CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 615

_id ecaade2016_065
id ecaade2016_065
authors Henriques, Goncalo Castro
year 2016
title Responsive Systems: Foundations and Application - The importance of defining meta-systems and their methods
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 511-520
doi https://doi.org/10.52842/conf.ecaade.2016.1.511
wos WOS:000402063700056
summary Responsive architecture is often considered as one that merely adapts to change. This reflects its limited and still incipient application in architecture. Due to the current resource crisis, systemic building management is essential. This article argues that there are no established processes for creating and managing responsive architecture. To establish a foundation in this area, it claims that it is necessary to deepen knowledge about systems, computation, mathematics, biology and robotics. Despite being a vast subject, it proposes a state of the art of the systems, investigating how to operate them. A method for generating responsive systems is tested and implemented in a practical case. Two methods of adaptation are proposed and tested: static and dynamic adaptation. These methods reinforce the point that responsive architecture can use not only active mechanisms, but also passive methods embedded in its form as information. The research concludes that information management is critical to define what is designated in software engineering as architecture of the system. Thus, it suggests that it is necessary to define meta-systems and to define their methods to support the generation, fabrication, construction and operation of responsive systems.
keywords responsive systems; meta-systems; static adaptation; dynamic adaptation; heuristics
series eCAADe
email
last changed 2022/06/07 07:49

_id acadia16_460
id acadia16_460
authors Dade-Robertson, Martyn; Corral, Javier Rodriguez; Mitrana, Helen; Zhang, Meng; Wipat, Anil; Ramirez-Figueroa, Carolina; Hernan, Luis
year 2016
title Thinking Soils: A synthetic biology approach to material-based design computation
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 460-469
doi https://doi.org/10.52842/conf.acadia.2016.460
summary The paper details the computational modelling work to define a new type of responsive material system based on genetically engineered bacteria cells. We introduce the discipline of synthetic biology and show how it may be possible to program a cell to respond genetically to inputs from its environment. We propose a system of synthetic biocementing, where engineered cells, living within a soil matrix, respond to pore pressure changes in their environment when the soil is loaded by synthesising new material and strengthening the soil. We develop a prototype CAD system which maps genetic responses of individual bacteria cells to geotechnical models of stress and pore pressure. We show different gene promoter sensitivities may make substantial changes to patterns of consolidation. We conclude by indicating future research in this area which combines both in vivo and in silico work.
keywords intelligent materials, material based design computation, synthetic biology, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id acadia16_488
id acadia16_488
authors Derme, Tiziano; Mitterberger, Daniela; Di Tanna, Umberto
year 2016
title Growth Based Fabrication Techniques for Bacterial Cellulose: Three-Dimensional Grown Membranes and Scaffolding Design for Biological Polymers
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 488-495
doi https://doi.org/10.52842/conf.acadia.2016.488
summary Self-assembling manufacturing for natural polymers is still in its infancy, despite the urgent need for alternatives to fuel-based products. Non-fuel based products, specifically bio-polymers, possess exceptional mechanical properties and biodegradability. Bacterial cellulose has proven to be a remarkably versatile bio-polymer, gaining attention in a wide variety of applied scientific applications such as electronics, biomedical devices, and tissue-engineering. In order to introduce bacterial cellulose as a building material, it is important to develop bio-fabrication methodologies linked to material-informed computational modeling and material science. This paper emphasizes the development of three-dimensionally grown bacterial cellulose (BC) membranes for large-scale applications, and introduces new manufacturing technologies that combine the fields of bio-materials science, digital fabrication, and material-informed computational modeling. This paper demonstrates a novel method for bacterial cellulose bio-synthesis as well as in-situ self-assembly fabrication and scaffolding techniques that are able to control three-dimensional shapes and material behavior of BC. Furthermore, it clarifies the factors affecting the bio-synthetic pathway of bacterial cellulose—such as bacteria, environmental conditions, nutrients, and growth medium—by altering the mechanical properties, tensile strength, and thickness of bacterial cellulose. The transformation of the bio-synthesis of bacterial cellulose into BC-based bio-composite leads to the creation of new materials with additional functionality and properties. Potential applications range from small architectural components to large structures, thus linking formation and materialization, and achieving a material with specified ranges and gradient conditions, such as hydrophobic or hydrophilic capacity, graded mechanical properties over time, material responsiveness, and biodegradability.
keywords programmable materials, material agency, biomimetics and biological design
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id sigradi2016_417
id sigradi2016_417
authors Digiandomenico, Dyego; Landim, Gabriele; Fischer, Henrique
year 2016
title Trançado: recursos computacionais aplicados no processo de projeto de mobiliário urbano permanente [Trançado: computational design thinking applied to a permanent urban furniture project]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.20-25
summary This paper presents and discusses the research, design and construction of the urban furniture "Trançado", permanently located at Largo da Batata, a public space in S?o Paulo, Brazil. The project was accomplished using computational design processes as parametric modeling and digital fabrication of prototypes. Stakeholders from different areas were involved: professionals, organizations and citizens. The article contributes discussing and describing the technical features. Above all, it produces inputs for reflection and progress of the application of computational design in architecture.
keywords Urban furniture; computational design; parametric modeling; algorithmic architecture; collaborative processes
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_224
id ecaade2016_224
authors Gerber, David and Pantazis, Evangelos
year 2016
title Design Exploring Complexity in Architectural Shells - Interactive form finding of reciprocal frames through a multi-agent system
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 455-464
doi https://doi.org/10.52842/conf.ecaade.2016.1.455
wos WOS:000402063700050
summary This paper presents an integrated workflow for interactive design of shell structures, which couples structural and environmental analysis through a multi-agent systems (MAS) for design. The work lies at the intersection of architecture, engineering and computer science research, incorporating generative design with analytical techniques. A brief review on architectural shell structures and the structural logic of reciprocal frames is described. Through the morphological study of reciprocal frames locally we seek to inform the behavior of a MAS, which integrates form-finding techniques, with daylight factor analysis (DFA) and finite element analysis (FEA) on a global configuration. An experimental design is developed in order to explore the solution space of large span free form shells with varying topologies and boundary conditions, as well as identify the relationships between local design parameters of the reciprocal frames (i.e. number of elements, profile) and the analyses (i.e. stress distribution, solar radiation) for enabling the generation of different global design alternatives. The research improves upon design decision-making latency and certainty through harnessing geometric complexity and structural form finding for early stage design. Additionally, the research improves upon design outcomes by establishing a feedback loop between design generation, analysis and performance.
keywords Generative design; computational design; multi-agent systems; shell structures; reciprocal frames; form finding; parametric design
series eCAADe
email
last changed 2022/06/07 07:51

_id ascaad2016_042
id ascaad2016_042
authors Goud, Srushti
year 2016
title Parametrizing Indian Karnata-Dravida Temple Using Geometry
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 409-420
summary The Karnata-Dravida temple tradition flourished and evolved for 700 years. The evolution of the typology was demonstrated through the structure. However, as the Shastras or ancient texts proclaim, the underlying principles of geometry remain unchanged. Geometry and the unchanging principles of construction made the architects experiment with form, material and ornamentation. Geometry does not only mean shapes or two dimensional diagrams but it is a rule to amalgamate all the elements to form a dynamic form of a temple. The paper validates the use of geometry through an evolving sequence of Karnata-Dravida temples with the help of an analytical model created using the grasshopper software. The components of the model are based on the geometric rule (the basis for parametrizing) and parameters of the algorithm – plan forms, organizational compositions, vimana or superstructure composition – which result in a geometry. Even though building science is an old tradition, the use of computational procedures reveals the predictable nature of temples in the Dravidian clan and enables the analysis of existing temples, development of new possibilities or evolution of interpreted forms. Hence, enriching the existing understandings of previous scholarships in the field of temple architecture with an entirely new system of interpretation. In the age of technology where analytics plays a crucial role in almost all sectors, ancient temple architecture in India unfortunately falls behind when it comes to computational methods of restoration or reconstruction. This research questions the applicability of computational technology as a facilitator in preserving or reconstructing existing temples while maintaining its creative liberty.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ecaade2016_162
id ecaade2016_162
authors Heinrich, Mary Katherine and Ayres, Phil
year 2016
title Using the Phase Space to Design Complexity - Design Methodology for Distributed Control of Architectural Robotic Elements
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 413-422
doi https://doi.org/10.52842/conf.ecaade.2016.1.413
wos WOS:000402063700046
summary Architecture that is responsive, adaptive, or interactive can contain active architectural elements or robotic sensor-actuator systems. The consideration of architectural robotic elements that utilize distributed control and distributed communication allows for self-organization, emergence, and evolution on site in real-time. The potential complexity of behaviors in such architectural robotic systems requires design methodology able to encompass a range of possible outcomes, rather than a single solution. We present an approach of adopting an aspect of complexity science and applying it to the realm of computational design in architecture, specifically by considering the phase space and related concepts. We consider the scale and predictability of certain design characteristics, and originate the concept of a formation space extension to the phase space, for design to deal directly with materializations left by robot swarms or elements, rather than robots' internal states. We detail a case study examination of design methodology using the formation space concept for assessment and decision-making in the design of active architectural artifacts.
keywords phase space; complexity; attractor; distributed control
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2016_170
id ecaade2016_170
authors Hysa, Desantila and Özkar, Mine
year 2016
title Computation in Early Design Education as Investment in Attitudes
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 357-366
doi https://doi.org/10.52842/conf.ecaade.2016.1.357
wos WOS:000402063700040
summary While education programs are generally defined in terms of learning outcomes known as knowledge, skills and attitudes, it is not always obvious how attitudes are to be gained. This study focuses on the formation of attitudes of accountability and sharing of knowledge in computational approaches to basic design education. We posit that computational thinking, even without computers, is supportive of both the reflective practice and the learning of such values in design education. We report on comparatively observed collaborative design processes of first year architecture students who externalized their thought processes through visual rules. While a reflection-in-action stage helps in learning the know-how, a second reflection on reflection-in-action deepens the understanding and initiates habits for how to think and act within and beyond the design domain, leading to attitude formation.
keywords design computation; attitudes; visual rules; learning outcomes; foundation design studios
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia16_382
id acadia16_382
authors Lopez, Deborah; Charbel, Hadin; Obuchi, Yusuke; Sato, Jun; Igarashi, Takeo; Takami, Yosuke; Kiuchi, Toshikatsu
year 2016
title Human Touch in Digital Fabrication
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 382-393
doi https://doi.org/10.52842/conf.acadia.2016.382
summary Human capabilities in architecture-scaled fabrication have the potential of being a driving force in both design and construction processes. However, while intuitive and flexible, humans are still often seen as being relatively slow, weak, and lacking the exacting precision necessary for structurally stable large-scale outputs—thus, hands-on involvement in on-site fabrication is typically kept at a minimum. Moreover, with increasingly advanced computational tools and robots in architectural contexts, the perfection and speed of production cannot be rivaled. Yet, these methods are generally non-engaging and do not necessarily require a skilled labor workforce, bringing to question the role of the craftsman in the digital age. This paper was developed with the focus of leveraging human adaptability and tendencies in the design and fabrication process, while using computational tools as a means of support. The presented setup consists of (i) a networked scanning and application of human movements and human on-site positioning, (ii) a lightweight and fast-drying extruded composite material, (iii) a handheld “smart” tool, and (iv) a structurally optimized generative form via an iterative feedback system. By redistributing the roles and interactions of humans and machines, the hybridized method makes use of the inherently intuitive yet imprecise qualities of humans, while maximizing the precision and optimization capabilities afforded by computational tools—thus incorporating what is traditionally seen as “human error” into a dynamically engaging and evolving design and fabrication process. The interdisciplinary approach was realized through the collaboration of structural engineering, architecture, and computer science laboratories.
keywords human computer interaction and design, craft in design, tool streams and tool building, cognate streams, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id sigradi2016_000
id sigradi2016_000
authors Martin Iglesias, Rodrigo
year 2016
title Crowdthinking
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016
summary The topic "Crowdthinking" reveals the inquiries of researchers about collaborative work, distributed intelligence and collective research. The call focuses on transdisciplinary thinking as a construct based on multiplicity and diversity. All these topics are essential not only in the field of design and architecture, but also in emerging areas of human sciences and arts . Currently, the collaborative design is considered one of the key bases for change in the city and society. In its genesis, it manifests the notion that the world around us is inadequate for many of the needs of the society and from that design can be collectively improved. Such collective research, by combining distributed intelligence, sustainable social development, design cutting edge research, theories and computational strategies, generates a research partnership based on participation and distributed cognition of complex problems. This call proposes an approach in which the results of the experiences can build a model, define or apply axioms and lead to applications. It also looks for emerging conjectures about the process, the creation of computer models and the behaviour of the resulting designs. On the other hand, the need to find solutions that improve the quality of life for the community and sustainable development includes concerns about the integration of the physical and cultural context of cities, mass education and the inclusion of parametric design, digital manufacturing and digital prototyping, and BIM as a system that organizes and ensures the correspondence between the physical urban design and sustainable archetypes. These are some of the concerns in which technology has been contributing to improve the design process by integrating information. This integration optimizes resources and enables the various project professionals to work on the same model, run simulations, improve materializations and evaluate massive amount of data. Projects with greater social and environmental responsibility can be achieved adopting into the teaching and practice this new way of design that anticipates an extensive exchange that wilt foster self-evaluation and reformulation of educational paradigms.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
doi https://doi.org/10.52842/conf.acadia.2016.140
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id ecaade2016_108
id ecaade2016_108
authors Papadopoulou, Athina
year 2016
title Objects-to-sense-with - Computational Tools for Embodied Spatial Learning
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 367-376
doi https://doi.org/10.52842/conf.ecaade.2016.1.367
wos WOS:000402063700041
summary This paper proposes objects-to-sense-with as tools that provide sensory-based learning of space and expand spatial knowledge beyond merely the formal and visual aspects currently dominant in design discourse. To reintroduce sensory-based learning methods in architecture education, this paper first revisits the sensory pedagogies formulated in the early 20th century, reviews precedents in the arts that utilize body-centered sensing technologies, and reframes previous discussions on the pedagogical role of technologies as tools for thinking. Finally, this paper describes the development of a wearable tool with embedded sensors created by the author and describes how the results are visualized. The developed tool, which is used to record sensory data in-situ by the user and allows for a body-centered representation of space, serves as an example of an object-to-sense-with that can be used to achieve a sensory-based and body-centered understanding of architecture.
keywords architecture education; design tools; sensor technologies; embodied perception
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia16_236
id acadia16_236
authors Pineda, Sergio; Arora, Mallika; Williams, P. Andrew; Kariuki, Benson M.; Harris, Kenneth D. M.
year 2016
title The Grammar of Crystallographic Expression
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 236-243
doi https://doi.org/10.52842/conf.acadia.2016.236
summary This paper stems from a research collaboration which brings together two disciplines at different ends of the scale spectrum: crystallography and architecture. The science of crystallography demonstrates that the properties of crystalline materials are a function of atomic/molecular interactions and arrangements at the atomic level—i.e., functions of the form and structure of the material. Some of these nano-geometries are frameworks with special characteristics, such as uni-directional porosity, multi-directional porosity, and varied combinations of flexibility and strength. This paper posits that the symmetry operations implicit in these materials can be regarded as a spatial grammar in the design of objects, spaces, and environments. The aim is to allow designers and architects to access the wealth of structural information that is now accumulated in crystallographic databases as well as the spatial symmetry logics utilized in crystallography to describe molecular arrangements. To enable this process, a bespoke software application has been developed as a tool-path to allow for interoperability between crystallographic datasets and CAD-based modelling systems. The application embeds the descriptive logic and generative principles of crystallographic symmetry. Using this software, the project, inter alia, produces results related to a class of geometrical surfaces called Triply Periodic Minimal (TPM) surfaces. In addition to digital iterations, a physical prototype of one such surface called the gyroid was constructed to test potential applications in design. The paper describes the development of these results and the conclusions derived from the first stage of user testing.
keywords interdisciplinarity, physical prototyping, triply periodic minimal surfaces, computational workflow, bespoke software, crystallographic space groups, nano-scale symmetry, nano-scale periodicity, molecular geometry, crystallographic expression
series ACADIA
type paper
email
last changed 2022/06/07 08:00

_id ecaade2016_166
id ecaade2016_166
authors Trento, Armando and Fioravanti, Antonio
year 2016
title Human Behaviour Simulation to Enhance Workspace Wellbeing and Productivity - A BIM and Ontologies implementation path
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 315-325
doi https://doi.org/10.52842/conf.ecaade.2016.2.315
wos WOS:000402064400031
summary Three-quarters of the production value are generated during activities that involve thinking, conducting relational and brainstorming activities. Most of the European office buildings today have been designed on more than fifty year old architectural and psychosocial concepts. To improve wellbeing and productivity, design innovation focuses on human's use-process, evolving individual workspace to flexible and specialized ones, according to the users tasks - activity-based. BIM supports sophisticated behaviors simulation such as energy, acoustics, although the state of the art, this paradigm is not able to manage space use-processes. Compared to current research on simulation systems, the proposed method links spaces to user's Behavioral Knowledge including formalization of Personality Typologies and profiled behavioral patterns. A hybrid approach for computational technique has been identified, combining (big) data-driven algorithm with ontology-based context reasoning, in order to achieve both, the best performance from intensive data-driven methods, and the finest adaptation for ontological context awareness (including unexplored context capabilities and objects adaptations).
keywords Event Ontology; Design Knowledge Representation and Management; Human Behaviour, BIM
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2016_036
id ecaade2016_036
authors Varinlioglu, Guzden, Halici, Suheyla Muge and Alacam, Sema
year 2016
title Computational Thinking and the Architectural Curriculum - Simple to Complex or Complex to Simple?
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 253-259
doi https://doi.org/10.52842/conf.ecaade.2016.1.253
wos WOS:000402063700028
summary Recent trends in architectural education and practice have encouraged the use of computational tools and methods for solving complex design problems. Newer technology can augment the design process by applying progressively more-advanced computational tools. However, the complex nature of these tools can lead to students getting lost at the skill-building stage, they can become trapped in computational design terminology, leading to designs of limited spatial quality. This paper introduces a pilot study from Izmir University of Economics (IUE) for the integration of computational design technology in the undergraduate architectural curricula, based on a workshop series using a top-down teaching strategy.
keywords Basic design; learning outcomes; keyword analysis; visual scripting environment (VSE)
series eCAADe
email
last changed 2022/06/07 07:58

_id ascaad2016_039
id ascaad2016_039
authors Qattan, Wajdy; Stephen Harfield
year 2016
title Understanding Digital Design Techniques in Saudi Architectural Education
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 375-382
summary To understand the current architectural digital design techniques, architects and architecture educators and students need to know that these techniques are the new tool set. These techniques offer architects a new way of thinking and designing and enhance complexity. They will link architecture design with mathematics and computation, and they will generate and improve ideas. Giving that Saudi architectural education is still using traditional manual techniques and using technology only for drawing and montaging, this evokes the fact that there is a need to know and understand these techniques and their importance.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ascaad2016_047
id ascaad2016_047
authors Algeciras-Rodríguez, José
year 2016
title Trained Architectonics
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 461-468
summary The research presented here tests the capacity of artificial-neural-network (ANN) based multi-agent systems to be implemented in architectural design processes. Artificial Intelligence algorithms allow for a new approach to design, taking advantage of its generic functioning to produce meaningful outcomes. Experimentation within this project is based on Self-Organizing Maps (SOMs) and takes advantage of its behavior in topology to produce architectural geometry. SOMs as full stochastic processes involve randomness, uncertainty and unpredictability as key features to deal with during the design process. Following this behavior, SOMs are used to transmit information, which, instead of being copied, is reproduced after a learning (training) process. Pre-existent architectural objects are taken as learning models as they have been considered masterpieces. In this context, by defining the SOM input set, masterpieces become measurement elements and can be used to set a distance to the new element position in a comparatistic space. The characteristics of masterpieces get embedded within the code and are transmitted to 3D objects. SOM produced objects from a population with shared characteristics where the masterpiece position is its probabilistic center point.
series ASCAAD
email
last changed 2017/05/25 13:33

_id caadria2016_383
id caadria2016_383
authors Beorkrem, C.; J. Ellinger, P. Bernstein and A. Hauck
year 2016
title Multivariate Schematic Design Tooling
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 383-394
doi https://doi.org/10.52842/conf.caadria.2016.383
summary This paper will examine the results from a research collaboration between (BIM Software Manufacturer) and (School), whose problem statement focused on supporting robust interoperability by defining goals focused on multivariate conceptual design tools. The collaboration included design faculty, students and software professionals, the latter providing access to a broad range of design simulation tools either commercially available or currently in development. The tools were developed first through case studies and background research, followed by the design and implementation of novel computational methods advancing the architectural design workflow by seeking to create comparative tools which allow a designer to connect multiple data typologies in a single model. With advanced computational tools employed both as standalone resources and embedded in parametric loops, we sought to provide immediate feedback on design goals.
keywords Building information modelling; simulation and prediction; education; optimization; scripting
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2016_819
id caadria2016_819
authors Foulcher, Nicholas C.; Hedda H. Askland and Ning Gu
year 2016
title Disruptions: Impact of Digital Design Technologies on Continuity in Established Design Process Paradigms
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 819-828
doi https://doi.org/10.52842/conf.caadria.2016.819
summary This paper aims to provide a critical understanding of the discipline of architectural education, exploring how digital technology forms part of two Australian architecture schools. Generally accepted as the unbroken and consistent existence or operation of something over a period of time, continuity represents stability without interrup- tion. In the context of architectural design education, continuity aligns almost symbiotically with the design process; a system that facilitates a continuous loop of input, output and feedback for the designer— from defining the brief, collecting information, synthesising and pre- senting a design proposal. Preliminary findings of a larger research study that investigates the role of technology in architecture educa- tion, suggest that cultural patterns of technology adoption and valua- tion exist, valorising particular tools and establishing a framework for design teaching and practice that might disrupt the continuity of stu- dents’ design process. Moreover, the study shows evidence of a dis- ruption of continuity in design school narratives, emphasising the need to rethink design pedagogy and the place of technology herein. Reflecting on these observations, this paper explores the question: when the tools of digital technology challenge the established design process paradigm of an architectural school, how do educators re- spond to such a disruption in continuity?
keywords Digital design technology: student learning; course delivery; perception; phenomenology
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2016_099
id ecaade2016_099
authors Guerritore, Camilla and Duarte, José Pinto
year 2016
title Manifold Façades - A grammar-based approach for the adaptation of office buildings into housing
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 189-198
doi https://doi.org/10.52842/conf.ecaade.2016.2.189
wos WOS:000402064400018
summary This article focuses on the use of shape grammars in rehabilitation processes to transform existing, obsolete building stocks into required building types. It is described how a grammar-based transformation methodology can lead to the development of a design tool that enables the exploration of preliminary design solutions and the evaluation of their impact in terms of massing, functional programme and, eventually, cost and energetic behaviour. The goal is to assess the capacity of an existing building to be adapted to a different use. The article is focused on the transformation grammar. In particular, it is investigated the transformation of "office building types" into "residential building types", aiming at defining a quicker and more informed decision-making process. Future work will be concerned with evaluating the performance of the solutions generated by the grammar.
keywords Rehabilitation; office buildings; adaptive reuse; addition strategy; shape grammars
series eCAADe
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_621885 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002