CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 622

_id acadia16_54
id acadia16_54
authors Andreen, David; Jenning, Petra; Napp, Nils; Petersen, Kirstin
year 2016
title Emergent Structures Assembled by Large Swarms of Simple Robots
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 54-61
doi https://doi.org/10.52842/conf.acadia.2016.054
summary Traditional architecture relies on construction processes that require careful planning and strictly defined outcomes at every stage; yet in nature, millions of relatively simple social insects collectively build large complex nests without any global coordination or blueprint. Here, we present a testbed designed to explore how emergent structures can be assembled using swarms of active robots manipulating passive building blocks in two dimensions. The robot swarm is based on the toy “bristlebot”; a simple vibrating motor mounted on top of bristles to propel the body forward. Since shape largely determines the details of physical interactions, the robot behavior is altered by carefully designing its geometry instead of uploading a digital program. Through this mechanical programming, we plan to investigate how to tune emergent structural properties such as the size and temporal stability of assemblies. Alongside a physical testbed with 200 robots, this work involves comprehensive simulation and analysis tools. This simple, reliable platform will help provide better insight on how to coordinate large swarms of robots to construct functional structures.
keywords emergent structures, mechanical intelligence, swarm robotics
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id caadria2016_343
id caadria2016_343
authors Asriana, Nova and Aswin Indraprastha
year 2016
title Making Sense of Agent-based Simulation: Developing Design Strategy for Pedestrian-centric Urban Space
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 343-352
doi https://doi.org/10.52842/conf.caadria.2016.343
summary This study investigates the relationships of field observa- tion, multi-agent simulation and space-syntax theory in spatial config- uration for developing design strategy for a case study, a tourist hub area in Musi Riverside, Palembang. Having such potential advantage and to tackle existing social and urban issues, our study developed a design approach based on multi-agent simulation enhanced by space syntax theory. The goal of this study is a deep understanding of multi agent simulation through mechanism of validation using field obser- vation and by taking into account the existing urban features. The purpose is to develop design strategy of pedestrian-centric urban space to be functioned as a tourist hub based on computational modelling. Following the paths result of pedestrian flow by multi-agents simula- tion, we elaborated the analysis of facility programming by means of Space Syntax theory. It shows the ranking of facility programs based on their relative connectivity and integration. By merging this result, it assembles programs and their circulation spaces by means of compu- tational simulation. Experimenting in both fields show a novel ap- proach for pedestrian-centric design in urban scale, particularly since behavioural models rarely used in early stage of design process. It shows that multi-agent simulation should be coupled with field obser- vation.
keywords Multi-agents simulation; network analysis; Space Syntax theory; design strategy; urban space
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2018_165
id ecaade2018_165
authors Fisher-Gewirtzman, Dafna and Bruchim, Elad
year 2018
title Considering Variant Movement Velocities on the 3D Dynamic Visibility Analysis (DVA) - Simulating the perception of urban users: pedestrians, cyclists and car drivers.
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 569-576
doi https://doi.org/10.52842/conf.ecaade.2018.2.569
summary The objective of this research project is to simulate and evaluate the effect of movement velocity and cognitive abilities on the visual perception of three groups of urban users: pedestrians, cyclists and car drivers.The simulation and analysis is based on the 3D Dynamic Visual Analysis (DVA) (Fisher-Gewirtzman, 2017). This visibility analysis model was developed in the Rhinoceros and Grasshopper software environments and is based on the conceptual model presented in Fisher-Gewirtzman (2016): a 3D Line of Sight (LOS) visibility analysis, taking into account the integrated effect of the 3D geometry of the environment and the variant elements of the view (such as the sky, trees and vegetation, buildings and building types, roads, water etc.). In this paper, the current advancement of the existing model considers the visual perception of human users employing three types of movement in the urban environment--pedestrians, cyclists and drivers--is explored.We expect this research project to exemplify the contribution of such a quantification and evaluation model to evaluating existing urban structures, and for supporting future human perception-based urban design processes.
keywords visibility analysis and simulation; predicting perception of space; movement in the urban environment; pedestrians; cyclists; car drivers
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia16_12
id acadia16_12
authors Gerber, David Jason; Pantazis, Evangelos
year 2016
title A Multi-Agent System for Facade Design: A design methodology for Design Exploration, Analysis and Simulated Robotic Fabrication
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 12-23
doi https://doi.org/10.52842/conf.acadia.2016.012
summary For contemporary design practices, there still remains a disconnect between design tools used for early stage design exploration and performance analysis, and those used for fabrication and construction of complex tectonic architectural systems. The research brings forward downstream fabrication constraints into the up-stream design exploration and design decision making. This paper addresses the issues of developing an integrated digital design work-flow and details a research framework for the incorporation of environmental performance into a robotic fabrication for early stage design exploration and generation of intricate and complex alternative façade designs. The method allows the user to import a design surface, define design parameters, set a number of environmental performance objectives, and then simulate and select a robotic construction strategy. Based on these inputs, design alternatives are generated and evaluated in terms of their performance criteria in consideration of their robotically simulated constructability. In order to validate the proposed framework, an experimental case study of office building façade designs that are generatively created from a multi-agent system for design methodology is design explored and evaluated. Initial results define a heuristic function for improving simulated robotic constructability and illustrate the functionality of our prototype. Project limitations and future research steps are then discussed.
keywords generative design, multi-objective design optimization, robotic fabrication, simulation, design performance, design decision making
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id cf2017_111
id cf2017_111
authors Kepczynska-Walczak, Anetta; Pietrzak, Anna
year 2017
title An Experimental Methodology for Urban Morphology Analysis
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 111.
summary The paper presents results of a research conducted in 2015 and 2016 at Lodz University of Technology. It proposes a purpose and context fit approach towards the automation of urban data generation based on GIS tools and New Urbanism typologies. First, background studies of methods applied in urban morphology analysis are revealed. Form-Based Code planning, and subsequently Transect-Based Code are taken into account. Then, selected examples from literature are described and discussed. Finally, the research study is presented and the outcomes compared with more traditional methodology.
keywords GIS, Urban morphology, Spatial analysis, Decision support systems, Urban design, Data analytics, Modelling and simulation
series CAAD Futures
email
last changed 2017/12/01 14:37

_id acadia16_270
id acadia16_270
authors Korner, Axel; Mader, Anja; Saffarian, Saman; Knippers, Jan
year 2016
title Bio-Inspired Kinetic Curved-Line Folding for Architectural Applications
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp.270-279
doi https://doi.org/10.52842/conf.acadia.2016.270
summary This paper discusses the development of a bio-inspired compliant mechanism for architectural applications and explains the methodology of investigating movements found in nature. This includes the investigation of biological compliant mechanisms, abstraction, and technical applications using computational tools such as finite element analysis (FEA). To demonstrate the possibilities for building envelopes of complex geometries, procedures are presented to translate and alter the disclosed principles to be applicable to complex architectural geometries. The development of the kinetic façade shading device flectofold, based on the biological role-model Aldrovanda vesiculosa, is used to demonstrate the process. The following paper shows results of FEA simulations of kinetic curved-line folding mechanisms with pneumatic actuation and provides information about the relationship between varying geometric properties (e.g. curved-line fold radii) and multiple performance metrics, such as required actuation force and structural stability.
keywords composite forming process, form-finding, biomimetics and biological design, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id acadia16_62
id acadia16_62
authors Rusenova, Gergana; Dierichs, Karola; Baharlou, Ehsan; Menges, Achim
year 2016
title Feedback- and Data-driven Design for Aggregate Architectures: Analyses of Data Collections for Physical and Numerical Prototypes of Designed Granular Materials
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp.62-72
doi https://doi.org/10.52842/conf.acadia.2016.062
summary This project contributes to the investigations in the field of aggregate architectures by linking two research areas: the numerical simulation of aggregate formations, and a concept for an online-controlled pneumatic formwork system. This paper introduces a novel approach for constructing with designed particles based on a feedback process. The overall aim was to investigate the capacity of aggregates as an architectural material system, which create emergent spatial formations. Initially the particles´ micro-mechanical behavior and the fragile stability of the formations were analyzed using numerical simulations. Based on this, an online-controlled inflatable formwork system was developed. The formwork was designed to react to the actual stability state of an aggregate formation; for this, a statistical set of simulation data was gathered, which directly informed the physical system. This overall concept was proven and verified in a one-to-one scaled physical model. The methods developed within this research provide a first set of baselines for comparison between the behavior of simulated and physical designed granular materials.
keywords simulations, designed particles, feedback-driven design, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2016_487
id caadria2016_487
authors Shin, Jihye; Inhan Kim and Jungsik Choi
year 2016
title Development of the Integrated Management Environment of BIM Property Information for BIM-based Sustainable Design
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 487-496
doi https://doi.org/10.52842/conf.caadria.2016.487
summary With the growing responsibility for the environmental load of building, the demand for sustainable building is increasing. Sus- tainable design requires an enormous amount of information, and most of this information can be captured by Building Information Modelling (BIM). In this context, the management of information in a BIM object as a container for exchanging information is necessary for analyzing a building’s sustainability. However, there are problems in generating a reliable sustainability simulation model from BIM, such as the inefficiency of required information and low accessibility to a proper BIM object. In order to provide a new approach for generating a reliable sustainability simulation model in a BIM-based design pro- cess, this study suggests the integrated management environment of the property information of a BIM object.
keywords Building information modelling (BIM); BIM object; energy analysis; sustainable design; property information
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia16_470
id acadia16_470
authors Sollazzo, Aldo; Baseta, Efilena; Chronis, Angelos
year 2016
title Symbiotic Associations
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 470-477
doi https://doi.org/10.52842/conf.acadia.2016.470
summary Soil contamination poses a series of important health issues, following years of neglect, constant industrialization, and unsustainable agriculture. It is estimated that 30% of the total cultivated soil in the world will convert to degraded land by 2020 (Rashid et al. 2016). Finding suitable treatment technologies to clean up contaminated water and soil is not trivial, and although technological solutions are sought, many are both resource-expensive and potentially equally unsustainable in long term. Bacteria and fungi have proved efficient in contributing to the bioavailability of nutrients and in aggregating formation in degraded soils (Rashid et al. 2016). Our research aims to explore the possible implementation of physical computing, computational analysis, and digital fabrication techniques in the design and optimization of an efficient soil remediation strategy using mycelium. The study presented here is a first step towards an overarching methodology for the development of an automated soil decontamination process, using an optimized bio-cell fungus seed that can be remotely populated using aerial transportation. The presented study focuses on the development of a methodology for capturing and modeling the growth of the mycelium fungus using photogrammetry-based 3D scanning and computational analysis techniques.
keywords computational design, photogrammetry, simulation, mycelium, 3d scanning, growth strategies
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id acadia16_280
id acadia16_280
authors Thomsen, Mette Ramsgaard; Tamke, Martin; Karmon, Ayelet; Underwood, Jenny; Gengnagel, Christoph; Stranghoner, Natalie; Uhlemann, Jorg
year 2016
title Knit as bespoke material practice for architecture
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 280-289
doi https://doi.org/10.52842/conf.acadia.2016.280
summary This paper presents an inquiry into how to inform material systems that allow for a high degree of variation and gradation of their material composition. Presenting knit as a particular system of material fabrication, we discuss how new practices that integrate material design into the architectural design chain present new opportunities and challenges for how we understand and create cycles of design, analysis, specification and fabrication. By tracing current interdisciplinary efforts to establish simulation methods for knitted textiles, our aim is to question how these efforts can be understood and extended in the context of knitted architectural textiles. The paper draws on a number of projects that prototype methods for using simulation and sensing as grounds for informing the design of complex, heterogeneous and performative materials. It asks how these methods can allow feedback in the design chain and be interfaced with highly craft-based methods of fabrication.
keywords cross disciplinary collaboration, knitting, light weight simulation, idesign integrated fe simulation, interfacing, sensing, bespoke material fabrication
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2021_173
id caadria2021_173
authors Xu, Wenzhao, Huang, Xiaoran and Kimm, Geoff
year 2021
title Tear Down the Fences: Developing ABM Informed Design Strategies for Ungating Closed Residential Communities - Developing ABM informed design strategies for ungating closed residential communities
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 467-477
doi https://doi.org/10.52842/conf.caadria.2021.2.467
summary Embedded in Chinas urbanization process, the growth of gated residential estates has gradually induced severance of urban spaces, resulting in an underutilization of public amenities, a lack of walkable permeability, and congestion of traffic. Responding to these negative effects on urban development, the CPC has released a guideline in February 2016 to prohibit the development of any new closed residential areas in principle and to advocate ungated communities. In this paper, we utilized ABM simulation analysis to test different degrees of openness, the position of new entrances/openness, and pedestrian network typologies, aiming to explore feasible strategies to accommodate the new urban design agenda. A series of typical gated compounds in Beijing were selected for comparative case studies, conducted under different degrees of openness of each case and under diverse ungating modes between cases. On the basis of these analyses, we summarized a sequence of pedestrian-centric design strategies, seeking to increase the communities permeability and walkability by suggesting alternative internal and external road network design options for Beijing urban renewal. By integrating quantified simulation into the empirical method of urban design, our research can positively assist and inform urban practitioners to propose a more sustainable urbanity in the future.
keywords Gated community; agent-based modeling; pedestrian simulation; computer-aided urban design; road network optimization
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2016_026
id ecaade2016_026
authors Agkathidis, Asterios
year 2016
title Implementing Biomorphic Design - Design Methods in Undergraduate Architectural Education
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 291-298
doi https://doi.org/10.52842/conf.ecaade.2016.1.291
wos WOS:000402063700033
summary In continuation to Generative Design Methods, this paper investigates the implementation of Biomorphic Design, supported by computational techniques in undergraduate, architectural studio education. After reviewing the main definitions of biomorphism, organicism and biomimicry synoptically, we will assess the application of a modified biomorphic method on a final year, undergraduate design studio, in order to evaluate its potential and its suitability within the framework of a research led design studio, leading to an RIBA accredited Part I degree. Our research findings based on analysis of design outputs, student performance as well as moderators and external examiners reports initiate a constructive debate about accomplishments and failures of a design methodology which still remains alien to many undergraduate curricula.
keywords CAAD Education; Strategies, Shape Form and Geometry; Generative Design; Design Concepts
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_631
id caadria2016_631
authors Alambeigi, Pantea; Sipei Zhao, Jane Burry and Xiaojun Qiu
year 2016
title Complex human auditory perception and simulated sound performance prediction
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 631-640
doi https://doi.org/10.52842/conf.caadria.2016.631
summary This paper reports an investigation into the degree of con- sistency between three different methods of sound performance evalu- ation through studying the performance of a built project as a case study. The non-controlled office environment with natural human speech as a source was selected for the subjective experiment and ODEON room acoustics modelling software was applied for digital simulation. The results indicate that although each participant may in- terpret and perceive sound in a particular way, the simulation can pre- dict this complexity to some extent to help architects in designing acoustically better spaces. Also the results imply that architects can make valid comparative evaluations of their designs in an architectur- ally intuitive way, using architectural language. The research acknowledges that complicated engineering approaches to subjective analysis and to controlling the test environment and participants is dif- ficult for architects to comprehend and implement.
keywords Human sound perception; acoustic simulation; experiment and measurement
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2016_032
id ascaad2016_032
authors Alhadidi, Suleiman; Justin Mclean, Luchlan Sharah, Isabel Chia, Roger Sam
year 2016
title Multiflight - Creating Interactive Stairs through Positive Technology
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 295-308
summary This paper details a pedagogical project which calls for an improved design performance of the existing built environment through the use of smart technology and data-driven design. The project is an investigation into ways in which to improve the performance of a ‘pre-selected university building’ through the use of a media facade that allows for interactive experiences. Existing problems of the selected building have been identified through observation and research using a rich picture and agile approach. An underutilised staircase was selected as the focus site for a series of computational design and interactive design studies. The brief of this mini-research project aims to encourage more people to use the stairs and create a memorable experience with a technological approach through the application of a site specific interactive media installation. The project is an interactive staircase which utilises LED strips and generative sound. The project features a series of light boxes which are connected to the existing staircase balustrade. Arduino, passive infra-red sensors, and other motion detection sensors were used to allow for light and generative sound interaction with users using visual scripting tools and a generative design platform. Sensing technology was used as a real-time data-gathering device during the site analysis phase as well as an input device for the designed prototype to allow the testing of the data-driven design. This paper details the study and resultant interactive prototypes. It also discusses the exploration of performance based design ideas into design workflows and the integration of sensing tools into the design process. It concludes by identifying possible implications on using the Internet of Things concepts to facilitate the design of interactive architecture.
series ASCAAD
email
last changed 2017/05/25 13:33

_id sigradi2016_450
id sigradi2016_450
authors Araujo, André L.; Celani, Gabriela
year 2016
title Exploring Weaire-Phelan through Cellular Automata: A proposal for a structural variance-producing engine
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.710-714
summary Complex forms and structures have always been highly valued in architecture, even much before the development of computers. Many architects and engineers have strived to develop structures that look very complex but at the same time are relatively simple to understand, calculate and build. A good example of this approach is the Beijing National Aquatics Centre design for the 2008 Olympic Games, also known as the Water Cube. This paper presents a proposal for a structural variance-producing engine using cellular automata (CA) techniques to produce complex structures based on Weaire-Phelan geometry. In other words, this research evaluates how generative and parametric design can be integrated with structural performance in order to enhance design flexibility and control in different stages of the design process. The method we propose was built in three groups of procedures: 1) we developed a method to generate several fits for the two Weaire-Phelan polyhedrons using CA computation techniques; 2) through the finite elements method, we codify the structural analysis outcomes to use them as inputs for the CA algorithm; 3) evaluation: we propose a framework to compare how the final outcomes deviate for the good solutions in terms of structural performance and rationalization of components. We are interested in knowing how the combination of the procedures could contribute to produce complex structures that are at the same time certain rational. The system developed allows the structural analysis of structured automatically generated by a generative system. However, some efficient solutions from the structural performance point of view do not necessarily represent a rational solution from the feasibility aspects.
keywords Structural design; Complex structures; Bottom-up design approach
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_058
id ecaade2016_058
authors Aschwanden, Gideon
year 2016
title Big Data for Urban Design - The impact of centrality measures on business success
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 457-462
doi https://doi.org/10.52842/conf.ecaade.2016.2.457
wos WOS:000402064400045
summary This paper investigates the role of spatial parameters in relation to the economic dynamic embedded in the urban fabric. The key element explored in this study is the role of the urban configuration and accessibility on the success of different business sectors in Switzerland.The underlying hypothesis is that economic markets are constant forces of change influencing the development of cities and functions on all scales. Markets are institutions that reduce people's choices based on a myriad of factors to a single number, the price. Accessibility is a resource for each business that yields multiple values of benefits and transactions in terms of economic properties. This project explores the interaction of multiple measures of accessibility, calculated by Space Syntax analysis, with the success of different markets represented by employment by business sector. 828548 business locations and 44 spatial measures were used to derive associations between them. The results show that the measure of 'Choice' correlates highly for smaller radii and 'Integration' for larger radii with the total number of jobs. The result also shows each sector has a specific set of accessibility measures that allows them to thrive.
keywords Big Data; Centrality; Economy; Accessibility; Urban Design
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2016_188
id ecaade2016_188
authors Bingöl, Cemal Koray and Çolako?lu, Birgül
year 2016
title Agent-Based Urban Growth Simulation - A Case Study on Istanbul
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 41-48
doi https://doi.org/10.52842/conf.ecaade.2016.2.041
wos WOS:000402064400003
summary This study aims to create a simulation model for urban growth with agent-based modeling. The model is based on the theoretical research of Michael Batty on urban growth simulations. The study explains how the theoretical approach applied in the model with the parameters. The model in this study is created in an open-source API called 'Processing' and the simulations executed through the parameters in the study. The results of the simulation are compared with each other to find optimal parameters fits in the theoretical approach. Parameters are tested on an existing urban settlement map, which Is Istanbul. The results of Istanbul simulation are compared with existing density and urban sprawl maps of Istanbul and discussed for further studies.
keywords agent-based design; urban growth; urban simulation
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2016_022
id ascaad2016_022
authors Birge, David; Sneha Mandhan and Alan Berger
year 2016
title Dynamic Simulation of Neighborhood Water Use - A case study of Emirati neighborhoods in Abu Dhabi, UAE
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 197-206
summary Being located in a hot, humid and arid bioregion, as well as having a unique religious and social context, the Gulf Cooperation Council cities pose significant challenges to the achievement of sustainable urban development. Using native neighborhoods in Abu Dhabi as a case study, this ongoing research aims to develop a design methodology which utilizes both qualitative and quantitative analysis towards the holistic, feedback driven design of new neighborhood typologies for the native population. This paper focuses on the methodology and application of a water use module which measures neighborhood scale indoor and outdoor water use, an area of simulation critical to developing sustainable neighborhoods for Arab cities, yet underrepresented within the literature. The water module comprises one part of a larger toolkit that aims to measure both environmental sustainability as well as social and cultural factors unique to the context of Abu Dhabi and the gulf region.
series ASCAAD
email
last changed 2017/05/25 13:31

_id sigradi2016_724
id sigradi2016_724
authors Bomfim, Carlos Alberto Andrade; Lisboa, Bruno Teixeira Wildberger; Matos, Pedro Cesar Correia de
year 2016
title Gest?o de Obras com BIM – Uma nova era para o setor da Construç?o Civil [Construction Management with BIM – A new era for the Construction sector]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.556-560
summary The update in the design process associated with a constant search for efficient construction methods, budgets and actual schedules, passes through common terms the planning engineering and constructability, rationalization and integration. This article is based on literature review on the topic and interview with the experience of BIM core of a company in Brazil. BIM involves more than just 3D modeling and is also commonly defined into more dimensions, such as 4D (time), 5D (cost), 6D (the built - operation) and 7D (sustainability). The use of BIM can now be considered a reality that will promote changes to Construction.
keywords Project Management; Construction Management; Digital Modeling; Design Process; Simulation
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_096
id ecaade2016_096
authors Chen, Nai Chun, Nagakura, Takehiko and Larson, Kent
year 2016
title Social Media as Complementary Tool to Evaluate Cities - Data Mining Innovation Districts in Boston
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 447-456
doi https://doi.org/10.52842/conf.ecaade.2016.2.447
wos WOS:000402064400044
summary High tech industries are playing an important role in the economic development in the United States. While some cities are shrinking, the "innovation" cities are growing. The attributes that cause some cities to successfully become innovative is a very relevant 21st century topic and will be investigated here.Previous work conduct city analysis through conventional government GIS or census data but such analyses do not answer questions about the perception of citizens inhabiting the city, and the activities they conduct. The novelty of this current project is to make use of large-scale bottom-up data available from social media. Several social media sources-CrunchBase, Twitter, Yelp, and Flickr- were data mined pertaining to four innovation districts in Boston. We found that the success of innovation districts in Boston were correlated with several important variables: the most successful districts tended to occur near research institutions, in very "mixed use" areas, and were unexpectedly not correlated with land and labor prices, unlike technology districts in the past. Based on our study, we make recommendations for the urban design that cities should put in place to increase the potential for "innovation".
keywords Smart Cities; Social Media; Innovation District; Spatial Analysis; Data Mining; Natural Language Processing
series eCAADe
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_804129 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002