CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 622

_id ascaad2016_016
id ascaad2016_016
authors Hadia, Hatem A.; Soofia T. E. Ozkan
year 2016
title Modelling in Architecture - physical or virtual?
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 135-144
summary The use of models is one of the oldest media for creating, communicating and representing ideas throughout the ages. An investigation into the nature and characteristics of two modelling techniques in architectural design, i.e. physical and digital modeling, was conducted in the educational and professional domains in two countries. The aim of this study was to establish: (a) the degree of tangibility in model making as opposed to conventional and computational design approach; and (b) the iconic limitation of both types of modelling in design. To this end a survey was carried out among practising architects and students of architecture to establish their preferences and practices with respect to physical and virtual modelling. Some face-to-face interviews were conducted and an online questionnaire was distributed to both the aspiring and established architects. Data gathered through the questionnaire survey, interviews and photographs of the modelling process was analysed to come to tangible conclusions. Hence, this paper presents an insight into the merits and demerits of both the physical and virtual modeling techniques as seen through the eyes of professional and training architects.
series ASCAAD
email
last changed 2017/05/25 13:31

_id ecaade2016_045
id ecaade2016_045
authors Lo, Tian Tian, Schnabel, Marc Aurel and Moleta, Tane
year 2016
title A Simple System for Complex Mass Housing Design Collaborations - A system development framework
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 137-146
doi https://doi.org/10.52842/conf.ecaade.2016.2.137
wos WOS:000402064400013
summary Through the lens of participatory mass housing the paper explores the conference theme of simplicity and complexity. A suitable home is a deep rooted desire in the heart of people, and everyone has their own vision of what is a suitable home. Yet the multi-faceted social needs of housing and how they are being designed and developed in mass housing buildings appear too complex and appear too costly that the process would involve direct user participations. The authors have developed a Computer Aided Participatory Housing Design System (CAPHDS) to allow end users (future occupants) become active stakeholders in the design process with the aid of computational design instruments. These tools allow end users to actively engage in the process. The paper describes how a mass housing design process can be broken down into a set of simple tasks that encourage the active engagement and joint development of end users and architects with the proposed design.
keywords Participatory design; housing design system; computer-aided; bottom-up
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2016_028
id ecaade2016_028
authors Asanowicz, Aleksander
year 2016
title Digital Architectural Composition - 30 years of experience and experimentation
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 195-203
doi https://doi.org/10.52842/conf.ecaade.2016.1.195
wos WOS:000402063700022
summary In this paper the evolution of architectural composition teaching will be presented and discussed. The main point of these deliberations is to consider how digital methods and technologies have influenced the teaching methods and the understanding of compositional rules/principles by students. Another important factor which will be analysed, is the difficulties faced by teachers in the evaluation of students' work. The paper is divided into four parts, each of which concerns different approaches to architectural composition teaching. In the first part the historical background of architectural composition teaching is presented. In the second part traditional teaching methods is described, the third concerns teaching of digital architectural composition, and the fourth - digital architectural composition in virtual space. At the end of each section, the advantages and disadvantages of the discussed methods are presented. These disadvantages were a stimulus for changes in the teaching process, which was enabled thanks to the development of digital technologies (software and hardware) during the last 20 years. The last part of the paper will be devoted to the presentation of potential directions of development of architectural composition teaching methods.Please write your abstract here by clicking this paragraph.
keywords Architectural Composition; digital modelling; Virtual Reality
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia16_154
id acadia16_154
authors Brugnaro, Giulio; Baharlou, Ehsan; Vasey, Lauren; Menges, Achim
year 2016
title Robotic Softness: An Adaptive Robotic Fabrication Process for Woven Structures
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 154-163
doi https://doi.org/10.52842/conf.acadia.2016.154
summary This paper investigates the potential of behavioral construction strategies for architectural production through the design and robotic fabrication of three-dimensional woven structures inspired by the behavioral fabrication logic used by the weaverbird during the construction of its nest. Initial research development led to the design of an adaptive robotic fabrication framework composed of an online agent-based system, a custom weaving end-effector and a coordinated sensing strategy utilizing 3D scanning.The outcome of the behavioral weaving process could not be predetermined a priori in a digital model, but rather emerged out of the negotiation among design intentions, fabrication constraints, performance criteria, material behaviors and specific site conditions. The key components of the system and their role in the fabrication process are presented both theoretically and technically, while the project serves as a case study of a robotic production method envisioned as a soft system: a flexible and adaptable framework in which the moment of design unfolds simultaneously with fabrication, informed by a constant flow of sensory information.
keywords soft systems, agent-based systems, robotic fabrication, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id caadria2016_703
id caadria2016_703
authors Ding, Yakui; Tomohiro Fukuda, Nobuyoshi Yabuki, Takashi Michikawa and Ali Motamedi
year 2016
title Automatic Measurement System of Visible Greenery Ratio Using Augmented Reality
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 703-712
doi https://doi.org/10.52842/conf.caadria.2016.703
summary Greening has been promoted to improve the living condi- tions in urban environments. Quantification of greenery is an im- portant issue to identify the criteria for stakeholders in the process of greening. This research focuses on the quantification of visible green- ery ratio which is defined as the amount of greenery in the field of vi- sion. Some measurement methods of visible greenery ratio have been already proposed. However, the quantification process is usually time consuming and prone to human errors due to manual operations by us- ing an image processing software. Therefore, in this research, the au- thors developed an automated measurement system based on image processing technology for the efficient visible greenery ratio meas- urement. In the verification experiment, the proposed method achieved similar results for extracted pixels of green areas as the tradi- tional manual method, with decreased calculation time. Furthermore, in addition to measuring the current ratio of greenery, this system can visualize possible future changes in visible greenery by adding plant- ing (landscape) design models in an Augmented Reality (AR) envi- ronment. Using the proposed method, an ideal greening environment can be designed and evaluated by end-users, more intuitively. The de- veloped design system is expected to eventually result in increasing the amount of greenery in the urban environment.
keywords Visible greenery ratio; image processing; automatic measurement tool; augmented reality
series CAADRIA
email
last changed 2022/06/07 07:55

_id ascaad2016_009
id ascaad2016_009
authors Elbasdi, Gulay; Sema Alaçam
year 2016
title An Investigation on Growth Behaviour of Mycelium in a Fabric Formwork
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 65-74
summary Most progress in designing mycelium-based material to date has been made by using petri dish and 3d printed geometries. In this study, reshaping capabilities of mycelium-based materials using fabric formwork is being discussed. This ongoing study is the result of a series of experiments about mycelium-based material that aims to investigate its potentials as free- form geometry. In this paper, we aim to make a comparison between initial and end shapes by implementing digital and analogue tools based on mycelium-based fabric formwork experiment. The physical experiment setup consists of different initial geometry alternatives and the deformation will be observed and measured numerically by time-based recording on top and section views. With the help of digital tools, experiments will be documented as a process of formation. We aim to discuss the potential of the usage of mycelium as a binding agent in free form geometry since mycelium acts as natural self-assembling glue. By doing so, structural potentials of the material, which is strengthened by mycelium hyphae, were examined. This study aims to contribute to the design research studies and scientific knowledge together to integrate living systems into the material design as encouraging collaborative interdisciplinary research, thereby positioning designer as a decision-maker from the very beginning of material design process.
series ASCAAD
email
last changed 2017/05/25 13:13

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id caadria2016_147
id caadria2016_147
authors Feist, S.; G. Barreto, B. Ferreira and A. Leita?o
year 2016
title Portable generative design for building information modelling
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 147-156
doi https://doi.org/10.52842/conf.caadria.2016.147
summary Generative Design (GD) is a valuable asset for architecture because it provides opportunities for innovation and improvement in the design process. Despite its availability for Computer-Aided De- sign (CAD), there are few applications of GD within the Building In- formation Modelling (BIM) paradigm, and those that exist suffer from portability issues. A portable program is one that will not only work in the application it was originally written for, but also in others with equivalent results. This paper proposes a solution that explores porta- ble GD in the context of BIM. We also propose a set of guidelines for a programming methodology for GD, adapted to the BIM paradigm. In the end, we evaluate our solution using a practical example.
keywords Building information modelling; generative design; porta- bility; programming
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia16_72
id acadia16_72
authors Harrison, Paul
year 2016
title What Bricks Want: Machine Learning and Iterative Ruin
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 72-77
doi https://doi.org/10.52842/conf.acadia.2016.072
summary Ruin has a bad name. Despite the obvious complications, failure provides a rich opportunity—how better to understand a building’s physicality than to watch it collapse? This paper offers a novel method to exploit failure through physical simulation and iterative machine learning. Using technology traditionally relegated to special effects, we can now understand collapse on a granular level: since modern-day physics engines track object-object collisions, they enable a close reading of the spatial preferences that underpin ruin. In the case of bricks, that preference is relatively simple—to fall. By idealizing bricks as rigid bodies, one can understand the effects of gravitational force on each individual brick in a masonry structure. These structures are sometimes able to ‘settle,’ resulting in a stable equilibrium state; in many cases, it means that they will simply collapse. Analyzing ruin in this way is informative, to be sure, but it proves most useful when applied in series. The evolutionary solver described in this paper closely monitors the performance of constituent bricks and ensures that the most successful structures are emulated by later generations. The tool consists of two parts: a user interface for design and the solver itself. Once the architect produces a potential design, the solver performs an evolutionary optimization; after a few hundred iterations, the end result is a structurally sound version of the unstable original. It is hoped that this hybrid of top-down and bottom-up design strategies offers an architecture that is ultimately strengthened by its contingencies.
keywords rigid body analysis, machine learning, multi-agent structural optimization, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:49

_id caadria2016_373
id caadria2016_373
authors Heinrich, Mary Katherine and Phil Ayres
year 2016
title For Time-Continuous Optimisation: Replacing Automation with Interactive Visualisation in Multi-Objective Behavioural Design
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 373-382
doi https://doi.org/10.52842/conf.caadria.2016.373
summary Strategies for optimisation in design normatively assume an artefact end-point, disallowing continuous architecture that engages living systems, dynamic behaviour, and complex systems. In our Flora Robotica investigations of symbiotic plant-robot bio-hybrids, we re- quire computational tools and strategies that help us evaluate designed behaviours, rather than discrete ‘things’. In this paper, we present our strategy of using embodied interaction to facilitate engagement with a scenario’s full scope of possible states and their continuous changes over time. We detail the ways in which this approach to time- continuous optimisation can be broadly impactful for decision- making, especially in architectural systems that aspire to effective dealings with control flows and lifecycle management.
keywords Multi-objective; dynamic; visualisation; interaction; optimisation
series CAADRIA
email
last changed 2022/06/07 07:49

_id ijac201614403
id ijac201614403
authors Kontovourkis, Odysseas and George Tryfonos
year 2016
title Design optimization and robotic fabrication of tensile mesh structures: The development and simulation of a custom-made end-effector tool
source International Journal of Architectural Computing vol. 14 - no. 4, 333-348
summary This article presents an ongoing research, aiming to introduce a fabrication procedure for the development of tensile mesh systems. The purpose of current methodology is to establish an integrated approach that combines digital form- finding and robotic manufacturing processes by extracting data and information derived through elastic material behavior for physical implementation. This aspires to extend the capacity of robotically driven mechanisms to the fabrication of complex tensile structures and, at the same time, to reduce the defects that might occur due to the deformation of the elastic material. In this article, emphasis is given to the development of a custom-made end-effector tool, which is responsible to add elastic threads and create connections in the form of nodes. Based on additive fabrication logic, this process suggests the development of physical prototypes through a design optimization and tool-path verification.
keywords Robotic fabrication, tensile mesh structures, real-time response, end-effector tool, multi-objective gentic algorithms, structure optimization, form-finding
series journal
email
last changed 2016/12/09 10:52

_id ijac201614205
id ijac201614205
authors Leitao, Anto?nio; Ines Caetano and Hugo Correia
year 2016
title Processing architecture
source International Journal of Architectural Computing vol. 14 - no. 2, 147-157
summary Programming promotes creative freedom but might require considerable effort to learn. The Processing language was created to simplify this learning process. Due to its graphical capabilities, the language has become very popular among the electronic arts and design communities. Unfortunately, this popularity could not be extended to the architecture community, which relies on traditional heavyweight computer-aided design and building information modeling applications that cannot be programmed using Processing. As a result, it becomes difficult for architects to take advantage of Processing. To solve this problem, we propose an implementation of Processing that runs in the context of the most used computer-aided design tools in architecture. Our implementation allows Processing to generate two- or three-dimensional models that are directly usable for architectural work. To this end, we also propose extensions to the language, including three-dimensional modeling primitives that dramatically simplify the effort needed for developing large and complex architectural models with Processing.
keywords Generative Design, Programming, Processing, Architecture, 3D Modeling
series journal
last changed 2016/06/13 08:34

_id acadia16_78
id acadia16_78
authors Parker, Matthew; Taron, Joshua M.
year 2016
title Form-Making in SIFT Imaged Environments
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 78-87
doi https://doi.org/10.52842/conf.acadia.2016.078
summary Within the contemporary condition, turbulence that confronts architecture is no longer unpredictable weather patterns or wild beasts, but the unintended forces of a constantly connected digital infrastructure that demands constant attention. If, as Mark Wigley puts it, “architecture is always constructed in and against a storm” it is time for architecture to reevaluate its ability to separate us from a new storm-one that situates technology, global connectivity, human, non-human and composite users, and algorithmic architecture itself as new weather systems. Toward this end, this paper explores architecture’s ability to mediate and produce algorithmic turbulence generated through image-based sensing of the built environment. Through a close reading of Le Corbusier’s Urbanisme, we argue that for much of the 20th and the early part of the 21st century, cities have been designed to produce diagrams of smooth and homogenous flows. However, distributed personal technologies produce virtual layers that unevenly map onto the city, resulting in turbulent forces that computational platforms aim to conceal behind a visual narrative of accuracy, cohesion, anticipation, and order. By focusing on SIFT algorithms and their ability to extract n-dimensional vectors from two-dimensional images, this research explores computational workflows that mobilize turbulence towards the production of indeterminate form. These forms demarcate a new kind of challenge for both architecture and the city, whereby a cultural appetite to deploy algorithms that produce a smooth and seamless image of the world comes hand in hand with the turbulent and disruptive autonomy of those very same algorithms. By revisiting Urbanisme, a new set of architectural objectives are established that contextualize SIFTS within an urban agenda.
keywords complex morphology, sift algorithms, architectural representation, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id caadria2016_333
id caadria2016_333
authors Schubert, Gerhard; Benjamin Strobel and Frank Petzold
year 2016
title Tangible Mixed Realty: Interactive Augmented Visualisation of Digital Simulation in Physical Working Models
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 333-342
doi https://doi.org/10.52842/conf.caadria.2016.333
summary The implications of architectural design decisions are in many cases hard to predict and envisage. As architectural tasks grow more complex and the design of architecture shifts away from the de- sign of end products towards the steering of dynamic processes, new ways of coping with complexity in the design and planning process are needed. Taking this as its starting point, as well as the need for ar- chitects to use familiar, established design tools, the CDP research group is working on new ways of supporting the design decision- making process with objective information so that designers are better able to manage these complexities. The focus of the group lies on di- rectly coupling interactive simulations and analyses with established design tools. This paper discusses a central problem in this context: how to present complex calculation results directly within a physical 3D-model. The approach described, as evidenced by the realized pro- totype, shows clearly that directly coupling real and digital infor- mation using interactive augmented visualization presents immense possibilities for managing the complexity of planning processes.
keywords Design support, simulations, computational design, urban planning, augmented reality
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia16_214
id acadia16_214
authors Schwartz, Mathew
year 2016
title Use of a Low-Cost Humanoid for Tiling as a Study in On-Site Fabrication: Techniques and Methods
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 214-223
doi https://doi.org/10.52842/conf.acadia.2016.214
summary Since the time architecture and construction began embracing robotics, the pre-fab movement has grown rapidly. As the possibilities for new design and fabrication emerge from creativity and need, the application and use of new robotic technologies becomes vital. This movement has been largely focused on the deployment of industrial-type robots used in the (automobile) manufacturing industry for decades, as well as trying to apply these technologies into off-site building construction. Beyond the pre-fab (off-site) conditions, on-site fabrication offers a valuable next step to implement new construction methods and reduce human work-related injuries. The main challenge in introducing on-site robotic fabrication/construction is the difficulty in calibrating robot navigation (localization) in an unstructured and constantly changing environment. Additionally, advances in robotic technology, similar to the revolution of at-home 3D printing, shift the ownership of modes of production from large industrial entities to individuals, allowing for greater levels of design and construction customization. This paper demonstrates a low-cost humanoid robot as highly customizable technology for floor tiling. A novel end-effector design to pick up tiles was developed, along with a localization system that can be applied to a wide variety of robots.
keywords humanoid robot, digital fabricaiton, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2016_237
id ecaade2016_237
authors Svidt, Kjeld and S?rensen, Jesper Bendix
year 2016
title Development of a Virtual Reality Solution for End User Involvement in Interior Design
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 541-546
doi https://doi.org/10.52842/conf.ecaade.2016.2.541
wos WOS:000402064400054
summary This paper describes development and test of a prototype Virtual Reality system aimed at user involvement in hospital design. User needs and functional requirements are captured by interviews and observations in three case studies of ongoing projects in Denmark. Based on the identified requirements, a prototype is developed based on a multitouch display for manipulating room layout in a floor plan view and a set of Oculus Rift glasses for experiencing the design in Virtual Reality. Together with users from the studied cases, test scenarios were performed to identify possible benefits, challenges and further requirements to the system.
keywords User involvement; hospital buildings; interior design; virtual reality
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2016_579
id caadria2016_579
authors Tan, Rachel and Stylianos Dritsas
year 2016
title Clay Robotics: Tool making and sculpting of clay with a six-axis robot
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 579-588
doi https://doi.org/10.52842/conf.caadria.2016.579
summary The objective of the project is to design a reproducible clay sculpting process with an industrial robotic arm using parametric con- trol to directly translate mesh geometry from Computer Aided Design (CAD) environment into a lump of clay. This is accomplished through an algorithmic design process developed in Grasshopper using the C# programming language. The design process is enabled by our robotics modelling and simulation library which provides tools for kinematics modelling, motion planning, visual simulation and networked com- munication with the robotic system. Our process generates robot joint axis angle instructions through inverse kinematics which results into linear tool paths realised in physical space. Unlike common subtrac- tive processes such as Computer Numeric Control (CNC) milling where solid material is often pulverised during machining operations, our process employs a carving technique to remove material by dis- placement and deposition due to the soft and self-adhesive nature of the clay material. Optimisation of self-cleaning paths are implemented and integrated into the sculpting process to increase pathing efficiency and end product quality. This paper documents the process developed, the obstacles faced in motion planning of the robotic system and dis- cusses the potential for creative applications in digital fabrication us- ing advanced machines that in certain terms exceed human capability yet in others are unable to reach the quality of handmade works of art.
keywords Design computation; digital fabrication; architectural robotics
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2016_725
id caadria2016_725
authors Tong, Ziyu and Ronglou Zhou
year 2016
title Design and Fabrication of 3D Reciprocal Frame Structure
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 725-734
doi https://doi.org/10.52842/conf.caadria.2016.725
summary Reciprocal frame structure is a special type of spatial struc- ture, which consist of elongated elements. The elements support each other along their span, compose a stable geometrical configuration without any clear structural hierarchy. Based on the morphology, the reciprocal frame could be categorized to 1D, 2D, and 3D. Compared to 1D and 2D, 3D reciprocal frame presents some novel features. It shows a growing pattern with some simple rules. Even with the same rule, 3D reciprocal frame could grow up to different form. It’s a typi- cal process of bottom-up which implies a considerable wealth of pos- sibilities. Study on the 3D reciprocal frame gives the potential for achieving novel and complex forms. With the restriction of the cate- gory of 3D reciprocal frame, the paper summarized the characteristics of the frame as growth, regularity, and spatiality. And the structure should be repeated, simulated, and constructed. The paper also ex- tracted three basic factors - growth rule, initial form, and bar size. Through the simulation experiments with different factors, the rela- tionships between the frame shape and the factors were established. At the end, a full-scale model validates the feasibility of the growth result of 3D reciprocal frame.
keywords Reciprocal frame structure; spatial structure; 3-dimension; fabrication; rule-based
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2016_097
id ecaade2016_097
authors Turunen, Heidi
year 2016
title Additive Manufacturing and Value Creation - in Architectural Design, Design Process and End-products
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 103-111
doi https://doi.org/10.52842/conf.ecaade.2016.1.103
wos WOS:000402063700012
summary The objective of this paper is to clarify how value creation can be a part of architectural design and end-products when using the new emerging technology of additive manufacturing. Different kinds of values that have emerged from the research material have been analysed and summarised using selected case studies of recent building-scale projects. In applying this technique to architecture, the result can be visually and functionally novel, smarter and more sustainable buildings or products. A new individually manufactured or customised architecture can be created to serve different cultural and well-being needs cost effectively and without any waste. This new production method can lead to unique joint structures with the use of traditionally produced new or old building parts to enhance architecture, prevent climate change or aid environmental issues. However, most research projects and applications done by commercial companies are at the early stages.
keywords Large-scale additive manufacturing; 3D printed architecture; Digital design; New materials; New production methods
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia16_184
id acadia16_184
authors Vasey; Lauren; Long Nguyen; Tovi Grossman; Heather Kerrick; Danil Nagy; Evan Atherton; David Thomasson; Nick Cote; David Benjamin; George Fitzmaurice; Achim Menges
year 2016
title Collaborative Construction: Human and Robotic Collaboration Enabling the Fabrication and Assembly of a Filament-Wound Structure
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 184-195
doi https://doi.org/10.52842/conf.acadia.2016.184
summary In this paper, we describe an interdisciplinary project and live-exhibit that investigated whether untrained humans and robots could work together collaboratively towards the common goal of building a large-scale structure composed out of robotically fabricated modules using a filament winding process. We describe the fabrication system and exhibition setup, including a custom end effector and tension control mechanism, as well as a collaborative fabrication process in which instructions delivered via wearable devices enable the trade-off of production and assembly tasks between human and robot. We describe the necessary robotic developments that facilitated a live fabrication process, including a generic robot inverse kinematic solver engine for non-spherical wrist robots, and wireless network communication connecting hardware and software. In addition, we discuss computational strategies for the fiber syntax generation and robotic motion planning which mitigated constraints such as reachability, axis limitations, and collisions, and ensured predictable and therefore safe motion in a live exhibition setting. We discuss the larger implications of this project as a case study for handling deviations due to non-standardized materials or human error, as well as a means to reconsider the fundamental separation of human and robotic tasks in a production workflow. Most significantly, the project exemplifies a hybrid domain of human and robot collaboration in which coordination and communication between robots, people, and devices can enhance the integration of robotic processes and computational control into the characteristic processes of construction.
keywords machin vision, cyber-physical systems, internet of things, robotic fabrication, human robot collaboration, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_951851 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002