CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 535

_id ecaade2016_166
id ecaade2016_166
authors Trento, Armando and Fioravanti, Antonio
year 2016
title Human Behaviour Simulation to Enhance Workspace Wellbeing and Productivity - A BIM and Ontologies implementation path
doi https://doi.org/10.52842/conf.ecaade.2016.2.315
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 315-325
wos WOS:000402064400031
summary Three-quarters of the production value are generated during activities that involve thinking, conducting relational and brainstorming activities. Most of the European office buildings today have been designed on more than fifty year old architectural and psychosocial concepts. To improve wellbeing and productivity, design innovation focuses on human's use-process, evolving individual workspace to flexible and specialized ones, according to the users tasks - activity-based. BIM supports sophisticated behaviors simulation such as energy, acoustics, although the state of the art, this paradigm is not able to manage space use-processes. Compared to current research on simulation systems, the proposed method links spaces to user's Behavioral Knowledge including formalization of Personality Typologies and profiled behavioral patterns. A hybrid approach for computational technique has been identified, combining (big) data-driven algorithm with ontology-based context reasoning, in order to achieve both, the best performance from intensive data-driven methods, and the finest adaptation for ontological context awareness (including unexplored context capabilities and objects adaptations).
keywords Event Ontology; Design Knowledge Representation and Management; Human Behaviour, BIM
series eCAADe
email
last changed 2022/06/07 07:57

_id ascaad2016_003
id ascaad2016_003
authors Al-Jokhadar, Amer; Wassim Jabi
year 2016
title Humanising the Computational Design Process - Integrating Parametric Models with Qualitative Dimensions
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 9-18
summary Parametric design is a computational-based approach used for understanding the logic and the language embedded in the design process algorithmically and mathematically. Currently, the main focus of computational models, such as shape grammar and space syntax, is primarily limited to formal and spatial requirements of the design problem. Yet, qualitative factors, such as social, cultural and contextual aspects, are also important dimensions in solving architectural design problems. In this paper, an overview of the advantages and implications of the current methods is presented. It also puts forward a ‘structured analytical system’ that combines the formal and geometric properties of the design, with descriptions that reflect the spatial, social and environmental patterns. This syntactic-discursive model is applied for encoding vernacular courtyard houses in the hot-arid regions of the Middle East and North Africa, and utilising the potentials of these cases in reflecting the lifestyle and the cultural values of the society, such as privacy, human-spatial behaviour, the social life inside the house, the hierarchy of spaces, the segregation and seclusion of family members from visitors and the orientation of spaces. The output of this analytical phase prepares the groundwork for the development of socio-spatial grammar for contemporary tall residential buildings that gives the designer the ability to reveal logical spatial topologies based on socio-environmental restrictions, and to produce alternatives that have an identity while also respecting the context, place and needs of users.
series ASCAAD
email
last changed 2017/05/25 13:13

_id acadia16_432
id acadia16_432
authors Beaman, Michael Leighton
year 2016
title Landscapes After The Bifurcation of Nature: Models for Speculative Landformations
doi https://doi.org/10.52842/conf.acadia.2016.432
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 432-439
summary Landformations have not historically been the purview of design production or intervention. Whether it is the spatial extensions in which they emerge, the temporal extensions in which they operate, the complexities of their generative and sustaining processes, or a cultural and institutional deference to a notion of natural processes, designers as individuals or design as a discipline has not treated landformation as an area of design inquiry. But the inability to grasp nature fully has not stopped geological-scale manipulation by humans. In fact, anthropogenic activity is responsible for the re-formation of more of the Earth’s surface than all other agents combined. And yet as designers we often disregard this transformation as a design problem, precisely because it eludes the artifices of information visualization employed by designers. This paper examines ongoing research into the generation of speculative landformations through an analysis of underlying geological and anthropogenic processes as the quantitative basis for creating generative computational models (figure 1). The Speculative Landformations Project posits human geological-scale activity as a design problem by expanding the operability and agency of environmental design practice through hybrid human/digital computations.
keywords design decision-making, simulation and design optimization, responsive urban and landscape systems, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id caadria2016_415
id caadria2016_415
authors Crolla, Kristof and Adam Fingrut
year 2016
title Protocol of Error: The design and construction of a bending-active gridshell from natural bamboo
doi https://doi.org/10.52842/conf.caadria.2016.415
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 415-424
summary This paper advocates alternative methods to overcome the impossibility of realising ‘perfect’ digital designs. It discusses Hong Kong’s 2015 ‘ZCB Bamboo Pavilion’ as a methodological case study for the design and construction of architecture from unprocessed natu- ral bamboo. The paper critically evaluates protocols set up to deal with errors resulting from precise digital design systems merging with inconsistent natural resources and onsite craftsmanship. The paper starts with the geometric and tectonic description of the project, illus- trating a complex and restrictive construction context. Bamboo’s unique growth pattern, structural build-up and suitability as a bending- active material are discussed and Cantonese bamboo scaffolding craftsmanship is addressed as a starting point for the project. The pa- per covers protocols, construction drawings and assembly methods developed to allow for the incorporation and of large building toler- ances and dimensional variation of bamboo. The final as-built 3d scanned structure is compared with the original digital model. The pa- per concludes by discussing the necessity of computational architec- tural design to proactively operate within a field of real-world inde- terminacy, to focus on the development of protocols that deal with imperfections, and to redirect design from the virtual world towards the latent opportunities of the physical.
keywords Bamboo; bending-active gridshells; physics simulation; form-finding; indeterminacy
series CAADRIA
email
last changed 2022/06/07 07:56

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaade2016_162
id ecaade2016_162
authors Heinrich, Mary Katherine and Ayres, Phil
year 2016
title Using the Phase Space to Design Complexity - Design Methodology for Distributed Control of Architectural Robotic Elements
doi https://doi.org/10.52842/conf.ecaade.2016.1.413
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 413-422
wos WOS:000402063700046
summary Architecture that is responsive, adaptive, or interactive can contain active architectural elements or robotic sensor-actuator systems. The consideration of architectural robotic elements that utilize distributed control and distributed communication allows for self-organization, emergence, and evolution on site in real-time. The potential complexity of behaviors in such architectural robotic systems requires design methodology able to encompass a range of possible outcomes, rather than a single solution. We present an approach of adopting an aspect of complexity science and applying it to the realm of computational design in architecture, specifically by considering the phase space and related concepts. We consider the scale and predictability of certain design characteristics, and originate the concept of a formation space extension to the phase space, for design to deal directly with materializations left by robot swarms or elements, rather than robots' internal states. We detail a case study examination of design methodology using the formation space concept for assessment and decision-making in the design of active architectural artifacts.
keywords phase space; complexity; attractor; distributed control
series eCAADe
email
last changed 2022/06/07 07:49

_id caadria2016_663
id caadria2016_663
authors Hosokawa, Masahiro; Tomohiro Fukuda, Nobuyoshi Yabuki, Takashi Michikawa and Ali Motamedi
year 2016
title Integrating CFD and VR for indoor thermal environment design feedback
doi https://doi.org/10.52842/conf.caadria.2016.663
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 663-672
summary In the context of environmental consideration and im- provement of living standards, design of high performance buildings that are both comfortable and energy saving is important. Simulation tools (such as CFD) enables analysing and visualizing environmental factors (such as temperature and airflow) based on the design proper- ties and can be used to improve the building design for better perfor- mance. However, these tools have limitations in providing interactivi- ty with users for creating multiple CFD visualization results to be used for analysing design options. This research presents an integrated de- sign tool which consists of CFD and VR technologies. The proposed system visualizes CFD results in a VR environment together with ar- chitectural design. Additionally, it enables configuring CFD parame- ters within the VR environment and allows repeatedly executing simu- lation and visualizing updated results. The proposed system enables visualizing information in relationship with the actual architectural design, space configuration and thermal environment, and provides ef- ficient design feedbacks.
keywords Interdisciplinary computational design; design feedback; indoor thermal environment; Computational Fluid Dynamics (CFD); Virtual Reality (VR)
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2016_839
id caadria2016_839
authors Ikeda, Yasushi; Keisuke Toyoda and Tsukasa Takenaka
year 2016
title The Pedagogical Meanings of an Experimental Full-Size Mock-Up of Computational Design
doi https://doi.org/10.52842/conf.caadria.2016.839
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 839-848
summary Skill in the use of digital media tools is growing more im- portant in architectural education. However parametric objects in computational geometry or digital fabrication as an assist for project- based learning are not in themselves sufficient to extract the potential of computational design. When we consider the performance of a de- sign, or the fundamental purpose of parametric design toolsets in the contemporary context, education must act as a connecter to the ambi- tion of global sustainability. With regards to the advantage of compu- tational methodologies, students benefit by developing a holistic vi- sion of non-standardized assembly technology. This is particularly useful in overcoming problems of mass production, and with the crea- tion of interactive technology that is incrementally adaptable in the process of answering to unpredictable change. In this context, a com- prehensive understanding of digital tools as part of a holistic and eco- logical architectural design mindset is crucial for future designers. Exploring effective ways to guide students in the development of this capability is therefore important. This paper documents a recent effort in this direction through examples of education within a digital design studio. As a conclusion the paper discusses important factors in the encouragement of students as they develop a comprehensive under- standing of the use of digital design culture.
keywords Digital design studio; full-size mock-up; comprehensive capability; practical performance; project-based learning
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2016_037
id ecaade2016_037
authors Khabazi, Zubin and Budig, Michael
year 2016
title Adaptive Fabrication - Cellular Concrete Casting Using Digital Moulds
doi https://doi.org/10.52842/conf.ecaade.2016.1.083
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 83-92
wos WOS:000402063700010
summary Computational design and digital fabrication have expanded the use of digital manufacturing machineries for the realization of architecture, yet they have their own limitations of material use. These limitations caused some materials like cement, plaster and clay become marginal in this new digital context, despite their vast use in the building industry. In this context, this paper will present a research, focusing on the use of concrete through the development of a custom-designed device, which is an adjustable digital mould. This digital mould has been designed specifically for a project called Procrystalline Wall and has been 'adapted' to the conditions of its agenda in terms of size, shape, typology, and even technical matters. However, this adaptability means that the device is not aimed to work for any other project and remain exclusive to this particular design only. This paper will further discuss the validity and obstacles of the presented method in a more global context.
keywords Concrete Fabrication; Digital Casting; Digital Adjustable Mould; Cellular Concrete Casting; Cellular Solid Morphologies
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2016_787
id caadria2016_787
authors Knapp, Chris; Jonathan Nelson, Andrew Kudless and Sascha Bohnenberger
year 2016
title Lightweight material prototypes using dense bundled systems to emulate an ambient environment
doi https://doi.org/10.52842/conf.caadria.2016.787
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 787-796
summary This paper describes and reflects upon a computational de- sign and digital fabrication research project that was developed and implemented over 2014-2015, with subsequent development continu- ing for applications at present. The aim of the research was to develop methods of modelling, analysis, and fabrication that facilitate integra- tive approaches to architectural design and construction. In this con- text, the development of material prototypes, digital simulations, and parametric frameworks were pursued in parallel in order to inform and reform successive iterations throughout the process, leading to a re- fined workflow for engineering, production, and speculation upon fu- ture directions of the work.
keywords Digital fabrication; biomimicry; ambient environments; grasshopper; computational design
series CAADRIA
email
last changed 2022/06/07 07:51

_id ascaad2016_054
id ascaad2016_054
authors Mandhan, Sneha; David Birge and Alan Berger
year 2016
title Dynamic Simulation of External Visual Privacy in Arab Muslim Neighborhoods - A case study of Emirati neighborhoods in Abu Dhabi, UAE
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 537-546
summary The countries of the Gulf Cooperation Council have, in recent years, undertaken several initiatives to make sustainability central to their urban agendas. This research aims to operationalize the concept of sustainable development – environmental, economic and socio-cultural – in the region, and develop parameters that define it. Using native neighborhoods in Abu Dhabi as a case study, it focuses on the development process of a computational toolkit which has two major components – a quantitative toolkit which contains modules for simulation of aspects of environmental and economic sustainability, and a spatial toolkit which contains modules for simulation of socio-spatial practices associated with the specific social and cultural context. One of the primary needs of these communities, identified through an extensive review of literature and through conversations with Emiratis, is that of visual and acoustical privacy. Privacy from neighbors and passers-by, externally, and between genders, internally within the house. Using this as a starting point, this paper describes the development process of a module that aims to measure levels of external visual privacy of surfaces at a housing plot level, from neighbors and passers-by. The first section of the paper establishes the context of the research. The second section focuses on describing the process of modeling built form and testing it for visibility and thus, privacy.
series ASCAAD
email
last changed 2017/05/25 13:34

_id sigradi2016_000
id sigradi2016_000
authors Martin Iglesias, Rodrigo
year 2016
title Crowdthinking
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016
summary The topic "Crowdthinking" reveals the inquiries of researchers about collaborative work, distributed intelligence and collective research. The call focuses on transdisciplinary thinking as a construct based on multiplicity and diversity. All these topics are essential not only in the field of design and architecture, but also in emerging areas of human sciences and arts . Currently, the collaborative design is considered one of the key bases for change in the city and society. In its genesis, it manifests the notion that the world around us is inadequate for many of the needs of the society and from that design can be collectively improved. Such collective research, by combining distributed intelligence, sustainable social development, design cutting edge research, theories and computational strategies, generates a research partnership based on participation and distributed cognition of complex problems. This call proposes an approach in which the results of the experiences can build a model, define or apply axioms and lead to applications. It also looks for emerging conjectures about the process, the creation of computer models and the behaviour of the resulting designs. On the other hand, the need to find solutions that improve the quality of life for the community and sustainable development includes concerns about the integration of the physical and cultural context of cities, mass education and the inclusion of parametric design, digital manufacturing and digital prototyping, and BIM as a system that organizes and ensures the correspondence between the physical urban design and sustainable archetypes. These are some of the concerns in which technology has been contributing to improve the design process by integrating information. This integration optimizes resources and enables the various project professionals to work on the same model, run simulations, improve materializations and evaluate massive amount of data. Projects with greater social and environmental responsibility can be achieved adopting into the teaching and practice this new way of design that anticipates an extensive exchange that wilt foster self-evaluation and reformulation of educational paradigms.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia16_174
id acadia16_174
authors Moorman, Andrew; Liu, Jingyang; Sabin, Jenny E.
year 2016
title RoboSense: Context-Dependent Robotic Design Protocols and Tools
doi https://doi.org/10.52842/conf.acadia.2016.174
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 174-183
summary While nonlinear concepts are widely applied in analysis and generative design in architecture, they have not yet convincingly translated into the material realm of fabrication and construction. As the gap between digital design model, shop drawing, and fabricated result continues to diminish, we seek to learn from fabrication models and natural systems that do not separate code, geometry, pattern, material compliance, communication, and form, but rather operate within dynamic loops of feedback, reciprocity, and generative fabrication. Three distinct, but connected problems: 1) Robotic ink drawing; 2) Robotic wine pouring and object detection; and 3) Dynamically Adjusted Extrusion; were addressed to develop a toolkit including software, custom digital design tools, and hardware for robotic fabrication and user interaction in cyber-physical contexts. Our primary aim is to simplify and consolidate the multiple platforms necessary to construct feedback networks for robotic fabrication into a central and intuitive programming environment for both the advanced to novice user. Our experimentation in prototyping feedback networks for use with robotics in design practice suggests that the application of this knowledge often follows a remarkably consistent profile. By exploiting these redundancies, we developed a support toolkit of data structures and routines that provide simple integrated software for the user-friendly programming of commonly used roles and functionalities in dynamic robotic fabrication, thus promoting a methodology of feedback-oriented design processes.
keywords online programming, cyber-physical systems, computational design, robotic fabrication, human-robot interaction
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id ecaade2016_108
id ecaade2016_108
authors Papadopoulou, Athina
year 2016
title Objects-to-sense-with - Computational Tools for Embodied Spatial Learning
doi https://doi.org/10.52842/conf.ecaade.2016.1.367
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 367-376
wos WOS:000402063700041
summary This paper proposes objects-to-sense-with as tools that provide sensory-based learning of space and expand spatial knowledge beyond merely the formal and visual aspects currently dominant in design discourse. To reintroduce sensory-based learning methods in architecture education, this paper first revisits the sensory pedagogies formulated in the early 20th century, reviews precedents in the arts that utilize body-centered sensing technologies, and reframes previous discussions on the pedagogical role of technologies as tools for thinking. Finally, this paper describes the development of a wearable tool with embedded sensors created by the author and describes how the results are visualized. The developed tool, which is used to record sensory data in-situ by the user and allows for a body-centered representation of space, serves as an example of an object-to-sense-with that can be used to achieve a sensory-based and body-centered understanding of architecture.
keywords architecture education; design tools; sensor technologies; embodied perception
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia16_236
id acadia16_236
authors Pineda, Sergio; Arora, Mallika; Williams, P. Andrew; Kariuki, Benson M.; Harris, Kenneth D. M.
year 2016
title The Grammar of Crystallographic Expression
doi https://doi.org/10.52842/conf.acadia.2016.236
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 236-243
summary This paper stems from a research collaboration which brings together two disciplines at different ends of the scale spectrum: crystallography and architecture. The science of crystallography demonstrates that the properties of crystalline materials are a function of atomic/molecular interactions and arrangements at the atomic level—i.e., functions of the form and structure of the material. Some of these nano-geometries are frameworks with special characteristics, such as uni-directional porosity, multi-directional porosity, and varied combinations of flexibility and strength. This paper posits that the symmetry operations implicit in these materials can be regarded as a spatial grammar in the design of objects, spaces, and environments. The aim is to allow designers and architects to access the wealth of structural information that is now accumulated in crystallographic databases as well as the spatial symmetry logics utilized in crystallography to describe molecular arrangements. To enable this process, a bespoke software application has been developed as a tool-path to allow for interoperability between crystallographic datasets and CAD-based modelling systems. The application embeds the descriptive logic and generative principles of crystallographic symmetry. Using this software, the project, inter alia, produces results related to a class of geometrical surfaces called Triply Periodic Minimal (TPM) surfaces. In addition to digital iterations, a physical prototype of one such surface called the gyroid was constructed to test potential applications in design. The paper describes the development of these results and the conclusions derived from the first stage of user testing.
keywords interdisciplinarity, physical prototyping, triply periodic minimal surfaces, computational workflow, bespoke software, crystallographic space groups, nano-scale symmetry, nano-scale periodicity, molecular geometry, crystallographic expression
series ACADIA
type paper
email
last changed 2022/06/07 08:00

_id ecaade2016_123
id ecaade2016_123
authors Puusepp, Renee, Cerrone, Damiano and Melioranski, Martin
year 2016
title Synthetic Modelling of Pedestrian Movement - Tallinn case study report
doi https://doi.org/10.52842/conf.ecaade.2016.2.473
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 473-481
wos WOS:000402064400047
summary This paper builds towards the argument that pedestrian traffic in the city can be successfully simulated with agent-based computational models if pedestrians' movement patterns are appropriately studied first. Furthermore, such simulation models, when finely calibrated and supported by onsite observations, allow planners to evaluate different urban design scenarios.We present a pilot study carried out in the centre of Tallinn, and discuss a way of how pedestrian movement simulations can be conceived. In the pilot study we recorded some 120 traces of pedestrians' movement and developed a prototype of an agent-based computational model to simulate this movement. Additionally we investigated the possibility of including solar analysis into the computational model. Already this short exercise offered us some interesting insights into how certain spatial qualities and features can drive pedestrian traffic making urban walkers to verge off the shortest routes. The pilot study was carried out in the context of the High Street project [1] for turning the centre of Tallinn into more pedestrian friendly area by redesigning urban space, calming vehicular traffic and creating new opportunities for businesses to flourish.
keywords agent-based model; urban analysis; pedestrian simulation; movement patterns; solar analysis
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2016_483
id sigradi2016_483
authors Quintella, Ivvy Pedrosa Cavalcante Pessôa; Flor?ncio, Eduardo Quintella; Ferreira, Ítalo Cintra
year 2016
title Making pavilions: Os pavilh?es temporários no contexto das faculdades de arquitetura e urbanismo [Making pavilions: The temporary pavilions in the context of schools of architecture and urbanism]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.318-325
summary This paper aims to highlight the educational potential of the association between the architectural typology of temporary pavilions and digital fabrication process for architecture and urban planning courses. The pavilion theme is being increasingly exploited in various universities in the world, in order to work new paradigms of computational algorithmic architecture and new construction process, through digital fabrication labs. In this sense, these exercises can become a privileged and highly effective learning tool, due the impact of the integrated experience between creating (design), construction (to build) and experience (to appropriate the spaces).
keywords Temporary pavilions; Digital manufacturing; Rapid prototyping; Construction; Architecture education
series SIGRADI
email
last changed 2021/03/28 19:59

_id caadria2016_333
id caadria2016_333
authors Schubert, Gerhard; Benjamin Strobel and Frank Petzold
year 2016
title Tangible Mixed Realty: Interactive Augmented Visualisation of Digital Simulation in Physical Working Models
doi https://doi.org/10.52842/conf.caadria.2016.333
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 333-342
summary The implications of architectural design decisions are in many cases hard to predict and envisage. As architectural tasks grow more complex and the design of architecture shifts away from the de- sign of end products towards the steering of dynamic processes, new ways of coping with complexity in the design and planning process are needed. Taking this as its starting point, as well as the need for ar- chitects to use familiar, established design tools, the CDP research group is working on new ways of supporting the design decision- making process with objective information so that designers are better able to manage these complexities. The focus of the group lies on di- rectly coupling interactive simulations and analyses with established design tools. This paper discusses a central problem in this context: how to present complex calculation results directly within a physical 3D-model. The approach described, as evidenced by the realized pro- totype, shows clearly that directly coupling real and digital infor- mation using interactive augmented visualization presents immense possibilities for managing the complexity of planning processes.
keywords Design support, simulations, computational design, urban planning, augmented reality
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia16_254
id acadia16_254
authors Sharmin, Shahida; Ahlquist, Sean
year 2016
title Knit Architecture: Exploration of Hybrid Textile Composites Through the Activation of Integrated Material Behavior
doi https://doi.org/10.52842/conf.acadia.2016.254
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 254-259
summary The hybrid system in textile composites refers to the structural logic defined by Heino Engel, which describes a system that integrates multiple structural behaviors to achieve an equilibrium state (Engel 2007). This research explores a material system that can demonstrate a hybrid material behavior defined by the differentiated tensile and bending-active forces in a single, seamless knitted composite material. These behaviors were installed during the materialization phase and activated during the composite formation process. Here, the material formation involves two interdependent processes: 1) development of the knitted textile with integrated tensile and reinforced materials and 2) development of the composite by applying pre-stress and vacuuming the localized area with reinforcements in a consistent resin-based matrix. The flat bed industrial weft knitting machine has been utilized to develop the knitted textile component of the system with a controlled knit structure. This enables us to control the material types, densities, and cross sections with integrated multiple layers/ribs and thus, the performance of the textile at the scale of fiber structure. Both of these aspects were researched in parallel, using physical and computational methods informed and shaped by the potentials and constraints of each other. A series of studies has been utilized to develop small-scale prototypes that depict the potential of the hybrid textile composite as the generator of complex form and bending active structures. Ultimately, it indicates the possibilities of hybrid textile composite materials as self-structuring lightweight components that can perform as highly articulated and differentiated seamless architectural elements that are capable of transforming the perception of light, space, and touch.
keywords form-finding, programmable materials, composite forming processes, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2016_745
id caadria2016_745
authors Suzuki E., Seiichi
year 2016
title Extruded Architectures: Grading weight-to-strength ratio of cement based materials through extrusion techniques
doi https://doi.org/10.52842/conf.caadria.2016.745
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 745-754
summary In recent years, a growing research agenda on the subject of additive manufacturing for architectural design has been established on the basis of jetting and extrusion technology. While jetting pro- vides enough flexibility to print multiple digital materials in a single run, extrusion has proven to be the most viable technique for large- scale and on-site manufacturing. Because major contributions of both research lines cannot be combined due to technological differences, special attention has been devoted towards the development of print- ing strategies that could approximate similar material flexibility of jet- ting by means of extrusion techniques. In this context, this paper pre- sents a computational design methodology for architectural components that enables grading weight-strength ratio of cement based materials through extrusion. Built upon the integration of mod- elling, analysis and fabrication, such methodology allows to optimize material distribution and geometric definition on the basis of physical and fabrication constraints. A case study is presented for describing the design processes of a circular column and the fabrication of a sec- tion it.
keywords Additive manufacturing; cement based materials; computational design
series CAADRIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 26HOMELOGIN (you are user _anon_804764 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002