CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 70

_id ecaade2017_144
id ecaade2017_144
authors Lange, Christian J.
year 2017
title Elements | robotic interventions II
doi https://doi.org/10.52842/conf.ecaade.2017.1.671
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 671-678
summary Reviewing the current research trends in robotic fabrication around the world, the trajectory promises new opportunities for innovation in Architecture and the possible redefinition of the role of the Architect in the industry itself. New entrepreneurial, innovative start-ups are popping up everywhere challenging the traditional model of the architect. However, it also poses new questions and challenges in the education of the architect today. What are the appropriate pedagogical methods to instill enthusiasm for new technologies, materials, and craft? How do we avoid the pure application of pre-set tools, such as the use of the laser cutter has become, which in many schools around the world has caused problems rather than solving problems? How do we teach students to invent their tools especially in a society that doesn't have a strong background in the making? The primary focus of this paper is on how architectural CAAD/ CAM education through the use of robotic fabrication can enhance student's understanding, passion and knowledge of materiality, technology, and craftsmanship. The paper is based on the pedagogical set-up and method of an M. Arch I studio that was taught by the author in fall 2016 with the focus on robotic fabrication, materiality, traditional timber construction systems, tool design and digital and physical craftsmanship.
keywords CAAD Education, Digital Technology, Craftsmanship, Material Studies, Tool Design, Parametric Modeling, Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2020_043
id caadria2020_043
authors Bai, Nan, Nourian, Pirouz, Xie, Anping and Pereira Roders, Ana
year 2020
title Towards a Finer Heritage Management - Evaluating the Tourism Carrying Capacity using an Agent-Based Model
doi https://doi.org/10.52842/conf.caadria.2020.1.305
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 305-314
summary As one of the most important areas in the Palace Museum, Beijing, China, the Hall of Mental Cultivation had suffered from overcrowding of visitors before it was closed in 2016 for conservation. Preparing for the reopening in 2020, the Palace Museum decided to take the chance and initiate finer-grained tourism management in the Hall. This research intends to provide an audio-guided touring program by dynamically evaluating the Tourism Carrying Capacity (TCC) with the highlight spots in the Hall, to operate the touring program spatiotemporally. Framing an optimization problem for the touring program, an agent-based simulator, Thunderhead Pathfinder, originally developed for evacuation in the emergency, is utilized to verify the performance of the touring system. The simulation shows that the proposed touring program could precisely fit all the key requirements to improve the visitors' experience, to guarantee heritage safety, and to ensure more efficient management.
keywords Tourism Carrying Capacity; Agent-Based Simulation; Operations Research; Heritage Management
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2016_497
id caadria2016_497
authors Ryu, Jungrim; Jaehong Jun, Seunghyeon Lee and Seungyeon Choo
year 2016
title A Study on Development of the IFC-based Indoor Spatial Information for Data Visualisation
doi https://doi.org/10.52842/conf.caadria.2016.497
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 497-506
summary MOLIT authorised Indoor Spatial Information as Basic spa- tial information in 2013. It became a legal evidence for constructing and managing Indoor Spatial Information. Although it has a little ad- vantage to utilise as service level that Indoor Spatial Information by laser scan or measurement, it has a lot of problems such as consuming many resources, requiring additional progresses for inputting Object Information. In conclusion, it is inefficient to utilise for the mainte- nance and domestic AEC/FM field. The purposes of this study is to output Indoor Spatial Information by operating IFC model which based on open BIM and to improve availability of Indoor Spatial In- formation with data visualisation. The open-sources of IFC Exporter, an inner program of Revit, is used to output Indoor Spatial Infor- mation. Directs 3D Library is also operated to visualise Indoor Spatial Information. It is possible to inter-operate between XML format and the objects of Indoor Spatial Information. It can be utilised in various field as well. For example COBie linkage in facility management, construction of geo-database using air-photogrammetry of UA V , the simulation of large-scale military operations and the simulation of large-scale evacuation. The method that is purposed in this study has outstanding advantages such as conformance with national spatial in- formation policy, high level of interoperability as indoor spatial in- formation objects based on IFC, convenience of editing information, light level of data and simplifying progress of producing information.
keywords Indoor spatial information, data visualisation, open BIM, IFC
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2016_448
id sigradi2016_448
authors Afsari, Kereshmeh; Eastman, Charles M.; Shelden, Dennis R.
year 2016
title Data Transmission Opportunities for Collaborative Cloud-Based Building Information Modeling
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.907-913
summary Collaboration within Building Information Modeling process is mainly based on file transfer while BIM data being exchanged in either vendor specific file formats or neutral format using Industry Foundation Classes (IFC). However, since the Web enables Cloud-based BIM services, it provides an opportunity to exchange data via Web transfer services. Therefore, the main objective of this paper is to investigate what features of Cloud interoperability can assist a network-based BIM data transmission for a collaborative work flow in the Architecture, Construction, and Engineering (AEC) industry. This study indicates that Cloud-BIM interoperability needs to deploy major components such as APIs, data transfer protocols, data formats, and standardization to redefine BIM data flow in the Cloud and to reshape the collaboration process.
keywords BIM; Cloud Computing; Data Transmission; Interoperability; IFC
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_ws-folding
id ecaade2016_ws-folding
authors Akleman, Ergun, Kalantar, Negar and Borhani, Alireza
year 2016
title Folding The Unfoldable - A Method For Constructing Complex-Curved Geometry With Quad Edge Panels
doi https://doi.org/10.52842/conf.ecaade.2016.1.069
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 69-72
summary This paper explains a method will be used during a workshop for constructing complex-curved geometry with quad edge panels. In this workshop, we demonstrate that quad-edge mesh data structure can efficiently be used to construct complex large shapes. With hands-on experiments, we will show a vast variety of shapes can be constructed using square, rectangular, parallelogram and extruded-line shaped panels. In addition, using a system we have recently developed to unfold polygonal mesh, we will demonstrate how desired shapes can be constructed by using laser-cut quadrilateral panels. This approach is particularly suitable to construct complicated sculptural and architectural shapes from anisotropic materials that can only be bended in one direction.
wos WOS:000402063700007
keywords Shape Modeling; Physical Construction; Complex-Curved Geometry; Digital Fabrication
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2016_063
id ecaade2016_063
authors Al-Qattan, Emad, Galanter, Philip and Yan, Wei
year 2016
title Developing a Tangible User Interface for Parametric and BIM Applications Using Physical Computing Systems.
doi https://doi.org/10.52842/conf.ecaade.2016.2.621
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 621-630
summary This paper discusses the development of an interactive and a responsive Tangible User-Interface (TUI) for parametric and Building Information Modeling (BIM) applications. The prototypes presented in this paper utilizes physical computing systems to establish a flexible and intuitive method to engage digital design processes.The prototypes are hybrid UIs that consist of a digital modeling tool and an artifact. The artifact consists of a control system (sensors, actuators, and microcontrollers) and physical objects (architectural elements). The link between both environments associates physical objects with their digital design information to assist users in the digital design process. The integration of physical computing systems will enable the objects to physically respond to analog input and provide real-time feedback to users. The research aims to foster tangible computing methods to extend the capabilities of digital design tools. The prototypes demonstrate a method that allows architects to simultaneously interact with complex architectural systems digitally and physically.
wos WOS:000402064400063
keywords Physical Computing; Parametric Design; BIM; Tangible UI
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2016_031
id ascaad2016_031
authors Amireh, Omar; Manal Ryalat and Tasbeeh Alaqtum
year 2016
title Narrative Architectural Fiction in Mentally Built Environments
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 283-294
summary A thin line lies between reality and fiction; what is mentally imagined and what is visualized. It all depends on how ideas and images are perceived or what neurological activity is triggered in the user’s brain. Architects and designers spare no effort or tools in presenting buildings, architecture or designs in all forms or ways that would augment users’ experience whether on the perceptual or the cognitive level and in both the digital or the physical environments. In a progressive tendency they, the designers, tend to rely more and more on digitizing their vision and mission, which subsequently give them, impressive and expressive superiority, that would influence the users conscious on the one hand and manipulate their subconscious on the other. Within that process designers work hard to break any mental firewall that would prevent their ideas from pervading the space of any mental environment the user, build or visualize. In that context, to what extent such ways of mental entertainments used by architects, legitimize deception in design? What distinguishes employing the rhythmic simulation of the narrative fictional inceptions (virtual reality) from deploying the adaptive stimulation of the experience modeling conceptions. The difference between planting an idea and constructing an idea. It is not the intention of the paper to prove the failure of the computer aided design neither to stand against the digital architectural design media and applications development. It is rather to present a different way of understanding of how architectural design whether virtual, digital, or real can stimulates and induces codes and messages that is correlated to the brainwave cognitive attributes and can generate a narrative brain environment where the brain can construct and simulate its own fictional design. Doing so, the paper will review certain experimental architectural events and activities which integrate sound and sight elements and effects within some electronic, technical and digital environments.
series ASCAAD
email
last changed 2017/05/25 13:33

_id sigradi2016_440
id sigradi2016_440
authors Amorim, Arivaldo Le?o de
year 2016
title Cidades Inteligentes e City Information Modeling [Smart Cities and City Information Modeling]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.481-488
summary This paper presents and discusses the relationship between the concepts of Smart Cities and City Information Modeling (CIM). It conveys the notion that these are complementary and not competing concepts, as one might think at first glance. On the other hand, the paper demonstrates the importance of these concepts to overcome the challenges to the cities of the 21st century, from findings contained in official documents published by the United Nations (UN), to analyze the growth of world population and the emergence of new cities to house population groups. Finally, this paper argues that the CIM with an inducing factor for the Smart City is an important resource to help improve the quality of life in cities.
keywords Smart Cities; City Information Modeling; Sustainability; Cities of the Future; Information Modeling
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2016_055
id ascaad2016_055
authors Barbouche, Rached
year 2016
title Modeling Decorative Forms and Design Knowledge
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 547-556
summary Form analysis in architecture is a method to increase knowledge of human made objects, by observation and description. Modeling attempts to identify characteristics carried by these objects and the rules of their production. Two approaches are relevant here. The first concerns the analysis and modeling of an object corpus (decors worn by windows), belonging to colonial architecture of Tunis from the late 19th to early 20th century and the second deals from a GIS, storing and mapping the forms variation, taken on the analyzed objects. The set allows developing tools for decision support, used not only in the description of a corpus, but also ultimately to lead to the architectural and stylistic classification of the city buildings.
series ASCAAD
email
last changed 2017/05/25 13:34

_id sigradi2016_815
id sigradi2016_815
authors Bernal, Marcelo
year 2016
title From Parametric to Meta Modeling in Design
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.579-583
summary This study introduces the Meta-Modeling process adopted from the Model Based System Engineering field (MBSE) to explore an approach for the generation of design alternatives beyond the restrictions of the Parametric Models that mainly produce geometric variations and have limitations in terms of topological transformations during the exploratory design tasks. The Meta-Model is the model of attributes and relationships among objects of a particular domain. It describes objects and concepts in abstract terms independent from the complexity of the geometric models and provides mapping mechanisms that facilitate the interfacing with parametric parts. The flexibility of these computer-interpretable and human-readable models can contribute to creatively manipulate the design knowledge embedded in parametric models.
keywords Parametric Modeling; Meta-Modeling; Model Based System Engineering; Modeling Languages; Systems Integration
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_188
id ecaade2016_188
authors Bingöl, Cemal Koray and Çolako?lu, Birgül
year 2016
title Agent-Based Urban Growth Simulation - A Case Study on Istanbul
doi https://doi.org/10.52842/conf.ecaade.2016.2.041
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 41-48
summary This study aims to create a simulation model for urban growth with agent-based modeling. The model is based on the theoretical research of Michael Batty on urban growth simulations. The study explains how the theoretical approach applied in the model with the parameters. The model in this study is created in an open-source API called 'Processing' and the simulations executed through the parameters in the study. The results of the simulation are compared with each other to find optimal parameters fits in the theoretical approach. Parameters are tested on an existing urban settlement map, which Is Istanbul. The results of Istanbul simulation are compared with existing density and urban sprawl maps of Istanbul and discussed for further studies.
wos WOS:000402064400003
keywords agent-based design; urban growth; urban simulation
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2016_724
id sigradi2016_724
authors Bomfim, Carlos Alberto Andrade; Lisboa, Bruno Teixeira Wildberger; Matos, Pedro Cesar Correia de
year 2016
title Gest?o de Obras com BIM – Uma nova era para o setor da Construç?o Civil [Construction Management with BIM – A new era for the Construction sector]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.556-560
summary The update in the design process associated with a constant search for efficient construction methods, budgets and actual schedules, passes through common terms the planning engineering and constructability, rationalization and integration. This article is based on literature review on the topic and interview with the experience of BIM core of a company in Brazil. BIM involves more than just 3D modeling and is also commonly defined into more dimensions, such as 4D (time), 5D (cost), 6D (the built - operation) and 7D (sustainability). The use of BIM can now be considered a reality that will promote changes to Construction.
keywords Project Management; Construction Management; Digital Modeling; Design Process; Simulation
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_199
id ecaade2016_199
authors Caetano, In?s and Leit?o, António
year 2016
title Using Processing with Architectural 3D Modelling
doi https://doi.org/10.52842/conf.ecaade.2016.1.405
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 405-412
summary Although programming was considered a specialized task in the past, we have been witnessing an increasing use of algorithms in the architectural field, which has opened up a wide range of new design possibilities. This was possible in part due to programming languages that were designed to be easy to learn and use by designers and architects, such as Processing. Processing is widely used for academic purposes, whereas in the architectural practice it is not as used as other programming languages due to its limitations for 3D modeling. In this paper, we describe the use of an extended Processing implementation to generate three 3D models inspired in existing case studies, which can be visualized and edited in different CAD and BIM applications.
wos WOS:000402063700045
keywords Generative design; Programming; Processing; 3D modeling
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia16_440
id acadia16_440
authors Clifford, Brandon
year 2016
title The McKnelly Megalith: A Method of Organic Modeling Feedback
doi https://doi.org/10.52842/conf.acadia.2016.440
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 440-449
summary Megalithic civilizations held tremendous knowledge surrounding the deceivingly simple task of moving heavy objects. Much of this knowledge has been lost to us from the past. This paper mines, extracts, and experiments with this knowledge to test what applications and resonance it holds with contemporary digital practice. As an experiment, a sixteen-foot tall megalith is designed, computed, and constructed to walk horizontally and stand vertically with little effort. Testing this prototype raises many questions about the relationship between form and physics. In addition, it projects practical application of such reciprocity between architectural desires and the computation of an object’s center of mass. This research contributes to ongoing efforts around the integration of physics-based solvers into the design process. It goes beyond the assumption of statics as a solution in order to ask questions about what potentials mass can contribute to the assembly and erecting of architectures to come. It engages a megalithic way of thinking which requires an intimate relationship between designer and center of mass. In doing so, it questions conventional disciplinary notions of stasis and efficiency.
keywords rapid prototyping, design simulation, fabrication, computation, megalith
series ACADIA
type normal paper
email
more admin
last changed 2022/06/07 07:56

_id ecaade2016_078
id ecaade2016_078
authors Das, Subhajit, Zolfagharian, Samaneh, Nourbakhsh, Mehdi and Haymaker, John
year 2016
title Integrated Spatial-Structural Optimization in the Conceptual Design Stage of Project - A tool to generate and optimize design solutions aiding informed decision making for Architects, Engineers and Stakeholders
doi https://doi.org/10.52842/conf.ecaade.2016.2.117
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 117-126
summary Healthcare design projects require the careful integration of spatial and structural requirements. Today, design teams typically resolve these requirements in two separate, largely sequential steps. In the first step, architects leverage their experience and vision to develop space plans that address program and goals. Next, based on the architect's recommended design, engineers generate and refine a structural design to address structural requirements. This manual process produces a very limited number of non optimal spatial and structural design solutions with unclear decision rationale. This paper presents the Integrated Spatial-Structural Optimization (ISSO) decision making methodology. ISSO supports design teams by helping them generate, analyze, and manage a vast number of integrated spatial and structural solutions. ISSO features a bi-level optimization workflow that has been customized for spatial and structural design of healthcare facilities. The paper describes implementation in the Dynamo parametric modeling platform, and retrospective validation of the algorithm and workflow on an industry case study to demonstrate how ISSO can help design teams generate, analyze, and manage more conceptual design options.
wos WOS:000402064400011
keywords Spatial Design; Generative Design; Design Optimization; Facility Planning; Design Tools; Design Automation
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia20_688
id acadia20_688
authors del Campo, Matias; Carlson, Alexandra; Manninger, Sandra
year 2020
title 3D Graph Convolutional Neural Networks in Architecture Design
doi https://doi.org/10.52842/conf.acadia.2020.1.688
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 688-696.
summary The nature of the architectural design process can be described along the lines of the following representational devices: the plan and the model. Plans can be considered one of the oldest methods to represent spatial and aesthetic information in an abstract, 2D space. However, to be used in the design process of 3D architectural solutions, these representations are inherently limited by the loss of rich information that occurs when compressing the three-dimensional world into a two-dimensional representation. During the first Digital Turn (Carpo 2013), the sheer amount and availability of models increased dramatically, as it became viable to create vast amounts of model variations to explore project alternatives among a much larger range of different physical and creative dimensions. 3D models show how the design object appears in real life, and can include a wider array of object information that is more easily understandable by nonexperts, as exemplified in techniques such as building information modeling and parametric modeling. Therefore, the ground condition of this paper considers that the inherent nature of architectural design and sensibility lies in the negotiation of 3D space coupled with the organization of voids and spatial components resulting in spatial sequences based on programmatic relationships, resulting in an assemblage (DeLanda 2016). These conditions constitute objects representing a material culture (the built environment) embedded in a symbolic and aesthetic culture (DeLanda 2016) that is created by the designer and captures their sensibilities.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia16_488
id acadia16_488
authors Derme, Tiziano; Mitterberger, Daniela; Di Tanna, Umberto
year 2016
title Growth Based Fabrication Techniques for Bacterial Cellulose: Three-Dimensional Grown Membranes and Scaffolding Design for Biological Polymers
doi https://doi.org/10.52842/conf.acadia.2016.488
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 488-495
summary Self-assembling manufacturing for natural polymers is still in its infancy, despite the urgent need for alternatives to fuel-based products. Non-fuel based products, specifically bio-polymers, possess exceptional mechanical properties and biodegradability. Bacterial cellulose has proven to be a remarkably versatile bio-polymer, gaining attention in a wide variety of applied scientific applications such as electronics, biomedical devices, and tissue-engineering. In order to introduce bacterial cellulose as a building material, it is important to develop bio-fabrication methodologies linked to material-informed computational modeling and material science. This paper emphasizes the development of three-dimensionally grown bacterial cellulose (BC) membranes for large-scale applications, and introduces new manufacturing technologies that combine the fields of bio-materials science, digital fabrication, and material-informed computational modeling. This paper demonstrates a novel method for bacterial cellulose bio-synthesis as well as in-situ self-assembly fabrication and scaffolding techniques that are able to control three-dimensional shapes and material behavior of BC. Furthermore, it clarifies the factors affecting the bio-synthetic pathway of bacterial cellulose—such as bacteria, environmental conditions, nutrients, and growth medium—by altering the mechanical properties, tensile strength, and thickness of bacterial cellulose. The transformation of the bio-synthesis of bacterial cellulose into BC-based bio-composite leads to the creation of new materials with additional functionality and properties. Potential applications range from small architectural components to large structures, thus linking formation and materialization, and achieving a material with specified ranges and gradient conditions, such as hydrophobic or hydrophilic capacity, graded mechanical properties over time, material responsiveness, and biodegradability.
keywords programmable materials, material agency, biomimetics and biological design
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id sigradi2018_1483
id sigradi2018_1483
authors Dias Maciel, Sérgio; de Amorim, Arivaldo Leão; de Souza Checcucci, Érica; Bomfim Santos, Kyane
year 2018
title The creative process in architectural design on a digital environment: an experience with beginner students
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1010-1016
summary This article presents some results in the architectural design course, which were obtained by under graduate students in two experimental class organized at Federal University of Bahia in 2016 and 2017 years. The class Studio I, with incoming students (2016) and Integrated Digital Studio, with beginners and sophomore students (2017), were planned to have their activities developed in a digital environment, using geometric modeling as the main resource for the architectural design. The results obtained show maturity and autonomy of the students related to architectural designing and the use of digital resources.
keywords Architectural design; Architectural design teaching; Geometric Modeling; CAAD
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2016_417
id sigradi2016_417
authors Digiandomenico, Dyego; Landim, Gabriele; Fischer, Henrique
year 2016
title Trançado: recursos computacionais aplicados no processo de projeto de mobiliário urbano permanente [Trançado: computational design thinking applied to a permanent urban furniture project]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.20-25
summary This paper presents and discusses the research, design and construction of the urban furniture "Trançado", permanently located at Largo da Batata, a public space in S?o Paulo, Brazil. The project was accomplished using computational design processes as parametric modeling and digital fabrication of prototypes. Stakeholders from different areas were involved: professionals, organizations and citizens. The article contributes discussing and describing the technical features. Above all, it produces inputs for reflection and progress of the application of computational design in architecture.
keywords Urban furniture; computational design; parametric modeling; algorithmic architecture; collaborative processes
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3HOMELOGIN (you are user _anon_433581 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002