CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id caadria2016_839
id caadria2016_839
authors Ikeda, Yasushi; Keisuke Toyoda and Tsukasa Takenaka
year 2016
title The Pedagogical Meanings of an Experimental Full-Size Mock-Up of Computational Design
doi https://doi.org/10.52842/conf.caadria.2016.839
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 839-848
summary Skill in the use of digital media tools is growing more im- portant in architectural education. However parametric objects in computational geometry or digital fabrication as an assist for project- based learning are not in themselves sufficient to extract the potential of computational design. When we consider the performance of a de- sign, or the fundamental purpose of parametric design toolsets in the contemporary context, education must act as a connecter to the ambi- tion of global sustainability. With regards to the advantage of compu- tational methodologies, students benefit by developing a holistic vi- sion of non-standardized assembly technology. This is particularly useful in overcoming problems of mass production, and with the crea- tion of interactive technology that is incrementally adaptable in the process of answering to unpredictable change. In this context, a com- prehensive understanding of digital tools as part of a holistic and eco- logical architectural design mindset is crucial for future designers. Exploring effective ways to guide students in the development of this capability is therefore important. This paper documents a recent effort in this direction through examples of education within a digital design studio. As a conclusion the paper discusses important factors in the encouragement of students as they develop a comprehensive under- standing of the use of digital design culture.
keywords Digital design studio; full-size mock-up; comprehensive capability; practical performance; project-based learning
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2016_157
id ecaade2016_157
authors Kulcke, Matthias and Lorenz, Wolfgang E.
year 2016
title Utilizing Gradient Analysis within Interactive Genetic Algorithms
doi https://doi.org/10.52842/conf.ecaade.2016.2.359
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 359-364
summary The paper describes and discusses the possible integration of gradient analysis, as a method and tool for architects and designers to analyze the degree of proportion-complexity of a design, into the process of designing an object utilizing interactive genetic algorithms (IGA). A VBA implementation for AutoCAD has been developed by the authors, enabling to test the usability of genetic algorithms (GA) for minimizing the angle-redundancy and length-redundancy quotient. The gradient analysis itself has been developed on the basic assumption that the complexity of an objects appearance is reduced by redundancy, which can be measured focussing on different levels of comparison; among others e. g. variety of material, colour-combinations and proportion. The latter comes under scrutiny if the method of gradient analysis is applied.
wos WOS:000402064400035
keywords Gradient Analysis; Interactive Genetic Algorithm; Design Complexity; Redundancy; Spatial Analysis; Form and Geometry; Proportion
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia16_402
id acadia16_402
authors Pinochet, Diego
year 2016
title Antithetical Colloquy: From operation to interaction in digital fabrication
doi https://doi.org/10.52842/conf.acadia.2016.402
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 402-411
summary This paper, introduces a cybernetic approach to digital design and fabrication by embracing aspects of embodied interaction, behavior and communication between designers and machines. To do so, it proposes the use of body gestures, digital/tangible interfaces and Artificial Intelligence to create a more reciprocal way of making. The goal is to present a model of designing and making as a ‘conversation’ instead a mere dialog from creator to executor of a predefined plan to represent an idea. In other words, this paper proposes a platform for interaction between two antithetical worlds—one binary/deterministic and the other perceptual/ambiguous—by focusing in the exploratory aspects of design and embracing aspects of improvisation, ambiguity, imprecision and discovery in the development of an idea.
keywords compuatational making, computational design, interactive fabrication, digital fabrication
series ACADIA
type paper
email
last changed 2022/06/07 08:00

_id caadria2016_321
id caadria2016_321
authors Wu, Yi-Sin; Teng-Wen Chang, Min-Nan Liao and Sambit Datta
year 2016
title Reflecting Self: An Interactive Mirror Study
doi https://doi.org/10.52842/conf.caadria.2016.321
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 321-330
summary Immersive environment provides a virtual environment immersion experience for the user, and allow users in-depth experi- ence. In this study through research “self- reflecting” and “self- reflecting during interaction with the space environment” by entity makeup table for discussion. Makeup table reflect the role of people and the surrounding environment. We found the style selected by the user, often conform to the user's external style, and does not because of the age limit the user to interact with curiosity. We also found that in addition to the female user, make up table will also trigger young men of curiosity, they will close to observation and interaction with the table. Finally, we have statistical distribution of general user pref- erences. We also in accordance with the user's behavior, revised inter- active processes, make recommendations when designing immersive environments.
keywords Immersive environment; virtual environments; reflecting self; avatar; virtual make up table
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia16_54
id acadia16_54
authors Andreen, David; Jenning, Petra; Napp, Nils; Petersen, Kirstin
year 2016
title Emergent Structures Assembled by Large Swarms of Simple Robots
doi https://doi.org/10.52842/conf.acadia.2016.054
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 54-61
summary Traditional architecture relies on construction processes that require careful planning and strictly defined outcomes at every stage; yet in nature, millions of relatively simple social insects collectively build large complex nests without any global coordination or blueprint. Here, we present a testbed designed to explore how emergent structures can be assembled using swarms of active robots manipulating passive building blocks in two dimensions. The robot swarm is based on the toy “bristlebot”; a simple vibrating motor mounted on top of bristles to propel the body forward. Since shape largely determines the details of physical interactions, the robot behavior is altered by carefully designing its geometry instead of uploading a digital program. Through this mechanical programming, we plan to investigate how to tune emergent structural properties such as the size and temporal stability of assemblies. Alongside a physical testbed with 200 robots, this work involves comprehensive simulation and analysis tools. This simple, reliable platform will help provide better insight on how to coordinate large swarms of robots to construct functional structures.
keywords emergent structures, mechanical intelligence, swarm robotics
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2016_150
id ecaade2016_150
authors Barczik, Günter and Kruse, Rolf
year 2016
title Shifting Design Work from Production to Evaluation - An Evolutive Design Tool
doi https://doi.org/10.52842/conf.ecaade.2016.2.109
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 109-115
summary We are developing an evolutive design tool that seeks to facilitate a shift in the focus of the process of designing architecture: away from the production of design alternatives or options towards an evaluation of semi-automatically generated ones. We work towards outsourcing the production of design alternatives in a given design task to a CAD tool and thereby give human designers more time to evaluate and discuss those alternatives and guide the tool in the production of improved alternatives. The format of our work is an experimental student design and research project where architects and computer scientists collaborate. Though the project is in a very early stage, our aim is to ultimately shift the focus of human designers' involvement from production of design options to the evaluation of those, in order to give humans more time to think, discuss, find, analyze and include many different points of view and make it easier for them to be impartial in finding optimal solutions. We developed a design tool that uses interactive evolutionary algorithms to support exploration of design options.
wos WOS:000402064400010
keywords Genetic Algorithm; Evolutive Design Strategy; Interactive evolutionary computation
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_457
id caadria2016_457
authors Chen, Szu-Yin; Kokfu Lok and Taysheng Jeng
year 2016
title Smart BIM Objects for Design Intelligence
doi https://doi.org/10.52842/conf.caadria.2016.457
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 457-466
summary By enabling BIM technology, a building can be represented by a set of objects that carry detailed information about how they are constructed and also capture the relationship with other objects in the building model. Smart BIM objects can be classified as specific com- ponents encapsulating typical building rules and relations that can be predicted and defined by a few parameters and constraints. A frame- work is developed to show how a smart BIM object is developed. This paper presents the method of developing smart BIM object capable of better-informing design decision. To demonstrate the usefulness of smart BIM objects, a cloud BIM object library is developed and tested by academia and industry.
keywords Smart BIM object; cloud database; parametric modelling
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2016_301
id caadria2016_301
authors Datta, S.; T. W. Chang and J. Hollick
year 2016
title Curating architectural collections: Interaction with immersive stereoscopic visualisation
doi https://doi.org/10.52842/conf.caadria.2016.301
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 301-310
summary We present our research on the use of immersive stereo- scopic visualisation in interaction with collections of architectural rep- resentations. We investigate the processing and visualisation of multi- ple model representations from architectural datasets. We develop two models for locating collections of datasets in spatial contexts, namely a realistic gallery and a synthetic landscape. We evaluate and report the qualitative interactive experience with two forms of contextual in- teraction within a novel stereoscopic immersive visualisation (cylin- drical projection) environment. The use of immersive stereoscopic visualisation conveys aspects and dimensions of the collections that would not be possible without the forms of contextual interaction, the gallery metaphor and the synthetic landscape to interact with the ar- chitectural collections. The combination of abstract representations with realistic sense of scale and interaction provide the user with an immersive experience to convey the collective form.
keywords Digital data acquisition; architectural reconstruction; geometry processing and algorithms; immersive stereoscopic visualisation; human computer interaction
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2016_164
id ecaade2016_164
authors Dobiesz, Sebastian and Grajper, Anna
year 2016
title Animating the Static. Case Study of The Project "Urbanimals" - Enhancing play in the cities through an augmented and interactive environment
doi https://doi.org/10.52842/conf.ecaade.2016.1.691
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 691-700
summary This article delineates the process of developing the project "Urbanimals" - an interactive installation designed and realised in Bristol, UK, in 2015. As the case study research, it draws attention to the difficulties in designing interactive structures in urban spaces - from an architects' idea to a construction stage. There are four areas that are being investigated: (1) Modelling interactions, (2) Negotiating locations and logistics, (3) Developing hardware and (4) Performing the on-site observations. The project draws from the idea of Smart City (SC) as the concept of the urban environment with a certain level of responsiveness through implementing a technology-driven matter that expands city offer perceivable, but gentle and not hindering way. It highlights the possible applications of projection technology and the utilisation of the 3D modelling software which provides complex tools for creating animations, movements and interactions with future users. The article gives clues how to design more engaging interactions and how to deal with implementing them in public realm.
wos WOS:000402063700074
keywords Smart Cities; Interactive Architecture; public realm; art installations
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2016_693
id caadria2016_693
authors Fernando, Ruwan; Karine Dupre and Henry Skates
year 2016
title Tangible User Interfaces for Teaching Building Physics: Towards continuous designing in education
doi https://doi.org/10.52842/conf.caadria.2016.693
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 693-702
summary This paper follows our evaluation and research into designing tangible physical media for the purposes of teaching building physics to undergraduate architecture students. These media interfaces make use of a virtual environment to promote an understanding of the cycles, which govern architectural and urban projects (for example solar studies, the flow of heat, air and water). This project aims to create an ecology of devices which can be used by students to self-direct themselves and harbour critical making in their research methods (with the explicit intent of dissolving the barrier between design and research). The basic premise of this research, is that in light of growing student numbers, more students lacking confidence in numeracy skills as well as the desire to have self-directed or group-directed learning, tangible media has a promising role to play. There are several reasons for this optimism. The first is that a better sense of intuition is gained from an interactive model over reading notes from a lecture or textbook. The second is that tangible media engages in other modes of learning, being valuable to students who have an aptitude for kinesthetic and spatial learning over text-dominant learning.
keywords Pedagogy; tangible user interfaces; augmented reality; internet of things; designing for teaching
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2016_373
id caadria2016_373
authors Heinrich, Mary Katherine and Phil Ayres
year 2016
title For Time-Continuous Optimisation: Replacing Automation with Interactive Visualisation in Multi-Objective Behavioural Design
doi https://doi.org/10.52842/conf.caadria.2016.373
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 373-382
summary Strategies for optimisation in design normatively assume an artefact end-point, disallowing continuous architecture that engages living systems, dynamic behaviour, and complex systems. In our Flora Robotica investigations of symbiotic plant-robot bio-hybrids, we re- quire computational tools and strategies that help us evaluate designed behaviours, rather than discrete ‘things’. In this paper, we present our strategy of using embodied interaction to facilitate engagement with a scenario’s full scope of possible states and their continuous changes over time. We detail the ways in which this approach to time- continuous optimisation can be broadly impactful for decision- making, especially in architectural systems that aspire to effective dealings with control flows and lifecycle management.
keywords Multi-objective; dynamic; visualisation; interaction; optimisation
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2016_291
id caadria2016_291
authors Hotta, K. and A. Hotta
year 2016
title The Implementation of Programmable Architecture: Wireless Interaction with Dynamic Structure
doi https://doi.org/10.52842/conf.caadria.2016.291
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 291-299
summary True adaptability in architecture necessitates both dynamic hardware and software with the potential for continually renewable forms capable of all possible variations necessary for changing de- mands and conditions, without having to resort to one theoretically optimal solution. PA consists of both autonomous and subservient systems that maintain a constant homeostasis within its contained en- vironment. The information flow between the Genetic Algorithms (GA) and user input prompts this hybrid system to generate the conse- quent, ever-changing physical form, while continuously optimizing it for environmental stimuli. This paper proposes a smart strategy for a human interactive-cybernetic architecture in the context of K. Hotta’s Programmable Architecture (PA), aimed at enhancing GA’s capabili- ties in continuous self-modelling and facilitating human-computer in- terface.
keywords Human-computer interaction; user interface
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2016_239
id caadria2016_239
authors Prohasky, Daniel J.; Rafael Moya Castro, Simon Watkins and Jane Burry
year 2016
title Design Driven Physical Experimentation: A flexible wind sensing platform for architects
doi https://doi.org/10.52842/conf.caadria.2016.239
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 239-248
summary Architectural design in this ‘digital age’ is becoming more embedded within virtual computer aided design environments. This study expands this virtual design environment back into physical realms through the use of microelectronic wind sensing technology. An interactive and flexible wind sensing system (open source minia- ture portable wind tunnel and wind sensors) was evaluated for its abil- ity to simulate and measure the effects of wind. Physical models of four high-rise buildings were constructed to evaluate ground level pe- destrian comfort resulting from the degree of torsional twist in the building form. The model investigation formed a case study for evalu- ating of the low-cost miniature portable wind tunnel and microelec- tronic wind sensing system for comparison with an industrial aeronau- tical wind tunnel and high precision wind sensors.
keywords Architectural wind tunnel; microelectronic wind sensing; twisted building; wind visualisation
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia16_244
id acadia16_244
authors Ramirez-Figueroa, Carolina; Hernan, Luis; Guyet, Aurelie; Dade-Robertson, Martyn
year 2016
title Bacterial Hygromorphs: Experiments into the Integration of Soft Technologies into Building Skins
doi https://doi.org/10.52842/conf.acadia.2016.244
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 244-253
summary The last few years have seen an increase in the interest to bring living systems into the process of design. Work with living systems, nonetheless, presents several challenges. Aspects such as access to specialists’ labs, samples of living systems, and knowledge to conduct experiments in controlled settings become barriers which prevent designers from developing a direct, material engagement with the material. In this paper, we propose a design methodology which combines development of experiments in laboratory settings with the use of what we call material proxies, which refer to materials that operate in analogue to some of the behaviors observed in the target organism. We will propose that combining material proxies with basic scientific experimentation constitutes a form of direct material engagement, which encourages richer exploration of the design domain. We will develop this argument by reporting on our experience in designing and delivering the primer component of a themed design studio, structured around bacterial spores as hygroscopic components of building facades. The six-week design project asked students to consider the behavior of bacterial spores, and to imagine a number of systems in which they could be employed as actuators of a membrane system that responded to fluctuations in humidity. The module is interesting in that it negotiates some of the challenges often faced by designers who want to develop a material engagement with living systems, and to produce informed speculations about their potential in architectural design.
keywords actuators, architecture, building skins, artifical muscles, hygromorphs, bacterial spores
series ACADIA
type paper
email
last changed 2022/06/07 08:00

_id caadria2016_497
id caadria2016_497
authors Ryu, Jungrim; Jaehong Jun, Seunghyeon Lee and Seungyeon Choo
year 2016
title A Study on Development of the IFC-based Indoor Spatial Information for Data Visualisation
doi https://doi.org/10.52842/conf.caadria.2016.497
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 497-506
summary MOLIT authorised Indoor Spatial Information as Basic spa- tial information in 2013. It became a legal evidence for constructing and managing Indoor Spatial Information. Although it has a little ad- vantage to utilise as service level that Indoor Spatial Information by laser scan or measurement, it has a lot of problems such as consuming many resources, requiring additional progresses for inputting Object Information. In conclusion, it is inefficient to utilise for the mainte- nance and domestic AEC/FM field. The purposes of this study is to output Indoor Spatial Information by operating IFC model which based on open BIM and to improve availability of Indoor Spatial In- formation with data visualisation. The open-sources of IFC Exporter, an inner program of Revit, is used to output Indoor Spatial Infor- mation. Directs 3D Library is also operated to visualise Indoor Spatial Information. It is possible to inter-operate between XML format and the objects of Indoor Spatial Information. It can be utilised in various field as well. For example COBie linkage in facility management, construction of geo-database using air-photogrammetry of UA V , the simulation of large-scale military operations and the simulation of large-scale evacuation. The method that is purposed in this study has outstanding advantages such as conformance with national spatial in- formation policy, high level of interoperability as indoor spatial in- formation objects based on IFC, convenience of editing information, light level of data and simplifying progress of producing information.
keywords Indoor spatial information, data visualisation, open BIM, IFC
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2016_713
id caadria2016_713
authors Sato, Yusuke; Tomohiro Fukuda, Nobuyoshi Yabuki, Takashi Michikawa and Ali Motamedi
year 2016
title A Marker-less Augmented Reality System using Image Processing Techniques for Architecture and Urban Environment
doi https://doi.org/10.52842/conf.caadria.2016.713
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 713-722
summary In this study, Augmented Reality (AR) system is proposed to be used for outdoor renovation and maintenance projects of build- ings. The research proposes an outdoor marker-less AR system that considers the mobility of users and their long relative distance to tar- get buildings where 3D virtual objects should be augmented on. The proposed system uses local feature-based image registration technolo- gy and Structure from Motion (SfM) which reconstructs 3DCG mod- els using photographs from multiple viewpoints. A case study has been performed for a research building renovation scenario at Osaka University. The case study verified the performance of image registra- tion and tracking, and confirmed the applicability of the method.
keywords Architecture and urban environment; Augmented Reality (AR); image registration; Speeded-up Robust Features (SURF); Structure from Motion (SfM)
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2016_333
id caadria2016_333
authors Schubert, Gerhard; Benjamin Strobel and Frank Petzold
year 2016
title Tangible Mixed Realty: Interactive Augmented Visualisation of Digital Simulation in Physical Working Models
doi https://doi.org/10.52842/conf.caadria.2016.333
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 333-342
summary The implications of architectural design decisions are in many cases hard to predict and envisage. As architectural tasks grow more complex and the design of architecture shifts away from the de- sign of end products towards the steering of dynamic processes, new ways of coping with complexity in the design and planning process are needed. Taking this as its starting point, as well as the need for ar- chitects to use familiar, established design tools, the CDP research group is working on new ways of supporting the design decision- making process with objective information so that designers are better able to manage these complexities. The focus of the group lies on di- rectly coupling interactive simulations and analyses with established design tools. This paper discusses a central problem in this context: how to present complex calculation results directly within a physical 3D-model. The approach described, as evidenced by the realized pro- totype, shows clearly that directly coupling real and digital infor- mation using interactive augmented visualization presents immense possibilities for managing the complexity of planning processes.
keywords Design support, simulations, computational design, urban planning, augmented reality
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia16_414
id acadia16_414
authors Tabbarah, Faysal
year 2016
title Almost Natural Shelter: Non-Linear Material Misbehavior
doi https://doi.org/10.52842/conf.acadia.2016.414
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 414-423
summary This paper critiques computational design and digital fabrication’s obsession with both precision and images of natural patterns by describing a messy attitude towards digital and material computation that integrates and blurs between linear and non-linear fabrication, resulting in material formations and spatial affects that are beyond pattern and image and are almost natural. The motivation behind the body of work presented in the paper is to question the production of space and aesthetics in a post-human frontier as we embark on a new geological era that is emerging out of the unprecedented influence of the human race on the planet’s ecological systems. The paper and the body of work posit that the blurring between the natural and the synthetic in the post-human frontier can materialize a conception of space that exhibits qualities that are both natural and synthetic. The paper is organized in three parts. It begins by describing the theoretical framework that drives the body of work. Next, it describes early digital and material casting explorations that began to blur between linear and non-linear fabrication to produce almost natural objects. Finally, it describes the process of designing and making Almost Natural Shelter, a spatial installation that emerges from the integration of messy computational design methodologies and chemically volatile non-linear fabrication. In specific, High Density Foam is persuaded to chemically self-compute in an attempt at uncovering a shelter that has almost natural spatial qualities, such as non-linear textural differentiation and sudden migration between different texture types.
keywords natural, texture, nonlinear fabrication, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2016_311
id caadria2016_311
authors Wu, Ming-Ying; Kuan-Lin Chen and Yu-Chun Huang
year 2016
title A smart bracelet: An alternative interfaces between performer and audience
doi https://doi.org/10.52842/conf.caadria.2016.311
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 311-319
summary Performing arts has been one of the main recreational activ- ities in people’s life. However, most performing arts, performers usu- ally used one direction to express performing contents to the audienc- es. It means there is no real-time communication channel between the performers and audience in most performance. Hence the challenge of this research is how to provide a better relationship between the per- formers and audience without disturbing the show? This research we implemented a bio-sensor embedded smart bracelet which is able to transmit the feelings from user’s to stage by monitoring biological signal (ex: Galvanic skin response) immediately. When most audienc- es have the same physiological reaction to a certain level, the stage scene would be changed the colour and pattern to let performers know how the audiences’ feeling now. Performers would enhance self- confidence and then incorporate the audiences’ feedback to create their future performance. By applying this interactive interface to per- forming arts, we explored a new vision of performance that can not only enhance the diversity of performance but also provide a comfort- able communication channel between performers and audiences, and improve the confidence of the performers.
keywords Performing arts; computational technology; interactive interface
series CAADRIA
email
last changed 2022/06/07 07:57

_id ijac201614307
id ijac201614307
authors Wu, Yi-Sin; Teng-Wen Chang, and Sambit Datta
year 2016
title HiGame: Improving elderly well-being through horticultural interaction
source International Journal of Architectural Computing vol. 14 - no. 3, 263-276
summary Family support is the key to the well-being problems of elderly. Unlike health problem, mental problem often depends on the social network of elderly. How to enhance elderly well-being problems will become how to increase the interaction between elderly and their family. Horticultural interaction proves to be an effective but smooth impact on improving well-being problems of elderly. By designing a horticultural interaction game for motivating or invoking the communication between elderly and their family members, the prototype is developed based on the framework of behavior setting and semi-fixed features. Three groups of games, physical games, virtual games, and spatial interaction games, are analyzed and 14 cases are studied and evaluated for the features required. Particularly, spatial interaction games with both physical and virtual games are brought into scope, and HiGame (Horticultural Interaction Game, hi game) is developed. Five scenarios using sensor network and mobile interface are unleashed and tested in an experiment with two sets of elderly family participants. HiGame has connection to both physical and virtual spaces for elderly and their family. Elderly interact with distant family through physical watering, weeding, and fertilizing. And distant family use virtual game to support elderly. The interaction process can be further enhanced with the following: (1) separating the tasks for elderly and family ends individually and then cooperating together might enforce the intergenerational interaction and reflection on cooperation in the gaming process; (2) the connection among each scenario can be further developed into a different process, such as competition of different members for helping the elderly to complete certain task might motivate the game experience further.
keywords Elderly, co-existing space, intergeneration interaction, behavior setting
series journal
last changed 2016/10/05 08:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_537680 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002