CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 614

_id caadria2016_073
id caadria2016_073
authors Park, Seokyung and Jin-Kook Lee
year 2016
title Definition of a Domain-specific Language to Represent Korea Building Act Sentences as an Explicit Computable Form
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 73-82
doi https://doi.org/10.52842/conf.caadria.2016.073
summary This paper aims to define the syntax of KBimCode Lan- guage as a domain-specific computer language to represent Korea Building Act sentences. KBimCode Language represents building permit requirements in Korea Building Act as explicit computable rules. KBimCode aims to accomplish the neutral and standardized way of rule-making in an easy-to-use syntax. This paper introduces the approach of language design and definition. The main concerns handled in the paper are: 1) features of building permit-related regula- tions in Korea Building Act are reflected in the strategy for the lexical and syntactic design of KBimCode Language; 2) specification of KBimCode based on the context-free EBNF notation is introduced; and evaluation of the language definition is performed. KBimCode is an ongoing project. Together with newly developed rule checking ap- plications, KBimCode will establish automated design quality assess- ment system in Korea.
keywords Automated building permit system; automated design assessment; rule checking; rule-making; domain-specific language
series CAADRIA
email
last changed 2022/06/07 08:00

_id ijac201614105
id ijac201614105
authors Ahlquist, Sean
year 2016
title Sensory material architectures: Concepts and methodologies for spatial tectonics and tactile responsivity in knitted textile hybrid structures
source International Journal of Architectural Computing vol. 14 - no. 1, 63-82
summary As the knowledge of material computation advances, continuing the seamless integration of design and fabrication, questions beyond materialization can be addressed with a focus on sensing, feedback, and engagement as critical factors of design exploration. This article will discuss a series of prototypes, design methodologies, and technologies that articulate a textile’s micro-architecture, at the scale of fibers and stitches, to instrumentalize simultaneous structural, spatial, and sensory-responsive qualities. The progression of research displays an ever-deepening instrumentalization of fiber structure and its implications to form definition and responsivity, in creating form- and bending-active structures. The research results in a more refined definition of material behavior as the innate phenomena which emerge at the moment of textile fabrication. Ultimately, the architecture, in its materiality and physical, visual, and auditory responsivity, is designed to address specific challenges for children in filtering multiple sensory inputs, an underlying factor of autism spectrum disorder.
keywords CNC Knitting, Form-active, Bending-active, Textile hybrid, Mutli-sensory
series journal
last changed 2016/06/13 08:34

_id caadria2016_063
id caadria2016_063
authors Kawiti, Derek; Marc Aurel Schnabel and James Durcan
year 2016
title Indigenous Parametricism - Material Computation.
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 63-72
doi https://doi.org/10.52842/conf.caadria.2016.063
summary The use of computational formats and digital tools includ- ing machine fabrication by indigenous people worldwide to augment traditional practices and material culture is becoming more and more commonplace. However within the practice of architecture while there are indigenous architectural practitioners utilizing digital tools, it is unclear as to whether there is motivation to implement traditional in- digenous knowledge in conjunction with these computational instru- ments and methodologies. This paper explores how the tools might be used to investigate the potential for indigenous development, cultural empowerment and innovation. It also describes a general methodology whereby capacity can be shared between academia and indigenous groups to foster new knowledge through a recently implemented in- digenous focused design research entity, SITUA. The importance and significant research potential of what we term 'domain based research' is reinforced through the exploration of emergent materials and build- ing systems located within specific tribal domains. A recent project employing 3D clay extrusion printing is used to illustrate this ap- proach.
keywords Indigenous domain based research: Maori; materials; digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:52

_id ijac201614304
id ijac201614304
authors Kim, Eonyong and Soohoon Park
year 2016
title Three-dimensional visualized space and asset management system for large-scale airports: The case of Incheon International Airport
source International Journal of Architectural Computing vol. 14 - no. 3, 233-246
summary Large-scale airports such as Incheon International Airport have large-scale terminals, annex buildings, and numerous open spaces. An integrated space management system is required to manage these buildings and spaces efficiently. Thus, Incheon International Airport Corporation developed a three-dimensional computer-aided design–based integrated space management system. The major system development goal was to provide intuitive three-dimensional-based visual information, thereby realizing an integrated space and asset management system that does not require expert knowledge of any specific field, such as architecture. This article discusses the construction of the system and the problems that had to be resolved to achieve this goal.
keywords Space and asset management, airport, three-dimensional computer-aided design, building information modeling
series journal
last changed 2016/10/05 08:21

_id ijac201614308
id ijac201614308
authors Lee, Ju Hyun; Michael J Ostwald, and Ning Gu
year 2016
title The language of design: Spatial cognition and spatial language in parametric design
source International Journal of Architectural Computing vol. 14 - no. 3, 277-288
summary This article develops a new research framework and method combining cognitive and linguistic approaches to investigate parametric design. At the core of this new approach is a dual-coding system for protocol analysis, which can formally capture both cognitive and linguistic characteristics of the design process. In this article, the method is applied to the analysis of the results of a design experimental undertaken by a set of Australian and Swedish architects working individually in a parametric environment. The results of the experiment demonstrate the effectiveness of the dual-coding system and, with the support of linkography, facilitate the in-depth exploration of design cognition and its relationship to spatial language. This method directly contributes to a new insight into the role of language in design.
keywords Design cognition, design communication, spatial representation, parametric design, protocol analysis, linkography
series journal
last changed 2016/10/05 08:21

_id ijac201614205
id ijac201614205
authors Leitao, Anto?nio; Ines Caetano and Hugo Correia
year 2016
title Processing architecture
source International Journal of Architectural Computing vol. 14 - no. 2, 147-157
summary Programming promotes creative freedom but might require considerable effort to learn. The Processing language was created to simplify this learning process. Due to its graphical capabilities, the language has become very popular among the electronic arts and design communities. Unfortunately, this popularity could not be extended to the architecture community, which relies on traditional heavyweight computer-aided design and building information modeling applications that cannot be programmed using Processing. As a result, it becomes difficult for architects to take advantage of Processing. To solve this problem, we propose an implementation of Processing that runs in the context of the most used computer-aided design tools in architecture. Our implementation allows Processing to generate two- or three-dimensional models that are directly usable for architectural work. To this end, we also propose extensions to the language, including three-dimensional modeling primitives that dramatically simplify the effort needed for developing large and complex architectural models with Processing.
keywords Generative Design, Programming, Processing, Architecture, 3D Modeling
series journal
last changed 2016/06/13 08:34

_id ijac201614404
id ijac201614404
authors Parthenios, Panagiotis; Stefan Petrovski, Nicoleta Chatzopoulou and Katerina Mania
year 2016
title Reciprocal transformations between music and architecture as a real-time supporting mechanism in urban design
source International Journal of Architectural Computing vol. 14 - no. 4, 349-357
summary The more complex our cities become, the more difficult it is for designers to use traditional tools for understanding and analyzing the inner essence of an eco-system such as the contemporary urban environment. Even many of the recently crafted digital tools fail to address the necessity for a more holistic design approach which captures the virtual and the physical, the immaterial and the material. Handling of massive chunks of information and classification and assessment of diverse data are nowadays more crucial than ever before. We see a significant potential in combining the fields of composition in music and architecture through the use of information technology. Merging the two fields has the intense potential to release new, innovative tools for urban designers. This article describes an innovative tool developed at the Technical University of Crete, through which an urban designer can work on the music transcription of a specific urban environment applying music compositional rules and filters in order to identify discordant entities, highlight imbalanced parts, and make design corrections. Our cities can be tuned.
keywords Urban design, design creativity, translation, music, architecture, city modeling
series journal
email
last changed 2016/12/09 10:52

_id ijac201614104
id ijac201614104
authors Wood, Dylan Marx; David Correa, Oliver David Krieg and Achim Menges
year 2016
title Material computation—4D timber construction: Towards building-scale hygroscopic actuated, self-constructing timber surfaces
source International Journal of Architectural Computing vol. 14 - no. 1, 49-62
summary The implementation of active and responsive materials in architecture and construction allows for the replacement of digitally controlled mechanisms with material-based systems that can be designed and programmed with the capacity to compute and execute a behavioral response. The programming of such systems with increasingly specific response requires a material-driven computational design and fabrication strategy. This research presents techniques and technologies for significantly upscaling hygroscopically actuated timber-based systems for use as self-constructing building surfaces. The timber’s integrated hygroscopic characteristics combined with computational design techniques and existing digital fabrication methods allow for a designed processing and reassembly of discrete wood elements into large-scale multi element bilayer surfaces. This material assembly methodology enables the design and control of the encoded direction and magnitude of humidity-actuated responsive curvature at an expanded scale. Design, simulation, and material assembly tests are presented together with formal and functional configurations that incorporate self-constructing and self-rigidizing surface strategies. The presented research and prototypes initiate a shift toward a large-scale, self-construction methodology.
keywords Hygroscopic, self-forming, computational design, autonomous actuation, wood structures
series journal
last changed 2016/06/13 08:34

_id sigradi2016_448
id sigradi2016_448
authors Afsari, Kereshmeh; Eastman, Charles M.; Shelden, Dennis R.
year 2016
title Data Transmission Opportunities for Collaborative Cloud-Based Building Information Modeling
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.907-913
summary Collaboration within Building Information Modeling process is mainly based on file transfer while BIM data being exchanged in either vendor specific file formats or neutral format using Industry Foundation Classes (IFC). However, since the Web enables Cloud-based BIM services, it provides an opportunity to exchange data via Web transfer services. Therefore, the main objective of this paper is to investigate what features of Cloud interoperability can assist a network-based BIM data transmission for a collaborative work flow in the Architecture, Construction, and Engineering (AEC) industry. This study indicates that Cloud-BIM interoperability needs to deploy major components such as APIs, data transfer protocols, data formats, and standardization to redefine BIM data flow in the Cloud and to reshape the collaboration process.
keywords BIM; Cloud Computing; Data Transmission; Interoperability; IFC
series SIGRADI
email
last changed 2021/03/28 19:58

_id ascaad2016_003
id ascaad2016_003
authors Al-Jokhadar, Amer; Wassim Jabi
year 2016
title Humanising the Computational Design Process - Integrating Parametric Models with Qualitative Dimensions
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 9-18
summary Parametric design is a computational-based approach used for understanding the logic and the language embedded in the design process algorithmically and mathematically. Currently, the main focus of computational models, such as shape grammar and space syntax, is primarily limited to formal and spatial requirements of the design problem. Yet, qualitative factors, such as social, cultural and contextual aspects, are also important dimensions in solving architectural design problems. In this paper, an overview of the advantages and implications of the current methods is presented. It also puts forward a ‘structured analytical system’ that combines the formal and geometric properties of the design, with descriptions that reflect the spatial, social and environmental patterns. This syntactic-discursive model is applied for encoding vernacular courtyard houses in the hot-arid regions of the Middle East and North Africa, and utilising the potentials of these cases in reflecting the lifestyle and the cultural values of the society, such as privacy, human-spatial behaviour, the social life inside the house, the hierarchy of spaces, the segregation and seclusion of family members from visitors and the orientation of spaces. The output of this analytical phase prepares the groundwork for the development of socio-spatial grammar for contemporary tall residential buildings that gives the designer the ability to reveal logical spatial topologies based on socio-environmental restrictions, and to produce alternatives that have an identity while also respecting the context, place and needs of users.
series ASCAAD
email
last changed 2017/05/25 13:13

_id ecaade2016_063
id ecaade2016_063
authors Al-Qattan, Emad, Galanter, Philip and Yan, Wei
year 2016
title Developing a Tangible User Interface for Parametric and BIM Applications Using Physical Computing Systems.
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 621-630
doi https://doi.org/10.52842/conf.ecaade.2016.2.621
wos WOS:000402064400063
summary This paper discusses the development of an interactive and a responsive Tangible User-Interface (TUI) for parametric and Building Information Modeling (BIM) applications. The prototypes presented in this paper utilizes physical computing systems to establish a flexible and intuitive method to engage digital design processes.The prototypes are hybrid UIs that consist of a digital modeling tool and an artifact. The artifact consists of a control system (sensors, actuators, and microcontrollers) and physical objects (architectural elements). The link between both environments associates physical objects with their digital design information to assist users in the digital design process. The integration of physical computing systems will enable the objects to physically respond to analog input and provide real-time feedback to users. The research aims to foster tangible computing methods to extend the capabilities of digital design tools. The prototypes demonstrate a method that allows architects to simultaneously interact with complex architectural systems digitally and physically.
keywords Physical Computing; Parametric Design; BIM; Tangible UI
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_631
id caadria2016_631
authors Alambeigi, Pantea; Sipei Zhao, Jane Burry and Xiaojun Qiu
year 2016
title Complex human auditory perception and simulated sound performance prediction
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 631-640
doi https://doi.org/10.52842/conf.caadria.2016.631
summary This paper reports an investigation into the degree of con- sistency between three different methods of sound performance evalu- ation through studying the performance of a built project as a case study. The non-controlled office environment with natural human speech as a source was selected for the subjective experiment and ODEON room acoustics modelling software was applied for digital simulation. The results indicate that although each participant may in- terpret and perceive sound in a particular way, the simulation can pre- dict this complexity to some extent to help architects in designing acoustically better spaces. Also the results imply that architects can make valid comparative evaluations of their designs in an architectur- ally intuitive way, using architectural language. The research acknowledges that complicated engineering approaches to subjective analysis and to controlling the test environment and participants is dif- ficult for architects to comprehend and implement.
keywords Human sound perception; acoustic simulation; experiment and measurement
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2016_055
id ecaade2016_055
authors Baranovskaya, Yuliya, Prado, Marshall, Dörstelmann, Moritz and Menges, Achim
year 2016
title Knitflatable Architecture - Pneumatically Activated Preprogrammed Knitted Textiles
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 571-580
doi https://doi.org/10.52842/conf.ecaade.2016.1.571
wos WOS:000402063700062
summary Textiles are widely used in architecture for tensile structures, as they are lightweight and can easily span large distances. These structures typically require an external framework for a support. Inflatable structures are self-supporting but are limited to relatively simple forms or require complex and predetermined cut patterns. The development of an adaptive and programmable textile system with an integrative method for pneumatic activation would create a novel self-supporting structure with high degree of design and architectural potential. This creates a highly integrative hybrid system where the generic pneumatic membranes are constrained by the differentiated knitted textile skin that is stretched in several directions under air pressure. This allows for an innovative, lightweight, easily transportable design, where the preprogrammed knitting pattern defines the structure, geometry and formation, activated under pneumatic pressure.
keywords programming textiles; binary textiles; analogue computing; air inflation; grading textile properties
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201614408
id ijac201614408
authors Bard, Joshua David; David Blackwood, Nidhi Sekhar and Brian Smith
year 2016
title Reality is interface: Two motion capture case studies of human–machine collaboration in high-skill domains
source International Journal of Architectural Computing vol. 14 - no. 4, 398-408
summary This article explores hybrid digital/physical workflows in the building trades, a high-skill domain where human dexterity and craft can be augmented by the precision and repeatability of digital design and fabrication tools. In particular, the article highlights two projects where historic construction techniques were extended through live motion capture of human gesture, information-rich visualization projected in the space of fabrication and custom robotic tooling to generate free-form running moulds. The first case study explores decorative plastering techniques and an augmented workflow where designers and craftspeople can quickly explore patterns through freehand sketch, test ideas with shaded previews and seamlessly produce physical parts using robotic collaborators. The second case study reimagines a roman vaulting technique that used terracotta bottles as part of an interlocking masonry system. Motion capture is used to place building elements precisely in material arrays with real-time visual feedback guiding the hand-held placement of each bottle. These case studies serve to underscore the emerging importance of reality capture in the design and construction of the built environment. Increasingly, the algorithmic power of computational tools and the nuances of human skill can be combined in hybrid design and fabrication workflows.
keywords Reality computing, motion capture, robotic fabrication, haptic interface, hybrid skill, human–machine collaboration, reality capture
series journal
email
last changed 2016/12/09 10:52

_id acadia16_154
id acadia16_154
authors Brugnaro, Giulio; Baharlou, Ehsan; Vasey, Lauren; Menges, Achim
year 2016
title Robotic Softness: An Adaptive Robotic Fabrication Process for Woven Structures
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 154-163
doi https://doi.org/10.52842/conf.acadia.2016.154
summary This paper investigates the potential of behavioral construction strategies for architectural production through the design and robotic fabrication of three-dimensional woven structures inspired by the behavioral fabrication logic used by the weaverbird during the construction of its nest. Initial research development led to the design of an adaptive robotic fabrication framework composed of an online agent-based system, a custom weaving end-effector and a coordinated sensing strategy utilizing 3D scanning.The outcome of the behavioral weaving process could not be predetermined a priori in a digital model, but rather emerged out of the negotiation among design intentions, fabrication constraints, performance criteria, material behaviors and specific site conditions. The key components of the system and their role in the fabrication process are presented both theoretically and technically, while the project serves as a case study of a robotic production method envisioned as a soft system: a flexible and adaptable framework in which the moment of design unfolds simultaneously with fabrication, informed by a constant flow of sensory information.
keywords soft systems, agent-based systems, robotic fabrication, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2016_118
id ecaade2016_118
authors Cannaerts, Corneel
year 2016
title Coding as Creative Practice
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 397-404
doi https://doi.org/10.52842/conf.ecaade.2016.1.397
wos WOS:000402063700044
summary This paper looks into coding as a creative practice within architecture, more specifically into textual and graphical coding as a practitioner during the design process. It argues that coding is not a mere tool for designing but a particular design medium, with its own affordances and resistances. Using code as a design medium provides a specific form of feedback, it influences the design process and its outcomes. Code is a technological and conceptual support for design thinking. In other words, code and coding can be ascribed agency in architectural design. This research is based on a number of cases from design practice and teaching, ranging from small design experiments, developing software tools for specific design projects and teaching workshops. The cases are grouped into three metaphors, each describing a particular aspect of coding as a design medium.
keywords coding; sketching; tooling; structuring
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201614207
id ijac201614207
authors Chaszar, Andre and Sam Conrad Joyce
year 2016
title Generating freedom: Questions of flexibility in digital design and architectural computation
source International Journal of Architectural Computing vol. 14 - no. 2, 167-181
summary Generative processes and generative design approaches are topics of continuing interest and debate within the realms of architectural design and related fields. While they are often held up as giving designers the opportunity (the freedom) to explore far greater numbers of options/alternatives than would otherwise be possible, questions also arise regarding the limitations of such approaches on the design spaces explored, in comparison with more conventional, human-centric design processes. This article addresses the controversy with a specific focus on parametric-associative modelling and genetic programming methods of generative design. These represent two established contenders within the pool of procedural design approaches gaining increasingly wide acceptance in architectural computational research, education and practice. The two methods are compared and contrasted to highlight important differences in freedoms and limitations they afford, with respect to each other and to ‘manual’ design. We conclude that these methods may be combined with an appropriate balance of automation and human intervention to obtain ‘optimal’ design freedom, and we suggest steps towards finding that balance.
keywords Design space exploration, parametric-associative modelling, genetic programming, mixed-initiative methods
series journal
last changed 2016/06/13 08:34

_id caadria2016_457
id caadria2016_457
authors Chen, Szu-Yin; Kokfu Lok and Taysheng Jeng
year 2016
title Smart BIM Objects for Design Intelligence
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 457-466
doi https://doi.org/10.52842/conf.caadria.2016.457
summary By enabling BIM technology, a building can be represented by a set of objects that carry detailed information about how they are constructed and also capture the relationship with other objects in the building model. Smart BIM objects can be classified as specific com- ponents encapsulating typical building rules and relations that can be predicted and defined by a few parameters and constraints. A frame- work is developed to show how a smart BIM object is developed. This paper presents the method of developing smart BIM object capable of better-informing design decision. To demonstrate the usefulness of smart BIM objects, a cloud BIM object library is developed and tested by academia and industry.
keywords Smart BIM object; cloud database; parametric modelling
series CAADRIA
email
last changed 2022/06/07 07:55

_id ijac201614102
id ijac201614102
authors Cifuentes Quin, Camilo Andre?s
year 2016
title The cybernetic imagination of computational architecture
source International Journal of Architectural Computing vol. 14 - no. 1, 16-29
summary Since the publication in 1948 of Norbert Wiener’s Cybernetics, this thought model has exerted a profound influence in contemporary knowledge. Such influence has been decisive for a paradigm shift in the profession of architecture and particularly for the rise of a computational perspective in architectural design. This article explores the link between the cybernetic paradigm and the conception of architectural objects as performative, responsive, intelligent, and sentient artifacts—the visions of buildings that have been central to the development of digital architecture since its early stages. This connection shows that the dominant visions of design problems associated with the development of a computational perspective in architecture have not been exclusively the result of the introduction of computer pragmatics in architectural design. On the contrary, following such scholars as Bruno Latour and Katherine Hayles, these developments must be considered as the result of a particular feedback process that includes technical aspects as well as the definition of design problems around an informational ontology and epistemology. The understanding of the intellectual foundations of digital architecture is crucial not only to promote a critical regard of its productions but to imagine scenarios for a viable cybernetic practice of computer-mediated architectural design.
keywords Architecture, cybernetics, computational design
series journal
last changed 2016/06/13 08:34

For more results click below: