Spatial Analysis; Data Mining; Natural Language Processing
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2016_074
id ecaade2016_074
authors Das, Subhajit, Day, Colin, Dewberry, Michael, Toulkeridou, Varvara and Hauck, Anthony
year 2016
title Automated Service Core Generator in Autodesk Dynamo - Embedded Design Intelligence aiding rapid generation of design options
doi https://doi.org/10.52842/conf.ecaade.2016.2.217
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 217-226
summary Building design entails an intuitive and informative exploration of an architect involving iterative refinement of design ideas till client objectives, and priorities are satisfied. Similarly, service cores in a building are designed through the exploration of multifarious design options each with different performative metrics regarding accessibility, efficiency, cost, feasibility, etc. As the current process is labor-intensive, manual & dependent on the expertise of the architect, the search space leading to the selection of an optimal design alternative is very limited. This paper describes Service Core Generator (SCG) library in Autodesk Dynamo enabling automated generation of service core models for varied building shell geometry types (limited to orthogonal profiles). The tool described encodes explicit and implicit domain knowledge into the system facilitating service core models for buildings across varied scale with use type's including offices, hotels or residential buildings.
wos WOS:000402064400021
keywords Design Alternatives; Geometry Analysis; Parametric Modelling; Design Tools; Design Automation;
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2016_400
id sigradi2016_400
authors Granero, Adriana Edith; Lobos Calquín, Danny
year 2016
title Crowndthinking-Crownlearning con BIM
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.476-480
summary BIM teaching technologies is going through a very interesting moment in its development. Various teaching methodologies have been used for implementation in universities. This paper discusses the implications of pedagogical practices accompanied by the incorporation of BIM, teaching strategy based on a reflection on display. It is shown that BIM technologies can be mediators instruments transduction activation in a model-checking, which causes reflection and useful technique for teaching architectural aesthetics.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia16_34
id acadia16_34
authors Johnson, Jason S.; Parker, Matthew
year 2016
title Architectural Heat Maps: A Workflow for Synthesizing Data
doi https://doi.org/10.52842/conf.acadia.2016.034
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 34-33
summary Over the last 5 years, large-scale ‘data dumps’ of architectural production have been made available online through project-specific websites (mainly competitions) and architectural aggregation/dissemination sites like Architizer, Suckerpunch, and Archinect. This reinforces the broader context of Ubiquitous Simultaneity, in which large amounts of data are continuously updated and easily accessed through a dizzying array of mobile devices. This condition is being exploited by sports leagues and financial speculators through the development of tools that collect, visualize, and analyze historical data for the purpose of producing speculative predictive simulations that could lead to strategies for enhanced performance. We explore the development of a workflow for deploying computer vision, SIFT algorithms, image aggregation, and heteromorphic deformation as a design strategy. These techniques have all been developed separately for various applications and here we combine them in such a way as to allow for the embedding of the historical and speculative artifacts of architectural production into newly formed three-dimensional architectural bodies. This work builds on past research, which resulted in a more two-dimensional image-based mapping and translation process found in existing imaging protocols for projects like Google Earth, and transitions towards the production of data-rich formal assemblies. Outliers and concentrations of visual data are exploited as a means to encourage innovation within the production of architecture.
keywords historical and speculative data, generative design, computer vision, ubiquitous simultaneity, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_733657 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002