CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id ecaade2016_234
id ecaade2016_234
authors Sousa, José Pedro and Martins, Pedro Filipe
year 2016
title The Robotic Production of the GRC Panels in the CorkCrete Arch Project - A stratified strategy for the fabrication of customized molds
doi https://doi.org/10.52842/conf.ecaade.2016.1.153
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 153-160
wos WOS:000402063700017
summary The CorkCrete Arch was an experimental prototype built in the scope of a research project concerning the use of robotic fabrication technologies for non-standard solutions in architecture. It combined 2 materials, cork and GRC into a self-supporting lightweight building system, designed to explore the integration of different robotic fabrication technologies in one constructive solution. This paper is focused in providing a detailed description and analysis of the robotic fabrication process used in the production of the GRC components. The presented solution integrated robotic milling and hot-wire cutting technologies with a stratified mold design strategy that allowed for overcoming the limitations of each and enabled a time and cost efficient production process.
keywords Robotic Hot-Wire Cutting; Digital Fabrication; Glass Fiber Reinforced Concrete; Computational Design; Corkcrete
series eCAADe
email jsousa@arq.up.pt
last changed 2022/06/07 07:56

_id caadria2016_797
id caadria2016_797
authors Agusti?-Juan, Isolda and Guillaume Habert
year 2016
title An environmental perspective on digital fabrication in architecture and construction
doi https://doi.org/10.52842/conf.caadria.2016.797
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 797-806
summary Digital fabrication processes and technologies are becom- ing an essential part of the modern product manufacturing. As the use of 3D printing grows, potential applications into large scale processes are emerging. The combined methods of computational design and robotic fabrication have demonstrated potential to expand architectur- al design. However, factors such as material use, energy demands, du- rability, GHG emissions and waste production must be recognized as the priorities over the entire life of any architectural project. Given the recent developments at architecture scale, this study aims to investi- gate the environmental consequences and opportunities of digital fab- rication in construction. This paper presents two case studies of classic building elements digitally fabricated. In each case study, the projects were assessed according to the Life Cycle Assessment (LCA) frame- work and compared with conventional construction with similar func- tion. The analysis highlighted the importance of material-efficient de- sign to achieve high environmental benefits in digitally fabricated architecture. The knowledge established in this research should be di- rected to the development of guidelines that help designers to make more sustainable choices in the implementation of digital fabrication in architecture and construction.
keywords Digital fabrication; LCA; sustainability; environment
series CAADRIA
email agusti@ibi.baug.ethz.ch
last changed 2022/06/07 07:54

_id sigradi2016_449
id sigradi2016_449
authors Barnuevo, Thales; Sordi, Lucas De; Silva, Leandro; Silva, Neander Furtado; Aviani, Francisco Leite
year 2016
title Componente Responsivo para Fachadas: Analise e Validaç?o [Responsive component for Facades: analysis and validation]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.754-760
summary The following text reports to the development of a climatic responsive component for facades programmed to respond to the movement of the sun as a way to reduce solar gain and glare into the interior ambient with the aim to reduce building’s need for energy. This research is part of a methodology of tests to verify the relevance to develop, in the future, a real scale model into the Brazilian context.
keywords Ative facade; Responsive; Adaptive; Control
series SIGRADI
email thalesbarnuevo@gmail.com
last changed 2021/03/28 19:58

_id caadria2016_259
id caadria2016_259
authors Chen, Jia-Yih and Shao-Chu Huang
year 2016
title Adaptive Building Facade Optimisation: An integrated Green-BIM approach
doi https://doi.org/10.52842/conf.caadria.2016.259
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 259-268
summary This study focused on the optimal design of adaptive build- ing fac?ade for achieving better energy performance. Iterative fac?ade components design are studied between virtual and physical models with integrated tools of BIM, parametric design and sensor devices. The main objectives of this study are: (1) exploring systematic design process via the analysis of adaptive components in responsive fac?ade design; (2) developing compliance checking system for green building regulations; (3) developing optimization system for adaptive fac?ade design process. This paper demonstrated the integration of various digital design methods and concluded with the energy modelling re- sults of a demo project unit for various fac?ade component designs.
keywords Building fac?ade design; energy performance; design optimization; parametric design; BIM
series CAADRIA
email joychen@tiit.edu.tw
last changed 2022/06/07 07:55

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email eric.peterson@fiu.edu
last changed 2024/05/29 14:04

_id sigradi2021_345
id sigradi2021_345
authors Felipe, Bárbara L. and Nome, Carlos
year 2021
title Digitally Prefabricated Houses: A Comparative Analysis of Executed Projects
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 967–980
summary In Brazil, the application of wood in contemporary constructions is concentrated in the south and southeast. However, the entire country has area for cultivation and forest management, which is favorable for expansion in such applications. Wood is capable of absorbing CO2 and consumes little energy in production and manufacturing. During the COVID-19 pandemic, the deficiencies of the building typologies became evident. This research aims to analyze digitally executed prefabricated houses such as Instant House (1), Digitally Fabricated House (2) by Sass, and WikiHouse (3) by Parvin; under the categories of Cardoso (2016): modulation, reversibility, and flexibility. The deductive method was used to investigate assumptions among the three case studies; and grounded in scientific literature to analyze and collect data. In general, the solutions studied enabled customizable systems allied to wood panels, modules, and fittings as generators of architectural form.
keywords casa pré fabricadas digitalmente, fabricaçao digital, design paramétrico, arquitetura paramétrica
series SIGraDi
email barbaralfelipe@gmail.com
last changed 2022/05/23 12:11

_id ecaade2016_215
id ecaade2016_215
authors Kouchaki, Mohammad, Mahdavinejad, Mohammadjavad, Zali, Parastoo and Ahmadi, Shahab
year 2016
title Magnet-based Interactive Kinetic Bricks
doi https://doi.org/10.52842/conf.ecaade.2016.1.213
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 213-218
wos WOS:000402063700024
summary Brick has been used in construction since ancient times and has been respected among other tectonic materials through out the history. Novel technologies recently have opened new horizons in using brick in architectural design. This paper investigates innovative implementation of bricks in kinetic architecture. Kinetic structures usually employ complex and high-cost mechanisms to come into force and their movements might be limited to some conditions. By the use of magnet in digital design, this research examines new methods for performing simple and affordable kinetic structures so as to create interactive relations between architecture and human being. Magnetic energy is applied in two ways to move a roof made of brick which is considered a heavy and masonry material. Consequently, it represents the hidden potentials of magnet as a renewable source of energy.
keywords kinetic architecture; interactive design; parametric design; Bricklaying; magnet energy
series eCAADe
email m.kouchaki@modares.ac.ir
last changed 2022/06/07 07:51

_id caadria2016_487
id caadria2016_487
authors Shin, Jihye; Inhan Kim and Jungsik Choi
year 2016
title Development of the Integrated Management Environment of BIM Property Information for BIM-based Sustainable Design
doi https://doi.org/10.52842/conf.caadria.2016.487
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 487-496
summary With the growing responsibility for the environmental load of building, the demand for sustainable building is increasing. Sus- tainable design requires an enormous amount of information, and most of this information can be captured by Building Information Modelling (BIM). In this context, the management of information in a BIM object as a container for exchanging information is necessary for analyzing a building’s sustainability. However, there are problems in generating a reliable sustainability simulation model from BIM, such as the inefficiency of required information and low accessibility to a proper BIM object. In order to provide a new approach for generating a reliable sustainability simulation model in a BIM-based design pro- cess, this study suggests the integrated management environment of the property information of a BIM object.
keywords Building information modelling (BIM); BIM object; energy analysis; sustainable design; property information
series CAADRIA
email sjh9025@khu.ac.kr
last changed 2022/06/07 07:56

_id ecaade2016_074
id ecaade2016_074
authors Das, Subhajit, Day, Colin, Dewberry, Michael, Toulkeridou, Varvara and Hauck, Anthony
year 2016
title Automated Service Core Generator in Autodesk Dynamo - Embedded Design Intelligence aiding rapid generation of design options
doi https://doi.org/10.52842/conf.ecaade.2016.2.217
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 217-226
wos WOS:000402064400021
summary Building design entails an intuitive and informative exploration of an architect involving iterative refinement of design ideas till client objectives, and priorities are satisfied. Similarly, service cores in a building are designed through the exploration of multifarious design options each with different performative metrics regarding accessibility, efficiency, cost, feasibility, etc. As the current process is labor-intensive, manual & dependent on the expertise of the architect, the search space leading to the selection of an optimal design alternative is very limited. This paper describes Service Core Generator (SCG) library in Autodesk Dynamo enabling automated generation of service core models for varied building shell geometry types (limited to orthogonal profiles). The tool described encodes explicit and implicit domain knowledge into the system facilitating service core models for buildings across varied scale with use type's including offices, hotels or residential buildings.
keywords Design Alternatives; Geometry Analysis; Parametric Modelling; Design Tools; Design Automation;
series eCAADe
email das@gatech.edu
last changed 2022/06/07 07:55

_id ascaad2016_019
id ascaad2016_019
authors Ibrahim, Magdy M.
year 2016
title 3D Printed Architecture - A new practical frontier in construction methods
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 169-178
summary It is important to discuss and compare the rationale behind the success of the additive manufacturing technology in particular industries and at a particular scale versus full-scale building construction. The comparison should include structural qualities of the possible used materials, the cost effectiveness of the process, the time factor and its value in the construction process, the mass customization potential of the technology and its effect on building forms. The current state of technology in architecture, despite huge potential, has not produced new architectural forms.
series ASCAAD
email magdy.ibrahim@adu.ac.ae
last changed 2017/05/25 13:31

_id ecaade2016_097
id ecaade2016_097
authors Turunen, Heidi
year 2016
title Additive Manufacturing and Value Creation - in Architectural Design, Design Process and End-products
doi https://doi.org/10.52842/conf.ecaade.2016.1.103
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 103-111
wos WOS:000402063700012
summary The objective of this paper is to clarify how value creation can be a part of architectural design and end-products when using the new emerging technology of additive manufacturing. Different kinds of values that have emerged from the research material have been analysed and summarised using selected case studies of recent building-scale projects. In applying this technique to architecture, the result can be visually and functionally novel, smarter and more sustainable buildings or products. A new individually manufactured or customised architecture can be created to serve different cultural and well-being needs cost effectively and without any waste. This new production method can lead to unique joint structures with the use of traditionally produced new or old building parts to enhance architecture, prevent climate change or aid environmental issues. However, most research projects and applications done by commercial companies are at the early stages.
keywords Large-scale additive manufacturing; 3D printed architecture; Digital design; New materials; New production methods
series eCAADe
email heidi.turunen@aalto.fi
last changed 2022/06/07 07:58

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email samar.allam@gmail.com
last changed 2021/08/09 13:13

_id sigradi2020_455
id sigradi2020_455
authors Bastian, Andrea Verri; Filho, Jarede Joaquim de Souza; Garcia, Júlia Assis de Souza Sampaio
year 2020
title Urban modelling for evaluating photovoltaic potential through solar radiation incidence
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 455-463
summary This study aims to better ascertain the influence that urbanistic parameters exert on the production of solar photovoltaic energy regarding different contexts in the city. Modifications implemented between the years of 2012 and 2016, especially on variables such as Maximum Lot Coverage, Floor Area Ratio, and Setbacks, have been evaluated through virtual models that cover areas in three different city districts. Amongst other implications, an increase in the area occupied by the buildings, as well as a decrease in the distance between them, occurred, causing more mutual shading and the loss of the photovoltaic potential associated with the building envelope.
keywords Urbanistic parameters, Photovoltaic solar energy, Virtual models, Architecture, Urbanism
series SIGraDi
email andrea.bastian@ufba.br
last changed 2021/07/16 11:49

_id sigradi2016_583
id sigradi2016_583
authors Chiarella, Mauro; Martini, Sebastián; Giraldi, Sebastián; Góngora, Nicolás; Picco, Camila
year 2016
title Cultura Maker. Dispositivos, Prótesis Robóticas y Programación Visual en Arquitectura y Dise?o para eficiencia energética [Culture Maker. Devices, Prostheses Robotics and Visual Programming in Architecture and Design for energy efficiency.]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.961-968
summary The Maker movement is the ability to be small and at the same time world; craftsmanship and innovative; high technology and low cost. The Maker movement is doing for physical products what the open source made by the software. The Maker culture emphasizes collaborative learning and distributed cognition. Its knowledge base repository and channels of exchange of ideas and information are: web sites; social networks; the Hackerspaces and Fab-Labs. Three experiences presented with devices; prostheses robotics and CNC machines, based on logical replacement; adaptation and generation. Its authors are undergraduate and graduate fellows Industrial Design and Architecture.
keywords Maker culture; Prostheses Robotics; Visual Programming; Energy Efficiency; Adaptive Skin
series SIGRADI
email chiarell@fadu.unl.edu.ar
last changed 2021/03/28 19:58

_id ecaade2016_095
id ecaade2016_095
authors Doumpioti, Christina
year 2016
title Material Agency and Physical Boundaries
doi https://doi.org/10.52842/conf.ecaade.2016.1.521
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 521-528
wos WOS:000402063700057
summary The research builds on the relationship between matter and energy and the idea of boundaries as sentient interfaces capable of affecting our bodily experience and perception of space due to their inherent physical attributes. Two key issues addressed are firstly, the revisiting of the architectural boundary as a thermodynamic zone and secondly, the identification of material behaviour in relation to energy stimuli. It is argued that the transient behaviour of materials can offer an instrumental reconsideration on how architecture establishes spatial articulation through boundaries and this is demonstrated through a design-led project.
keywords thermal field; responsive materials; passively active materials; heat transfer; thermodynamic; matter and energy
series eCAADe
email doumpic@hotmail.com
last changed 2022/06/07 07:55

_id ecaade2016_006
id ecaade2016_006
authors Gomaa, Mohamed and Jabi, Wassim
year 2016
title Evaluating Daylighting Analysis of Complex Parametric Facades
doi https://doi.org/10.52842/conf.ecaade.2016.2.147
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 147-156
wos WOS:000402064400014
summary Lighting analysis tools have proven their ability in helping designers provide functional lighting, increase comfort levels and reduce energy consumption in buildings. Consequently, the number of lighting analysis software is increasing and all are competing to provide credible and rigorous analysis. The rapid adoption of parametric design in architecture, however, has resulted in complex forms that make the evaluation of the accuracy of digital analysis more challenging. This study aims to evaluate and compare the performance of daylighting analysis in two industry standard software (Autodesk Revit and 3ds Max) when analysing the daylighting of complex parametric façade patterns. The study has shown that, generally, both Revit and 3ds Max underestimate illuminance values when compared to physical scaled models. 3ds Max was found to outperform Revit when simulating complex parametric patterns, while Revit was found to outperform 3ds Max when simulating simple fenestration geometries. As a general conclusion, the rapid progress of parametric modelling, integrated with fabrication technologies, has made daylighting analysis of complex geometries more challenging. There is a need for more sophisticated algorithms that can handle the increased level of complexity as well as further verification studies to evaluate the accuracy claims made by software vendors.
keywords Daylighting analysis evaluation; Parametric patterns; Revit; 3ds Max; Complex façades
series eCAADe
email muhamedsabri@f-eng.tanta.edu.eg
last changed 2022/06/07 07:51

_id caadria2016_663
id caadria2016_663
authors Hosokawa, Masahiro; Tomohiro Fukuda, Nobuyoshi Yabuki, Takashi Michikawa and Ali Motamedi
year 2016
title Integrating CFD and VR for indoor thermal environment design feedback
doi https://doi.org/10.52842/conf.caadria.2016.663
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 663-672
summary In the context of environmental consideration and im- provement of living standards, design of high performance buildings that are both comfortable and energy saving is important. Simulation tools (such as CFD) enables analysing and visualizing environmental factors (such as temperature and airflow) based on the design proper- ties and can be used to improve the building design for better perfor- mance. However, these tools have limitations in providing interactivi- ty with users for creating multiple CFD visualization results to be used for analysing design options. This research presents an integrated de- sign tool which consists of CFD and VR technologies. The proposed system visualizes CFD results in a VR environment together with ar- chitectural design. Additionally, it enables configuring CFD parame- ters within the VR environment and allows repeatedly executing simu- lation and visualizing updated results. The proposed system enables visualizing information in relationship with the actual architectural design, space configuration and thermal environment, and provides ef- ficient design feedbacks.
keywords Interdisciplinary computational design; design feedback; indoor thermal environment; Computational Fluid Dynamics (CFD); Virtual Reality (VR)
series CAADRIA
email hosokawa@it.see.eng.osaka-u.ac.jp
last changed 2022/06/07 07:50

_id ascaad2016_025
id ascaad2016_025
authors Mohamadin, Mahmoud F.; Ahmed A. Abouaiana and Hala H. Wagih
year 2016
title Parametric Islamic Geometric Pattern for Efficient Daylight and Energy Performance - Façade retrofit of educational space in hot arid climate
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 227-236
summary The purpose of this paper is to reach an optimal Islamic geometric pattern (IGP) shading screen design in terms of daylight and energy performance in an existing educational design studio (EDS) using generative design and simulation techniques. The study was carried out in a hot arid climate, in a typical EDS in 6th October University, located in Cairo, Egypt, and the study focused on the north-east oriented façade. Grasshopper for Rhino was utilized to generate the IGP parametric variations. Diva-For-Rhino which performs daylight analysis using Radiance / DAYSIM, and Design Builder which performs thermal load simulations using EnergyPlus were utilized in simulation. The results of the study achieved the required daylight levels with significant reduction of energy consumption levels of cooling load. This shows the affordance of the parametric IGP shading screens in façade treatment for achieving both efficient daylight and energy performance in educational design studio in hot arid climates.
series ASCAAD
email mahmoud.mohamadin@fue.edu.eg
last changed 2017/05/25 13:31

_id sigradi2016_479
id sigradi2016_479
authors Santana Neto, Ernesto José de; Silva, Robson Canuto da
year 2016
title Computaç?o material: um estudo sobre a atualizaç?o geométrica de elementos vazados na arquitetura [Material computation: a study about the geometric updating of screenwalls in architecture]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.42-49
summary This paper deals with geometric update strategies of cobogós, aiming to expand its energy efficiency based on material computation, a design approach that seeks to achieve greater architectural performance through the investigation of material properties, comprising four aspects that structure the paper: materiality, material structure, material performance and materialisation. Analysis in ceramic, the most common material in the manufacturing of cobogós, showed voronoi microstructure geometry in the material. Incorporating this logic to the development of a new geometry of cobogó results a slight increase of its thermal performance comparing with commercial cobogós.
keywords Material computation; Cobogó; Energy efficiency
series SIGRADI
email eneto.santana@gmail.com
last changed 2021/03/28 19:59

_id caadria2016_517
id caadria2016_517
authors Shen, Yang Ting and Pei Wen Lu
year 2016
title Development of Kinetic Facade Units with BIM-Based Active Control System for the Adaptive Building Energy Performance Service
doi https://doi.org/10.52842/conf.caadria.2016.517
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 517-526
summary This paper proposes a novel concept and practice to engage the BIM model as a control system of building energy performance service. This issue can be divided into two sub-issues including the development of more eco-friendly fac?ade which can interact with its local environment, and the related active control system which can process the environmental parameters for eco-friendly actions. This research designs the Parametric Adaptive Skin System (PASS) to en- gage the adaption of natural sunlight use for higher building perfor- mance. PASS consists of kinetic fac?ade components dominated by the BIM-based parametric engine called Dynamo. The PASS prototype demonstrates that the workflows is successful in using a real light sen- sor plus simulated solar terms to drive the interaction of virtual Revit model and physical PASS model.
keywords Building information modelling (BIM); adaptive building; energy consumption; building performance; kinetic fac?ade
series CAADRIA
email yatishen@fcu.edu.tw
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_724176 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002