CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id ecaade2016_042
id ecaade2016_042
authors Narangerel, Amartuvshin, Lee, Ji-Hyun and Stouffs, Rudi
year 2016
title Daylighting Based Parametric Design Exploration of 3D Facade Patterns
doi https://doi.org/10.52842/conf.ecaade.2016.2.379
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 379-388
summary A building façade plays an important role of reducing artificial lighting by introducing natural light into the interior space. A majority of research and current technology heavily focuses on the optimization of window properties such as the size, location, and glazing with the consideration of external shading device as well as the building wall in order to obtain appropriate natural lit space. In the present work, we propose a 3-dimensional approach that can explore the trade-offs between two objectives, daylight performance and electricity generation, by means of paramedic modeling and multi-objective optimization algorithm. The case study was simulated under the environmental setting of the geographical location of Incheon, Korea without any urban context. Using the proposed methods, 50 pareto-front optimal solutions were derived and investigated based on the achieved daylighting and generated electricity.
wos WOS:000402064400037
keywords Parametric design; façade design; daylight performance; building-integrated photovoltaics; multi-objective optimization
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2016_210
id ecaade2016_210
authors Abdelmohsen, Sherif, Massoud, Passaint and Elshafei, Ahmed
year 2016
title Using Tensegrity and Folding to Generate Soft Responsive Architectural Skins
doi https://doi.org/10.52842/conf.ecaade.2016.1.529
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 529-536
summary This paper describes the process of designing a prototype for a soft responsive system for a kinetic building facade. The prototype uses lightweight materials and mechanisms to generate a building facade skin that is both soft (less dependent on hard mechanical systems) and responsive (dynamically and simultaneously adapting to spatial and environmental conditions). By combining concepts stemming from both tensegrity structures and folding mechanisms, we develop a prototype that changes dynamically to produce varying facade patterns and perforations based on sensor-network data and feedback. We use radiation sensors and shape memory alloys to control the prototype mechanism and allow for the required parametric adaptation. Based on the data from the radiation sensors, the lengths of the shape memory alloys are altered using electric wires and are parametrically linked to the input data. The transformation in the resulting overall surface is directly linked to the desired levels of daylighting and solar exposure. We conclude with directions for future research, including full scale testing, advanced simulation, and multi-objective optimization.
wos WOS:000402063700058
keywords Soft responsive systems; tensegrity; folding; kinetic facades
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_219
id caadria2016_219
authors Latifi, Mehrnoush; Daniel Prohasky, Jane Burry, Rafael Moya, Jesse Mccarty and Simon Watkins
year 2016
title Breathing skins for wind modulation through morphology
doi https://doi.org/10.52842/conf.caadria.2016.219
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 219-228
summary This study aims to investigate the design power to manipu- late the behaviour and characteristics of air through geometrical ma- nipulation of building skins. The simple cubic cells in the global sys- tem of a porous screen were manipulated to investigate the impacts of screen’s morphology on the air movement pattern within and around it. The results we discovered from the evaluation of several screen systems revealed trends in response to the careful manipulation of ef- fective shape parameters within a designed matrix of variations as a Matrix of Possible Effective Typologies (MPET). In this research, the main principles of framing the initial matrix were based on: a) Creat- ing pressure differences across the screens as a result of surface intru- sion and extrusion compositions. b) Changing the nature of the airflow (velocity and turbulence variation) with geometrical manipulations of the inlet and outlet of the screens’ components. Experimental and nu- merical studies were undertaken in parallel including the use of a wind tunnel with very smooth flow with precision wind sensors and the numerical studies by Computational Fluid Dynamics. The aim of this paper is to present part of the empirical investigations to demonstrate the power of geometry in shaping the air patterns, altering pressure and velocity through geometrical modification of porous surfaces for future applications.
keywords Porous screens; microturbulance; facade component; microclimate; parametric CFD
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2016_007
id ecaade2016_007
authors ElGhazi, Yomna Saad and Mahmoud, Ayman Hassaan Ahmed
year 2016
title Origami Explorations - A Generative Parametric Technique For kinetic cellular façade to optimize Daylight Performance
doi https://doi.org/10.52842/conf.ecaade.2016.2.399
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 399-408
summary At present the kinetics is basic, but there is no doubt that research into the field of responsive building facades will continue, to find more sophisticated design and technical solutions. This research explores the possibilities of kinetic composition afforded by Origami different techniques using squared module. Origami and paper pleating techniques are one of the conceptual design approaches from which Kinetics can be developed. The paper examines the possibilities of different arrangements of folded modules to create environmental efficient kinetic morphed skins. The paper aims to achieve different Kinetic origami-based shading screens categorized by series of parameters to provide appropriate daylighting. The main tested parameters are the form of Origami folds, the module size and motion scenarios. Ten origami cases where explored first using conceptual folded paper maquette modules, then parametrically modelled and simulated at four times of the year, 21st of March, June, September and December, taken every hour of the working day.
wos WOS:000402064400039
keywords Kinetic cellular façade; Origami; Parametric modelling; Parametric simulations; Daylighting performance.
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2016_006
id ecaade2016_006
authors Gomaa, Mohamed and Jabi, Wassim
year 2016
title Evaluating Daylighting Analysis of Complex Parametric Facades
doi https://doi.org/10.52842/conf.ecaade.2016.2.147
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 147-156
summary Lighting analysis tools have proven their ability in helping designers provide functional lighting, increase comfort levels and reduce energy consumption in buildings. Consequently, the number of lighting analysis software is increasing and all are competing to provide credible and rigorous analysis. The rapid adoption of parametric design in architecture, however, has resulted in complex forms that make the evaluation of the accuracy of digital analysis more challenging. This study aims to evaluate and compare the performance of daylighting analysis in two industry standard software (Autodesk Revit and 3ds Max) when analysing the daylighting of complex parametric façade patterns. The study has shown that, generally, both Revit and 3ds Max underestimate illuminance values when compared to physical scaled models. 3ds Max was found to outperform Revit when simulating complex parametric patterns, while Revit was found to outperform 3ds Max when simulating simple fenestration geometries. As a general conclusion, the rapid progress of parametric modelling, integrated with fabrication technologies, has made daylighting analysis of complex geometries more challenging. There is a need for more sophisticated algorithms that can handle the increased level of complexity as well as further verification studies to evaluate the accuracy claims made by software vendors.
wos WOS:000402064400014
keywords Daylighting analysis evaluation; Parametric patterns; Revit; 3ds Max; Complex façades
series eCAADe
email
last changed 2022/06/07 07:51

_id ascaad2016_003
id ascaad2016_003
authors Al-Jokhadar, Amer; Wassim Jabi
year 2016
title Humanising the Computational Design Process - Integrating Parametric Models with Qualitative Dimensions
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 9-18
summary Parametric design is a computational-based approach used for understanding the logic and the language embedded in the design process algorithmically and mathematically. Currently, the main focus of computational models, such as shape grammar and space syntax, is primarily limited to formal and spatial requirements of the design problem. Yet, qualitative factors, such as social, cultural and contextual aspects, are also important dimensions in solving architectural design problems. In this paper, an overview of the advantages and implications of the current methods is presented. It also puts forward a ‘structured analytical system’ that combines the formal and geometric properties of the design, with descriptions that reflect the spatial, social and environmental patterns. This syntactic-discursive model is applied for encoding vernacular courtyard houses in the hot-arid regions of the Middle East and North Africa, and utilising the potentials of these cases in reflecting the lifestyle and the cultural values of the society, such as privacy, human-spatial behaviour, the social life inside the house, the hierarchy of spaces, the segregation and seclusion of family members from visitors and the orientation of spaces. The output of this analytical phase prepares the groundwork for the development of socio-spatial grammar for contemporary tall residential buildings that gives the designer the ability to reveal logical spatial topologies based on socio-environmental restrictions, and to produce alternatives that have an identity while also respecting the context, place and needs of users.
series ASCAAD
email
last changed 2017/05/25 13:13

_id ascaad2016_032
id ascaad2016_032
authors Alhadidi, Suleiman; Justin Mclean, Luchlan Sharah, Isabel Chia, Roger Sam
year 2016
title Multiflight - Creating Interactive Stairs through Positive Technology
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 295-308
summary This paper details a pedagogical project which calls for an improved design performance of the existing built environment through the use of smart technology and data-driven design. The project is an investigation into ways in which to improve the performance of a ‘pre-selected university building’ through the use of a media facade that allows for interactive experiences. Existing problems of the selected building have been identified through observation and research using a rich picture and agile approach. An underutilised staircase was selected as the focus site for a series of computational design and interactive design studies. The brief of this mini-research project aims to encourage more people to use the stairs and create a memorable experience with a technological approach through the application of a site specific interactive media installation. The project is an interactive staircase which utilises LED strips and generative sound. The project features a series of light boxes which are connected to the existing staircase balustrade. Arduino, passive infra-red sensors, and other motion detection sensors were used to allow for light and generative sound interaction with users using visual scripting tools and a generative design platform. Sensing technology was used as a real-time data-gathering device during the site analysis phase as well as an input device for the designed prototype to allow the testing of the data-driven design. This paper details the study and resultant interactive prototypes. It also discusses the exploration of performance based design ideas into design workflows and the integration of sensing tools into the design process. It concludes by identifying possible implications on using the Internet of Things concepts to facilitate the design of interactive architecture.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ecaade2016_198
id ecaade2016_198
authors Caetano, In?s and Leit?o, António
year 2016
title DrAFT: an Algorithmic Framework for Facade Design
doi https://doi.org/10.52842/conf.ecaade.2016.1.465
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 465-474
summary Architecture has always followed the times and their innovations and, currently, an architecture based on digital technologies has been emerging and has increasingly explored architectural facades. In this paper we use DrAFT, a computational framework for the generation and exploration of facade designs, to explore a set of different examples of building skins. DrAFT includes a classification of facades that helps in the identification of algorithms that best suits each design intent. After combining the algorithms provided by this framework, the designer can more easily explore the solution space of the intended design.
wos WOS:000402063700051
keywords Generative design; facade design; DrAFT framework; Rosetta
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_688
id acadia20_688
authors del Campo, Matias; Carlson, Alexandra; Manninger, Sandra
year 2020
title 3D Graph Convolutional Neural Networks in Architecture Design
doi https://doi.org/10.52842/conf.acadia.2020.1.688
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 688-696.
summary The nature of the architectural design process can be described along the lines of the following representational devices: the plan and the model. Plans can be considered one of the oldest methods to represent spatial and aesthetic information in an abstract, 2D space. However, to be used in the design process of 3D architectural solutions, these representations are inherently limited by the loss of rich information that occurs when compressing the three-dimensional world into a two-dimensional representation. During the first Digital Turn (Carpo 2013), the sheer amount and availability of models increased dramatically, as it became viable to create vast amounts of model variations to explore project alternatives among a much larger range of different physical and creative dimensions. 3D models show how the design object appears in real life, and can include a wider array of object information that is more easily understandable by nonexperts, as exemplified in techniques such as building information modeling and parametric modeling. Therefore, the ground condition of this paper considers that the inherent nature of architectural design and sensibility lies in the negotiation of 3D space coupled with the organization of voids and spatial components resulting in spatial sequences based on programmatic relationships, resulting in an assemblage (DeLanda 2016). These conditions constitute objects representing a material culture (the built environment) embedded in a symbolic and aesthetic culture (DeLanda 2016) that is created by the designer and captures their sensibilities.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2016_710
id sigradi2016_710
authors Duarte, Rovenir Bertola; Lepri, Louisa Savignon; Sanches, Malu Magalh?es
year 2016
title Objectile e o projeto paramétrico [Objectile and parametric design]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.149-156
summary The objectile was a concept developed by Deleuze and Cache in the 80s. It treats the object as a variable and anticipates the society of obsolescence, an inquiry about the contemporary life of the object (marketing, function, representation, modeling, production and consumption). This concept deals with the object where“... fluctuation of the norm replaces the permanence of a law; where the object assumes a place in a continuum by variation” (Deleuze, 1991, p.38). This paper proposes to think objectile as the object of the architectural design, on three types of approximations between design and objectile: (a) Objectile as variable of the design, (b) Objectile as a design variable, and (c) Objectile as architecture (variable architecture). The second approximation (b) enables to discuss the conception of continuous design with power to cross other projects - a meta-design. The main aspect of this meta-design is the variability, another way of control based on concepts of patterns and modulations; however, objectile can mean the release of mind for new types of thought and new kinds of design based on “continuum by variation”: meta-design.
keywords Objectile; parametric design; Gilles Deleuze; Modulado; Digital design
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia16_12
id acadia16_12
authors Gerber, David Jason; Pantazis, Evangelos
year 2016
title A Multi-Agent System for Facade Design: A design methodology for Design Exploration, Analysis and Simulated Robotic Fabrication
doi https://doi.org/10.52842/conf.acadia.2016.012
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 12-23
summary For contemporary design practices, there still remains a disconnect between design tools used for early stage design exploration and performance analysis, and those used for fabrication and construction of complex tectonic architectural systems. The research brings forward downstream fabrication constraints into the up-stream design exploration and design decision making. This paper addresses the issues of developing an integrated digital design work-flow and details a research framework for the incorporation of environmental performance into a robotic fabrication for early stage design exploration and generation of intricate and complex alternative façade designs. The method allows the user to import a design surface, define design parameters, set a number of environmental performance objectives, and then simulate and select a robotic construction strategy. Based on these inputs, design alternatives are generated and evaluated in terms of their performance criteria in consideration of their robotically simulated constructability. In order to validate the proposed framework, an experimental case study of office building façade designs that are generatively created from a multi-agent system for design methodology is design explored and evaluated. Initial results define a heuristic function for improving simulated robotic constructability and illustrate the functionality of our prototype. Project limitations and future research steps are then discussed.
keywords generative design, multi-objective design optimization, robotic fabrication, simulation, design performance, design decision making
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ascaad2016_010
id ascaad2016_010
authors Harnomo Fajar I.; Aswin Indraprastha
year 2016
title Computational Weaving Grammar of Traditional Woven Pattern
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 75-84
summary Weaving technique is one of the indigenous craftsmanship practices that are common in most of ethnic groups in Indonesia. Generally, it uses thin strips of organic material such as bamboo or rattan to make plane of surface that further can be developed into daily utensils or as a traditional architectural building components such as partition wall and floor. The research of weaving grammar as a system and process had been introduced and explored using Shape Grammar theory and principles. Having the potential implementation and to preserve the traditional weaving method, the grammar can be explored as a method of exploration in architectural design by extending the computation method based on the visual embedding of its pattern languages. The aim of the study is to discover the geometrical configuration underlied traditional weaving grammar by reconfiguring and elaborating procedures and further develop generative method using computational approach. We focused on the exploration of single and dual patterns of biaxial types of West Java woven pattern by using shape grammar principles. The result shows computational method is constructed by several rules which are defined as generative procedure. The result advised that traditional woven pattern has similarity according to its ruled-based system of generative algorithm.
series ASCAAD
email
last changed 2017/05/25 13:13

_id caadria2016_063
id caadria2016_063
authors Kawiti, Derek; Marc Aurel Schnabel and James Durcan
year 2016
title Indigenous Parametricism - Material Computation.
doi https://doi.org/10.52842/conf.caadria.2016.063
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 63-72
summary The use of computational formats and digital tools includ- ing machine fabrication by indigenous people worldwide to augment traditional practices and material culture is becoming more and more commonplace. However within the practice of architecture while there are indigenous architectural practitioners utilizing digital tools, it is unclear as to whether there is motivation to implement traditional in- digenous knowledge in conjunction with these computational instru- ments and methodologies. This paper explores how the tools might be used to investigate the potential for indigenous development, cultural empowerment and innovation. It also describes a general methodology whereby capacity can be shared between academia and indigenous groups to foster new knowledge through a recently implemented in- digenous focused design research entity, SITUA. The importance and significant research potential of what we term 'domain based research' is reinforced through the exploration of emergent materials and build- ing systems located within specific tribal domains. A recent project employing 3D clay extrusion printing is used to illustrate this ap- proach.
keywords Indigenous domain based research: Maori; materials; digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2016_517
id caadria2016_517
authors Shen, Yang Ting and Pei Wen Lu
year 2016
title Development of Kinetic Facade Units with BIM-Based Active Control System for the Adaptive Building Energy Performance Service
doi https://doi.org/10.52842/conf.caadria.2016.517
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 517-526
summary This paper proposes a novel concept and practice to engage the BIM model as a control system of building energy performance service. This issue can be divided into two sub-issues including the development of more eco-friendly fac?ade which can interact with its local environment, and the related active control system which can process the environmental parameters for eco-friendly actions. This research designs the Parametric Adaptive Skin System (PASS) to en- gage the adaption of natural sunlight use for higher building perfor- mance. PASS consists of kinetic fac?ade components dominated by the BIM-based parametric engine called Dynamo. The PASS prototype demonstrates that the workflows is successful in using a real light sen- sor plus simulated solar terms to drive the interaction of virtual Revit model and physical PASS model.
keywords Building information modelling (BIM); adaptive building; energy consumption; building performance; kinetic fac?ade
series CAADRIA
email
last changed 2022/06/07 07:56

_id ijac201614309
id ijac201614309
authors Yu, Rongrong and John S Gero
year 2016
title An empirical basis for the use of design patterns by architects in parametric design
source International Journal of Architectural Computing vol. 14 - no. 3, 289-302
summary This article presents the results from exploring the impact of using a parametric design tool on designers’ behavior in terms of using design patterns in the early conceptual development stage of designing. It is based on an empirical cognitive study in which eight architectural designers were asked to complete two architectural design tasks with similar complexity, respectively, in a parametric design environment and a geometric modeling environment. The protocol analysis method was employed to study the designers’ behavior. In order to explore the development of design patterns in the empirical data, Markov model analysis is utilized. Through Markov models analysis of the parametric design environment and geometric modeling environment results, it was found that there are some significantly different design patterns being used when designing in a parametric design environment compared to designing in a geometric modeling environment. The article articulates these differences and draws conclusions from these results.
keywords Design patterns, parametric design, protocol analysis
series journal
last changed 2016/10/05 08:21

_id ecaade2016_171
id ecaade2016_171
authors Zwierzycki, Mateusz, Evers, Henrik Leander and Tamke, Martin
year 2016
title Parametric Architectural Design with Point-clouds - Volvox
doi https://doi.org/10.52842/conf.ecaade.2016.2.673
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 673-682
summary This paper investigates the efforts and benefits of the implementation of point clouds into architectural design processes and tools. Based on a study on the principal work processes of designers with point clouds the prototypical plugin/library - Volvox - was developed for the parametric modelling environment Grasshopper in Rhino. The prototype allows us to discuss the necessary technical layer for the task, benchmark the tool, and finally to evaluate the benefits, that this approach has for architectural practice, through a series of use cases.
wos WOS:000402064400068
keywords point-clouds; Architectural Design Tools; 3d Scan; multithreading; .net
series eCAADe
email
last changed 2022/06/07 07:57

_id ascaad2016_014
id ascaad2016_014
authors Ahmed, Zeeshan Y.; Freek P. Bos, Rob J.M. Wolfs and Theo A.M. Salet
year 2016
title Design Considerations Due to Scale Effects in 3D Concrete Printing
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 115-124
summary The effect of scale on different parameters of the 3D printing of concrete is explored through the design and fabrication of a 3D concrete printed pavilion. This study shows a significant gap exists between what can be generated through computer aided design (CAD) and subsequent computer aided manufacturing (generally based on CNC technology). In reality, the 3D concrete printing on the one hand poses manufacturing constraints (e.g. minimum curvature radii) due to material behaviour that is not included in current CAD/CAM software. On the other hand, the process also takes advantage of material behaviour and thus allows the creation of shapes and geometries that, too, can’t be modelled and predicted by CAD/CAM software. Particularly in the 3D printing of concrete, there is not a 1:1 relation between toolpath and printed product, as is the case with CNC milling. Material deposition is dependent on system pressure, robot speed, nozzle section, layer stacking, curvature and more – all of which are scale dependent. This paper will discuss the design and manufacturing decisions based on the effects of scale on the structural design, printed and layered geometry, robot kinematics, material behaviour, assembly joints and logistical problems. Finally, by analysing a case study pavilion, it will be explore how 3D concrete printing structures can be extended and multiplied across scales and functional domains ranging from structural to architectural elements, so that we can understand how to address questions of scale in their design.
series ASCAAD
email
last changed 2017/05/25 13:31

_id ascaad2016_052
id ascaad2016_052
authors Al-Badry, Sally; Cesar Cheng, Sebastian Lundberg and Georgios Berdos
year 2016
title Living on the Edge - Reinventing the amphibiotic habitat of the Mesopotamian Marshlands
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 513-526
summary The Mesopotamian Marshlands form one of the first landscapes where people started to transform and manipulate the natural environment in order to sustain human habitation. For thousands of years, people have transformed natural ecosystems into agricultural fields, residential clusters and other agglomerated environments to sustain long-term settlement. In this way, the development of human society has been intricately linked to the extraction, processing and consumption of natural resources. The Mesopotamian Marshlands, located in one of the hottest and most arid areas on the planet, formed a unique wetlands ecosystem, which apart from millions of people, sustained a very high number of wildlife and endemic species. Several historical, political, social and climatic changes, which densely occurred during the past century, completely destroyed the unique civilisation of the area, made all the wild flora and fauna disappear and forced hundreds of thousands of people to migrate. During the last decade, many efforts have been made to restore the marshlands. However, these efforts are lacking a comprehensive design strategy, coherent goals and deep understanding of the complex current geopolitical situation, making the restoration process an extremely difficult task. This work aims at providing strategies for recovering the Mesopotamian Marshlands, organising productive functions in order to sustain the local population and design a new inhabitation model, using advanced computational tools while taking into account the extreme climatic conditions and several unique cultural aspects. Part of the aim of this work is to advance the use of computation and explore the opportunities that digital tools afford in helping find solutions to complex design problems where various design variables need to be coordinated to satisfy the design goals. Today, advanced computation enables designers to use population consumption demands, ecological processes and environmental inputs as design parameters to develop more robust and resilient regional planning strategies. This work has the double aim of first, presenting a framework for re-inhabiting the Marshlands of Mesopotamia. Second, the work suggests a design methodology based on computer-aided design for developing and organising productive functions and patterns of human occupation in wetland environments.
series ASCAAD
email
last changed 2017/05/25 13:34

_id ascaad2016_047
id ascaad2016_047
authors Algeciras-Rodríguez, José
year 2016
title Trained Architectonics
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 461-468
summary The research presented here tests the capacity of artificial-neural-network (ANN) based multi-agent systems to be implemented in architectural design processes. Artificial Intelligence algorithms allow for a new approach to design, taking advantage of its generic functioning to produce meaningful outcomes. Experimentation within this project is based on Self-Organizing Maps (SOMs) and takes advantage of its behavior in topology to produce architectural geometry. SOMs as full stochastic processes involve randomness, uncertainty and unpredictability as key features to deal with during the design process. Following this behavior, SOMs are used to transmit information, which, instead of being copied, is reproduced after a learning (training) process. Pre-existent architectural objects are taken as learning models as they have been considered masterpieces. In this context, by defining the SOM input set, masterpieces become measurement elements and can be used to set a distance to the new element position in a comparatistic space. The characteristics of masterpieces get embedded within the code and are transmitted to 3D objects. SOM produced objects from a population with shared characteristics where the masterpiece position is its probabilistic center point.
series ASCAAD
email
last changed 2017/05/25 13:33

_id sigradi2016_450
id sigradi2016_450
authors Araujo, André L.; Celani, Gabriela
year 2016
title Exploring Weaire-Phelan through Cellular Automata: A proposal for a structural variance-producing engine
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.710-714
summary Complex forms and structures have always been highly valued in architecture, even much before the development of computers. Many architects and engineers have strived to develop structures that look very complex but at the same time are relatively simple to understand, calculate and build. A good example of this approach is the Beijing National Aquatics Centre design for the 2008 Olympic Games, also known as the Water Cube. This paper presents a proposal for a structural variance-producing engine using cellular automata (CA) techniques to produce complex structures based on Weaire-Phelan geometry. In other words, this research evaluates how generative and parametric design can be integrated with structural performance in order to enhance design flexibility and control in different stages of the design process. The method we propose was built in three groups of procedures: 1) we developed a method to generate several fits for the two Weaire-Phelan polyhedrons using CA computation techniques; 2) through the finite elements method, we codify the structural analysis outcomes to use them as inputs for the CA algorithm; 3) evaluation: we propose a framework to compare how the final outcomes deviate for the good solutions in terms of structural performance and rationalization of components. We are interested in knowing how the combination of the procedures could contribute to produce complex structures that are at the same time certain rational. The system developed allows the structural analysis of structured automatically generated by a generative system. However, some efficient solutions from the structural performance point of view do not necessarily represent a rational solution from the feasibility aspects.
keywords Structural design; Complex structures; Bottom-up design approach
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_473507 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002