CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id ascaad2016_056
id ascaad2016_056
authors Dutt, Florina; Subhajit Das
year 2016
title Geospatial Tool Evaluating Job Location Mismatch, Based on Available Workforce and Transit Options - Evaluating property location in a city using large-scale datasets
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 557-566
summary The paper addresses the issue of spatial mismatch of jobs and the accessibility to job locations based on different age, income and industry group. Taking Atlanta as a case study, we developed a geospatial analysis tool enabling developers, the city planning bureau and the residents to identify potential sites of redevelopment with better economic development opportunities. It also aids to find potential location to live with respect to user’s choices for transit options, walkability, job location and proximity to chosen land use. We built our model on a block level in the city, imparting them a score, visualizing the data as a heat map. The metrics to compute the score included proximity to job, proximity to worker’s residence, transit availability, walkability and number of landmark elements near the site. We worked with Longitudinal Employer-Household Dynamics (LEHD) Data along with residence area characteristics (RAC) and work place area characteristic (WAC) data sets, where the total number of data-points was over 3 million. It was challenging for us to optimize computation such that the prototype performs statistical analysis and updates visualization in real time. The research further is prototyped as a web application leveraging Leaflet’s Open Street Maps API and D3 visualization plugin. The research showed that there is a high degree of spatial mismatch between home and job locations with very few jobs with driving distance within 5 -10 miles with limited transit options in Atlanta. Further, it showed that low-earning workers need to travel significantly larger distance for work compared to higher class.
series ASCAAD
email
last changed 2017/05/25 13:34

_id acadia16_280
id acadia16_280
authors Thomsen, Mette Ramsgaard; Tamke, Martin; Karmon, Ayelet; Underwood, Jenny; Gengnagel, Christoph; Stranghoner, Natalie; Uhlemann, Jorg
year 2016
title Knit as bespoke material practice for architecture
doi https://doi.org/10.52842/conf.acadia.2016.280
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 280-289
summary This paper presents an inquiry into how to inform material systems that allow for a high degree of variation and gradation of their material composition. Presenting knit as a particular system of material fabrication, we discuss how new practices that integrate material design into the architectural design chain present new opportunities and challenges for how we understand and create cycles of design, analysis, specification and fabrication. By tracing current interdisciplinary efforts to establish simulation methods for knitted textiles, our aim is to question how these efforts can be understood and extended in the context of knitted architectural textiles. The paper draws on a number of projects that prototype methods for using simulation and sensing as grounds for informing the design of complex, heterogeneous and performative materials. It asks how these methods can allow feedback in the design chain and be interfaced with highly craft-based methods of fabrication.
keywords cross disciplinary collaboration, knitting, light weight simulation, idesign integrated fe simulation, interfacing, sensing, bespoke material fabrication
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2016_026
id ecaade2016_026
authors Agkathidis, Asterios
year 2016
title Implementing Biomorphic Design - Design Methods in Undergraduate Architectural Education
doi https://doi.org/10.52842/conf.ecaade.2016.1.291
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 291-298
summary In continuation to Generative Design Methods, this paper investigates the implementation of Biomorphic Design, supported by computational techniques in undergraduate, architectural studio education. After reviewing the main definitions of biomorphism, organicism and biomimicry synoptically, we will assess the application of a modified biomorphic method on a final year, undergraduate design studio, in order to evaluate its potential and its suitability within the framework of a research led design studio, leading to an RIBA accredited Part I degree. Our research findings based on analysis of design outputs, student performance as well as moderators and external examiners reports initiate a constructive debate about accomplishments and failures of a design methodology which still remains alien to many undergraduate curricula.
wos WOS:000402063700033
keywords CAAD Education; Strategies, Shape Form and Geometry; Generative Design; Design Concepts
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_797
id caadria2016_797
authors Agusti?-Juan, Isolda and Guillaume Habert
year 2016
title An environmental perspective on digital fabrication in architecture and construction
doi https://doi.org/10.52842/conf.caadria.2016.797
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 797-806
summary Digital fabrication processes and technologies are becom- ing an essential part of the modern product manufacturing. As the use of 3D printing grows, potential applications into large scale processes are emerging. The combined methods of computational design and robotic fabrication have demonstrated potential to expand architectur- al design. However, factors such as material use, energy demands, du- rability, GHG emissions and waste production must be recognized as the priorities over the entire life of any architectural project. Given the recent developments at architecture scale, this study aims to investi- gate the environmental consequences and opportunities of digital fab- rication in construction. This paper presents two case studies of classic building elements digitally fabricated. In each case study, the projects were assessed according to the Life Cycle Assessment (LCA) frame- work and compared with conventional construction with similar func- tion. The analysis highlighted the importance of material-efficient de- sign to achieve high environmental benefits in digitally fabricated architecture. The knowledge established in this research should be di- rected to the development of guidelines that help designers to make more sustainable choices in the implementation of digital fabrication in architecture and construction.
keywords Digital fabrication; LCA; sustainability; environment
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2016_631
id caadria2016_631
authors Alambeigi, Pantea; Sipei Zhao, Jane Burry and Xiaojun Qiu
year 2016
title Complex human auditory perception and simulated sound performance prediction
doi https://doi.org/10.52842/conf.caadria.2016.631
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 631-640
summary This paper reports an investigation into the degree of con- sistency between three different methods of sound performance evalu- ation through studying the performance of a built project as a case study. The non-controlled office environment with natural human speech as a source was selected for the subjective experiment and ODEON room acoustics modelling software was applied for digital simulation. The results indicate that although each participant may in- terpret and perceive sound in a particular way, the simulation can pre- dict this complexity to some extent to help architects in designing acoustically better spaces. Also the results imply that architects can make valid comparative evaluations of their designs in an architectur- ally intuitive way, using architectural language. The research acknowledges that complicated engineering approaches to subjective analysis and to controlling the test environment and participants is dif- ficult for architects to comprehend and implement.
keywords Human sound perception; acoustic simulation; experiment and measurement
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2016_011
id ascaad2016_011
authors Alani, Mostafa W.
year 2016
title Morphological Code of Historical Geometric Patterns - The Digital Age of Islamic Architecture
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 85-94
summary This study intervenes in the long-standing paradigm that considers compositional analysis as the key to researching the Islamic Geometric Patterns (IGP). The research argues that the compositional analysis of the geometry is not solely sufficient to investigate the design characteristics of the IGP, and the better way of achieving this emerges through a consideration of the design formalism.
series ASCAAD
email
last changed 2017/05/25 13:13

_id ascaad2016_032
id ascaad2016_032
authors Alhadidi, Suleiman; Justin Mclean, Luchlan Sharah, Isabel Chia, Roger Sam
year 2016
title Multiflight - Creating Interactive Stairs through Positive Technology
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 295-308
summary This paper details a pedagogical project which calls for an improved design performance of the existing built environment through the use of smart technology and data-driven design. The project is an investigation into ways in which to improve the performance of a ‘pre-selected university building’ through the use of a media facade that allows for interactive experiences. Existing problems of the selected building have been identified through observation and research using a rich picture and agile approach. An underutilised staircase was selected as the focus site for a series of computational design and interactive design studies. The brief of this mini-research project aims to encourage more people to use the stairs and create a memorable experience with a technological approach through the application of a site specific interactive media installation. The project is an interactive staircase which utilises LED strips and generative sound. The project features a series of light boxes which are connected to the existing staircase balustrade. Arduino, passive infra-red sensors, and other motion detection sensors were used to allow for light and generative sound interaction with users using visual scripting tools and a generative design platform. Sensing technology was used as a real-time data-gathering device during the site analysis phase as well as an input device for the designed prototype to allow the testing of the data-driven design. This paper details the study and resultant interactive prototypes. It also discusses the exploration of performance based design ideas into design workflows and the integration of sensing tools into the design process. It concludes by identifying possible implications on using the Internet of Things concepts to facilitate the design of interactive architecture.
series ASCAAD
email
last changed 2017/05/25 13:33

_id lasg_whitepapers_2016_292
id lasg_whitepapers_2016_292
authors Andreas Simon, Jan Torpus & Christiane Heibach
year 2016
title Evaluation and Analysis of Experience in Responsive Atmospheric Environments
source Living Architecture Systems Group White Papers 2016 [ISBN 978-1-988366-10-4 (EPUB)] Riverside Architectural Press 2016: Toronto, Canada pp. 292 - 299
summary Living Architecture Systems Group "White Papers 2016" is a dossier produced for the occasion of the Living Architecture Systems Group launch event and symposium hosted on November 4 and 5 at the Sterling Road Studio in Toronto and the University of Waterloo School of Architecture at Cambridge. The "White Papers 2016" presents research contributions from the LASG partners, forming an overview of the partnership and highlighting oppportunities for future collaborations.
keywords design, dissipative methods, design methods, synthetic cognition, neuroscience, metabolism, STEAM, organicism, field work, responsive systems, space, visualizations, sensors, actuators, signal flows, art and technology, new media art, digital art, emerging technologies, citizen building, bioinspiration, performance, paradigms, artificial nature, virtual design, regenerative design, 4DSOUND, spatial sound, biomanufacturing, eskin, delueze, bees, robotics
email
last changed 2019/07/29 14:02

_id acadia16_54
id acadia16_54
authors Andreen, David; Jenning, Petra; Napp, Nils; Petersen, Kirstin
year 2016
title Emergent Structures Assembled by Large Swarms of Simple Robots
doi https://doi.org/10.52842/conf.acadia.2016.054
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 54-61
summary Traditional architecture relies on construction processes that require careful planning and strictly defined outcomes at every stage; yet in nature, millions of relatively simple social insects collectively build large complex nests without any global coordination or blueprint. Here, we present a testbed designed to explore how emergent structures can be assembled using swarms of active robots manipulating passive building blocks in two dimensions. The robot swarm is based on the toy “bristlebot”; a simple vibrating motor mounted on top of bristles to propel the body forward. Since shape largely determines the details of physical interactions, the robot behavior is altered by carefully designing its geometry instead of uploading a digital program. Through this mechanical programming, we plan to investigate how to tune emergent structural properties such as the size and temporal stability of assemblies. Alongside a physical testbed with 200 robots, this work involves comprehensive simulation and analysis tools. This simple, reliable platform will help provide better insight on how to coordinate large swarms of robots to construct functional structures.
keywords emergent structures, mechanical intelligence, swarm robotics
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id sigradi2016_450
id sigradi2016_450
authors Araujo, André L.; Celani, Gabriela
year 2016
title Exploring Weaire-Phelan through Cellular Automata: A proposal for a structural variance-producing engine
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.710-714
summary Complex forms and structures have always been highly valued in architecture, even much before the development of computers. Many architects and engineers have strived to develop structures that look very complex but at the same time are relatively simple to understand, calculate and build. A good example of this approach is the Beijing National Aquatics Centre design for the 2008 Olympic Games, also known as the Water Cube. This paper presents a proposal for a structural variance-producing engine using cellular automata (CA) techniques to produce complex structures based on Weaire-Phelan geometry. In other words, this research evaluates how generative and parametric design can be integrated with structural performance in order to enhance design flexibility and control in different stages of the design process. The method we propose was built in three groups of procedures: 1) we developed a method to generate several fits for the two Weaire-Phelan polyhedrons using CA computation techniques; 2) through the finite elements method, we codify the structural analysis outcomes to use them as inputs for the CA algorithm; 3) evaluation: we propose a framework to compare how the final outcomes deviate for the good solutions in terms of structural performance and rationalization of components. We are interested in knowing how the combination of the procedures could contribute to produce complex structures that are at the same time certain rational. The system developed allows the structural analysis of structured automatically generated by a generative system. However, some efficient solutions from the structural performance point of view do not necessarily represent a rational solution from the feasibility aspects.
keywords Structural design; Complex structures; Bottom-up design approach
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_013
id caadria2016_013
authors Aschwanden, Gideon D.P.A.
year 2016
title Neighbourhood detection with analytical tools
doi https://doi.org/10.52842/conf.caadria.2016.013
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 13-22
summary The increasing population size of cities makes the urban fabric ever more complex and more disintegrated into smaller areas, called neighbourhoods. This project applies methods from geoscience and software engineering to the process of identification of those neighbourhoods. Neighbourhoods, by nature, are defined by connec- tivity, centrality and similarity. Transport and geospatial datasets are used to detect the characteristics of places. An unsupervised learning algorithm is then applied to sort places according to their characteris- tics and detect areas with similar make up: the neighbourhood. The at- tributes can be static like land use or space syntax attributes as well as dynamic like transportation patterns over the course of a day. An un- supervised learning algorithm called Self Organizing Map is applied to project this high dimensional space constituting of places and their attributes to a two dimensional space where proximity is similarity and patterns can be detected – the neighbourhoods. To summarize, the proposed approach yields interesting insights into the structure of the urban fabric generated by human movement, interactions and the built environment. The approach represents a quantitative approach to ur- ban analysis. It reveals that the city is not a polychotomy of neigh- bourhoods but that neighbourhoods overlap and don’t have a sharp edge.
keywords Data analytics; urban; learning algorithms; neighbourhood delineation
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2016_058
id ecaade2016_058
authors Aschwanden, Gideon
year 2016
title Big Data for Urban Design - The impact of centrality measures on business success
doi https://doi.org/10.52842/conf.ecaade.2016.2.457
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 457-462
summary This paper investigates the role of spatial parameters in relation to the economic dynamic embedded in the urban fabric. The key element explored in this study is the role of the urban configuration and accessibility on the success of different business sectors in Switzerland.The underlying hypothesis is that economic markets are constant forces of change influencing the development of cities and functions on all scales. Markets are institutions that reduce people's choices based on a myriad of factors to a single number, the price. Accessibility is a resource for each business that yields multiple values of benefits and transactions in terms of economic properties. This project explores the interaction of multiple measures of accessibility, calculated by Space Syntax analysis, with the success of different markets represented by employment by business sector. 828548 business locations and 44 spatial measures were used to derive associations between them. The results show that the measure of 'Choice' correlates highly for smaller radii and 'Integration' for larger radii with the total number of jobs. The result also shows each sector has a specific set of accessibility measures that allows them to thrive.
wos WOS:000402064400045
keywords Big Data; Centrality; Economy; Accessibility; Urban Design
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_343
id caadria2016_343
authors Asriana, Nova and Aswin Indraprastha
year 2016
title Making Sense of Agent-based Simulation: Developing Design Strategy for Pedestrian-centric Urban Space
doi https://doi.org/10.52842/conf.caadria.2016.343
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 343-352
summary This study investigates the relationships of field observa- tion, multi-agent simulation and space-syntax theory in spatial config- uration for developing design strategy for a case study, a tourist hub area in Musi Riverside, Palembang. Having such potential advantage and to tackle existing social and urban issues, our study developed a design approach based on multi-agent simulation enhanced by space syntax theory. The goal of this study is a deep understanding of multi agent simulation through mechanism of validation using field obser- vation and by taking into account the existing urban features. The purpose is to develop design strategy of pedestrian-centric urban space to be functioned as a tourist hub based on computational modelling. Following the paths result of pedestrian flow by multi-agents simula- tion, we elaborated the analysis of facility programming by means of Space Syntax theory. It shows the ranking of facility programs based on their relative connectivity and integration. By merging this result, it assembles programs and their circulation spaces by means of compu- tational simulation. Experimenting in both fields show a novel ap- proach for pedestrian-centric design in urban scale, particularly since behavioural models rarely used in early stage of design process. It shows that multi-agent simulation should be coupled with field obser- vation.
keywords Multi-agents simulation; network analysis; Space Syntax theory; design strategy; urban space
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2016_829
id caadria2016_829
authors Austin, Matthew and Wajdy Qattan
year 2016
title I’m a visual thinker: rethinking algorithmic education for architectural design
doi https://doi.org/10.52842/conf.caadria.2016.829
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 829-838
summary The representational and visual aspects of architectural de- sign education cause certain pedagogical stresses in student’s capaci- ties to learn how to code, and this paper will serve as a critique of the current state of algorithmic pedagogy in architectural education. The paper will suggest that algorithmic curriculum should not frame code as ‘a design tool’, but as something to be designed in its own right; the writing of the code is the ‘design brief’ itself and not something addi- tional to an architectural design brief. The paper will argue for an ar- chitecture-less educational environment that focuses on computational competencies such as logic, loops and lists along with building a strong analytical basis for students’ understanding of programming and digital geometries.
keywords Pedagogy; algorithmic; programming; education
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2016_055
id ascaad2016_055
authors Barbouche, Rached
year 2016
title Modeling Decorative Forms and Design Knowledge
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 547-556
summary Form analysis in architecture is a method to increase knowledge of human made objects, by observation and description. Modeling attempts to identify characteristics carried by these objects and the rules of their production. Two approaches are relevant here. The first concerns the analysis and modeling of an object corpus (decors worn by windows), belonging to colonial architecture of Tunis from the late 19th to early 20th century and the second deals from a GIS, storing and mapping the forms variation, taken on the analyzed objects. The set allows developing tools for decision support, used not only in the description of a corpus, but also ultimately to lead to the architectural and stylistic classification of the city buildings.
series ASCAAD
email
last changed 2017/05/25 13:34

_id acadia16_432
id acadia16_432
authors Beaman, Michael Leighton
year 2016
title Landscapes After The Bifurcation of Nature: Models for Speculative Landformations
doi https://doi.org/10.52842/conf.acadia.2016.432
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 432-439
summary Landformations have not historically been the purview of design production or intervention. Whether it is the spatial extensions in which they emerge, the temporal extensions in which they operate, the complexities of their generative and sustaining processes, or a cultural and institutional deference to a notion of natural processes, designers as individuals or design as a discipline has not treated landformation as an area of design inquiry. But the inability to grasp nature fully has not stopped geological-scale manipulation by humans. In fact, anthropogenic activity is responsible for the re-formation of more of the Earth’s surface than all other agents combined. And yet as designers we often disregard this transformation as a design problem, precisely because it eludes the artifices of information visualization employed by designers. This paper examines ongoing research into the generation of speculative landformations through an analysis of underlying geological and anthropogenic processes as the quantitative basis for creating generative computational models (figure 1). The Speculative Landformations Project posits human geological-scale activity as a design problem by expanding the operability and agency of environmental design practice through hybrid human/digital computations.
keywords design decision-making, simulation and design optimization, responsive urban and landscape systems, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id sigradi2016_672
id sigradi2016_672
authors Bianchi, Alejandra S.; Tripaldi, Gustavo A.; Pintos, Gladis E.; Iturriaga, José R.; Vargas, Sergio D.
year 2016
title Impacto del mundo digital sobre las representaciones gráficas del dise?o arquitectónico. La experiencia en el Taller Virtual de Arquitectura IV-UPC-UNNE [Digital world impact over the graphics representations of the architectural design. The experience in the virtual workshop of architecture IV-UPC-UNNE]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.123-128
summary The present work explains the preliminary results of the Research project that the authors are working on to know the way in which the architecture students of the UNNE represent the architectural object with analogues and digital methods. It wants to express the impact of the digital world over the representations through cross sections in five moments of their formation (beginner’s level, first, second, fourth and sixth years) in the school calendars 2013 to 2016. This qualitative research, descriptive and explanatory, expands in the virtual workshop, an innovative and unique experience of a collaborative workshop between the subjects of Architecture IV of different Universities.
keywords Graphic Representation, Architectural Design, Virtual Workshop
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_098
id ecaade2016_098
authors Bia³kowski, Sebastian
year 2016
title Structural Optimisation Methods as a New Toolset for Architects
doi https://doi.org/10.52842/conf.ecaade.2016.2.255
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 255-264
summary The paper focuses on possibilities of already known engineering procedures such as Finite Element Method or Topology Optimisation for effective implementation in architectural design process. The existing attempts of complex engineering algorithms implementation, as a form finding approach will be discussed. The review of architectural approaches utilising engineering methods will be supplemented by the author's own solution for that particular problem. By intersecting architectural form evaluation with engineering analysis complemented by optimisation algorithms, the new quality of contemporary architecture design process may appears.
wos WOS:000402064400025
keywords topology optimization; design support tools; complex geometries; finite element method; CUDA
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2016_022
id ascaad2016_022
authors Birge, David; Sneha Mandhan and Alan Berger
year 2016
title Dynamic Simulation of Neighborhood Water Use - A case study of Emirati neighborhoods in Abu Dhabi, UAE
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 197-206
summary Being located in a hot, humid and arid bioregion, as well as having a unique religious and social context, the Gulf Cooperation Council cities pose significant challenges to the achievement of sustainable urban development. Using native neighborhoods in Abu Dhabi as a case study, this ongoing research aims to develop a design methodology which utilizes both qualitative and quantitative analysis towards the holistic, feedback driven design of new neighborhood typologies for the native population. This paper focuses on the methodology and application of a water use module which measures neighborhood scale indoor and outdoor water use, an area of simulation critical to developing sustainable neighborhoods for Arab cities, yet underrepresented within the literature. The water module comprises one part of a larger toolkit that aims to measure both environmental sustainability as well as social and cultural factors unique to the context of Abu Dhabi and the gulf region.
series ASCAAD
email
last changed 2017/05/25 13:31

_id sigradi2016_781
id sigradi2016_781
authors Cardellino, Paula; Araneda, Claudio
year 2016
title Reconfiguración del aula escolar – un análisis sensorio de la interacción alumno-maestro [Reconfiguration of the classroom environment - A sensorial analysis of the teacher - pupil interaction]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.165-169
summary This paper presents a strategy for experiential analysis in the traditional classroom environment to determine architectural features to contribute to the understanding and improvement of the pupil – teacher interaction. The methodology includes the analysis of the following topical propositions: visual, proxemic and kinetic in four classroom environments. The conclusions suggest that this hybrid methodological corpus allows for the identification and quantification of significant perceptual variations in relation to the proportion of the classroom space. It also emphasizes the importance of integrating aspects of sensory based analysis in the architectural design process to ensure quality of relations in the classroom.
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_196093 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002