CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 622

_id ecaade2016_150
id ecaade2016_150
authors Barczik, Günter and Kruse, Rolf
year 2016
title Shifting Design Work from Production to Evaluation - An Evolutive Design Tool
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 109-115
doi https://doi.org/10.52842/conf.ecaade.2016.2.109
wos WOS:000402064400010
summary We are developing an evolutive design tool that seeks to facilitate a shift in the focus of the process of designing architecture: away from the production of design alternatives or options towards an evaluation of semi-automatically generated ones. We work towards outsourcing the production of design alternatives in a given design task to a CAD tool and thereby give human designers more time to evaluate and discuss those alternatives and guide the tool in the production of improved alternatives. The format of our work is an experimental student design and research project where architects and computer scientists collaborate. Though the project is in a very early stage, our aim is to ultimately shift the focus of human designers' involvement from production of design options to the evaluation of those, in order to give humans more time to think, discuss, find, analyze and include many different points of view and make it easier for them to be impartial in finding optimal solutions. We developed a design tool that uses interactive evolutionary algorithms to support exploration of design options.
keywords Genetic Algorithm; Evolutive Design Strategy; Interactive evolutionary computation
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2016_042
id ecaade2016_042
authors Narangerel, Amartuvshin, Lee, Ji-Hyun and Stouffs, Rudi
year 2016
title Daylighting Based Parametric Design Exploration of 3D Facade Patterns
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 379-388
doi https://doi.org/10.52842/conf.ecaade.2016.2.379
wos WOS:000402064400037
summary A building façade plays an important role of reducing artificial lighting by introducing natural light into the interior space. A majority of research and current technology heavily focuses on the optimization of window properties such as the size, location, and glazing with the consideration of external shading device as well as the building wall in order to obtain appropriate natural lit space. In the present work, we propose a 3-dimensional approach that can explore the trade-offs between two objectives, daylight performance and electricity generation, by means of paramedic modeling and multi-objective optimization algorithm. The case study was simulated under the environmental setting of the geographical location of Incheon, Korea without any urban context. Using the proposed methods, 50 pareto-front optimal solutions were derived and investigated based on the achieved daylighting and generated electricity.
keywords Parametric design; façade design; daylight performance; building-integrated photovoltaics; multi-objective optimization
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia16_24
id acadia16_24
authors Savov, Anton; Buckton, Ben; Tessmann, Oliver
year 2016
title 20,000 Blocks: Can gameplay be used to guide non-expert groups in creating architecture?
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 24-33
doi https://doi.org/10.52842/conf.acadia.2016.024
summary The paper follows research in engaging groups of non-trained individuals in the creation of architectural designs using games and crowdsourcing for human-directed problem-solving. With the proposed method, architectural experts can encode their design knowledge into custom-developed multiplayer gameplay in Minecraft. Non-expert players then are constrained by this gameplay which guides them to create unique architectural results. We describe a method with three components: guiding rules, verification routines and fast feedback. The method employs a real-time link between the game and structural analysis in Grasshopper to verify the designs. To prove the viability of these results, we use robotic fabrication, where the digital results are brought to reality at scale. A major finding of the work is the suite of tools for calibrating the balance of influence on the resulting designs between the Experts and the Players. We believe that this process can create designs which are not limited to parametrically optimal solutions but could also solve real-world problems in new and unexpected ways.
keywords robot-human collaboration, digital fabrication, gaming in design, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id caadria2016_777
id caadria2016_777
authors Aditra, Rakhmat F. and Andry Widyowijatnoko
year 2016
title Combination of mass customisation and conventional construction: A case study of geodesic bamboo dome
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 777-786
doi https://doi.org/10.52842/conf.caadria.2016.777
summary With the development of advance fabrication, several digi- tal fabrication approaches have been developed. These approaches en- able better form exploration than the conventional manufacturing pro- cess. But, the built examples mostly rely on advance machinery which was not familiar or available in developed country where construction workers are still abundant. Meanwhile, much knowledge gathers in the field practice. This research is aimed to explore an alternative con- struction workflow and method with the combination of mass custom- ization and conventional construction method and to propose the structure system that emphasized this alternative workflow and meth- od. Lattice structure was proposed. The conventional construction method was used in the struts production and mass customization method, laser cutting, and was used for connection production. The algorithmic process was used mainly for data mining, details design, and component production. The backtracking was needed to be pre- dicted and addressed previously. Considerations that will be needed to be tested by further example are on the transition from the digital pro- cess to the manual process. Next research could be for analysing the other engineering aspect for this prototype and suggesting other struc- tural system with more optimal combination of conventional construc- tion and mass customization.
keywords Mass customisation; algorithmic design; digital fabrication; geodesic dome; lattice structure
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201614105
id ijac201614105
authors Ahlquist, Sean
year 2016
title Sensory material architectures: Concepts and methodologies for spatial tectonics and tactile responsivity in knitted textile hybrid structures
source International Journal of Architectural Computing vol. 14 - no. 1, 63-82
summary As the knowledge of material computation advances, continuing the seamless integration of design and fabrication, questions beyond materialization can be addressed with a focus on sensing, feedback, and engagement as critical factors of design exploration. This article will discuss a series of prototypes, design methodologies, and technologies that articulate a textile’s micro-architecture, at the scale of fibers and stitches, to instrumentalize simultaneous structural, spatial, and sensory-responsive qualities. The progression of research displays an ever-deepening instrumentalization of fiber structure and its implications to form definition and responsivity, in creating form- and bending-active structures. The research results in a more refined definition of material behavior as the innate phenomena which emerge at the moment of textile fabrication. Ultimately, the architecture, in its materiality and physical, visual, and auditory responsivity, is designed to address specific challenges for children in filtering multiple sensory inputs, an underlying factor of autism spectrum disorder.
keywords CNC Knitting, Form-active, Bending-active, Textile hybrid, Mutli-sensory
series journal
last changed 2016/06/13 08:34

_id ascaad2016_032
id ascaad2016_032
authors Alhadidi, Suleiman; Justin Mclean, Luchlan Sharah, Isabel Chia, Roger Sam
year 2016
title Multiflight - Creating Interactive Stairs through Positive Technology
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 295-308
summary This paper details a pedagogical project which calls for an improved design performance of the existing built environment through the use of smart technology and data-driven design. The project is an investigation into ways in which to improve the performance of a ‘pre-selected university building’ through the use of a media facade that allows for interactive experiences. Existing problems of the selected building have been identified through observation and research using a rich picture and agile approach. An underutilised staircase was selected as the focus site for a series of computational design and interactive design studies. The brief of this mini-research project aims to encourage more people to use the stairs and create a memorable experience with a technological approach through the application of a site specific interactive media installation. The project is an interactive staircase which utilises LED strips and generative sound. The project features a series of light boxes which are connected to the existing staircase balustrade. Arduino, passive infra-red sensors, and other motion detection sensors were used to allow for light and generative sound interaction with users using visual scripting tools and a generative design platform. Sensing technology was used as a real-time data-gathering device during the site analysis phase as well as an input device for the designed prototype to allow the testing of the data-driven design. This paper details the study and resultant interactive prototypes. It also discusses the exploration of performance based design ideas into design workflows and the integration of sensing tools into the design process. It concludes by identifying possible implications on using the Internet of Things concepts to facilitate the design of interactive architecture.
series ASCAAD
email
last changed 2017/05/25 13:33

_id acadia16_362
id acadia16_362
authors Beesley, Philip; Ilgun, Zeliha, Asya; Bouron, Giselle; Kadish, David; Prosser, Jordan; Gorbet, Rob; Kulic, Dana; Nicholas, Paul; Zwierzycki, Mateusz
year 2016
title Hybrid Sentient Canopy: An implementation and visualization of proprioreceptive curiosity-based machine learning
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 362-371
doi https://doi.org/10.52842/conf.acadia.2016.362
summary This paper describes the development of a sentient canopy that interacts with human visitors by using its own internal motivation. Modular curiosity-based machine learning behaviour is supported by a highly distributed system of microprocessor hardware integrated within interlinked cellular arrays of sound, light, kinetic actuators and proprioreceptive sensors in a resilient physical scaffolding system. The curiosity-based system involves exploration by employing an expert system composed of archives of information from preceding behaviours, calculating potential behaviours together with locations and applications, executing behaviour and comparing result to prediction. Prototype architectural structures entitled Sentient Canopy and Sentient Chamber developed during 2015 and 2016 were developed to support this interactive behaviour, integrating new communications protocols and firmware, and a hybrid proprioreceptive system that configured new electronics with sound, light, and motion sensing capable of internal machine sensing and externally- oriented sensing for human interaction. Proprioreception was implemented by producing custom electronics serving photoresistors, pitch-sensing microphones, and accelerometers for motion and position, coupled to sound, light and motion-based actuators and additional infrared sensors designed for sensing of human gestures. This configuration provided the machine system with the ability to calculate and detect real-time behaviour and to compare this to models of behaviour predicted within scripted routines. Testbeds located at the Living Architecture Systems Group/Philip Beesley Architect Inc. (LASG/PBAI, Waterloo/Toronto), Centre for Information Technology (CITA, Copenhagen) National Academy of Sciences (NAS) in Washington DC are illustrated.
keywords intedisciplinary/collaborative design, intelligent environments, artificial intelligence, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2016_198
id ecaade2016_198
authors Caetano, In?s and Leit?o, António
year 2016
title DrAFT: an Algorithmic Framework for Facade Design
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 465-474
doi https://doi.org/10.52842/conf.ecaade.2016.1.465
wos WOS:000402063700051
summary Architecture has always followed the times and their innovations and, currently, an architecture based on digital technologies has been emerging and has increasingly explored architectural facades. In this paper we use DrAFT, a computational framework for the generation and exploration of facade designs, to explore a set of different examples of building skins. DrAFT includes a classification of facades that helps in the identification of algorithms that best suits each design intent. After combining the algorithms provided by this framework, the designer can more easily explore the solution space of the intended design.
keywords Generative design; facade design; DrAFT framework; Rosetta
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2016_027
id ecaade2016_027
authors Carl, Timo and Stepper, Frank
year 2016
title "Free Skin" Collaboration - Negotiating complex design criteria across different scales with an interdisciplinary student team
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 591-600
doi https://doi.org/10.52842/conf.ecaade.2016.1.591
wos WOS:000402063700064
summary The complex nature of architecture requires often planning teams with specialists from multiple disciplines. Architectural education however, addresses this interdisciplinary modus operandi rarely. This paper presents the design and production process of a real world solar façade installation realized at the University of Kassel to illustrating the potentials of such an approach. Interdisciplinary teamwork allowed students not only to solve complex problems, but also to produce knowledge and to advance into design research. Student exploration resulted in a unique fabrication technique, combining tensile fabric and resin to facilitate the fabrication of multifunctional, monocoque shells; combining all necessary technical components in a single building element. This paper discusses the success of student collaboration and teaching strategies for key parts of the design process at different scales. Moreover, it highlights the importance of physical form-finding models and an analogue - digital workflow for collaborative communication. The Free Skin project offers both insight into applied use of interdisciplinary teamwork, and a proposal for incorporating such collaboration into architectural education.
keywords interdisciplinary collaboration; design-build; form-finding; reactive design; shell structures
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201614207
id ijac201614207
authors Chaszar, Andre and Sam Conrad Joyce
year 2016
title Generating freedom: Questions of flexibility in digital design and architectural computation
source International Journal of Architectural Computing vol. 14 - no. 2, 167-181
summary Generative processes and generative design approaches are topics of continuing interest and debate within the realms of architectural design and related fields. While they are often held up as giving designers the opportunity (the freedom) to explore far greater numbers of options/alternatives than would otherwise be possible, questions also arise regarding the limitations of such approaches on the design spaces explored, in comparison with more conventional, human-centric design processes. This article addresses the controversy with a specific focus on parametric-associative modelling and genetic programming methods of generative design. These represent two established contenders within the pool of procedural design approaches gaining increasingly wide acceptance in architectural computational research, education and practice. The two methods are compared and contrasted to highlight important differences in freedoms and limitations they afford, with respect to each other and to ‘manual’ design. We conclude that these methods may be combined with an appropriate balance of automation and human intervention to obtain ‘optimal’ design freedom, and we suggest steps towards finding that balance.
keywords Design space exploration, parametric-associative modelling, genetic programming, mixed-initiative methods
series journal
last changed 2016/06/13 08:34

_id acadia23_v1_122
id acadia23_v1_122
authors Crawford, Assia
year 2023
title Mycelium Making: An exploration in Growing Modular Interiors
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 122-127.
summary The project was developed as part of an MArch Architecture design studio that looked at emerging bio-degradable living materials in the form of mycelium bio-composites as a way of manufacturing temporary structures. The project introduced students to laboratory methods for material development and bio-material cultivation. Students were asked to consider the implications of designing with a material that has agency and needs. The studio explored what it means to “make kin” (Haraway 2016) on a planet that has reached a tipping point. It approached the topic from the assumption that the breakdown of existing economic models and resource scarcity offers potent ground for new forms of space making to emerge. The studio looked to nature’s ability to respond to environmental stimuli and design constraints. Students harnessed advances in our scientific understanding to cultivate an architectural language that captures the transient and unstable nature of this new family of biomaterials
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2016_074
id ecaade2016_074
authors Das, Subhajit, Day, Colin, Dewberry, Michael, Toulkeridou, Varvara and Hauck, Anthony
year 2016
title Automated Service Core Generator in Autodesk Dynamo - Embedded Design Intelligence aiding rapid generation of design options
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 217-226
doi https://doi.org/10.52842/conf.ecaade.2016.2.217
wos WOS:000402064400021
summary Building design entails an intuitive and informative exploration of an architect involving iterative refinement of design ideas till client objectives, and priorities are satisfied. Similarly, service cores in a building are designed through the exploration of multifarious design options each with different performative metrics regarding accessibility, efficiency, cost, feasibility, etc. As the current process is labor-intensive, manual & dependent on the expertise of the architect, the search space leading to the selection of an optimal design alternative is very limited. This paper describes Service Core Generator (SCG) library in Autodesk Dynamo enabling automated generation of service core models for varied building shell geometry types (limited to orthogonal profiles). The tool described encodes explicit and implicit domain knowledge into the system facilitating service core models for buildings across varied scale with use type's including offices, hotels or residential buildings.
keywords Design Alternatives; Geometry Analysis; Parametric Modelling; Design Tools; Design Automation;
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia16_106
id acadia16_106
authors Das, Subhajit; Day, Colin; Hauck, John; Haymaker, John; Davis, Diana
year 2016
title Space Plan Generator: Rapid Generationn & Evaluation of Floor Plan Design Options to Inform Decision Making
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 106-115
doi https://doi.org/10.52842/conf.acadia.2016.106
summary Design exploration in architectural space planning is often constrained by tight deadlines and a need to apply necessary expertise at the right time. We hypothesize that a system that can computationally generate vast numbers of design options, respect project constraints, and analyze for client goals, can assist the design team and client to make better decisions. This paper explains a research venture built from insights into space planning from senior planners, architects, and experts in the field, coupled with algorithms for evolutionary systems and computational geometry, to develop an automated computational framework that enables rapid generation and analysis of space plan layouts. The system described below automatically generates hundreds of design options from inputs typically provided by an architect, including a site outline and program document with desired spaces, areas, quantities, and adjacencies to be satisfied. We envision that this workflow can clarify project goals early in the design process, save time, enable better resource allocation, and assist key stakeholders to make informed decisions and deliver better designs. Further, the system is tested on a case study healthcare design project with set goals and objectives.
keywords healthcare spaces, facility layout design, design optimization, decision making, binary data tree structure, generative design, automated space plans
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id acadia16_12
id acadia16_12
authors Gerber, David Jason; Pantazis, Evangelos
year 2016
title A Multi-Agent System for Facade Design: A design methodology for Design Exploration, Analysis and Simulated Robotic Fabrication
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 12-23
doi https://doi.org/10.52842/conf.acadia.2016.012
summary For contemporary design practices, there still remains a disconnect between design tools used for early stage design exploration and performance analysis, and those used for fabrication and construction of complex tectonic architectural systems. The research brings forward downstream fabrication constraints into the up-stream design exploration and design decision making. This paper addresses the issues of developing an integrated digital design work-flow and details a research framework for the incorporation of environmental performance into a robotic fabrication for early stage design exploration and generation of intricate and complex alternative façade designs. The method allows the user to import a design surface, define design parameters, set a number of environmental performance objectives, and then simulate and select a robotic construction strategy. Based on these inputs, design alternatives are generated and evaluated in terms of their performance criteria in consideration of their robotically simulated constructability. In order to validate the proposed framework, an experimental case study of office building façade designs that are generatively created from a multi-agent system for design methodology is design explored and evaluated. Initial results define a heuristic function for improving simulated robotic constructability and illustrate the functionality of our prototype. Project limitations and future research steps are then discussed.
keywords generative design, multi-objective design optimization, robotic fabrication, simulation, design performance, design decision making
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaade2016_099
id ecaade2016_099
authors Guerritore, Camilla and Duarte, José Pinto
year 2016
title Manifold Façades - A grammar-based approach for the adaptation of office buildings into housing
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 189-198
doi https://doi.org/10.52842/conf.ecaade.2016.2.189
wos WOS:000402064400018
summary This article focuses on the use of shape grammars in rehabilitation processes to transform existing, obsolete building stocks into required building types. It is described how a grammar-based transformation methodology can lead to the development of a design tool that enables the exploration of preliminary design solutions and the evaluation of their impact in terms of massing, functional programme and, eventually, cost and energetic behaviour. The goal is to assess the capacity of an existing building to be adapted to a different use. The article is focused on the transformation grammar. In particular, it is investigated the transformation of "office building types" into "residential building types", aiming at defining a quicker and more informed decision-making process. Future work will be concerned with evaluating the performance of the solutions generated by the grammar.
keywords Rehabilitation; office buildings; adaptive reuse; addition strategy; shape grammars
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2016_063
id caadria2016_063
authors Kawiti, Derek; Marc Aurel Schnabel and James Durcan
year 2016
title Indigenous Parametricism - Material Computation.
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 63-72
doi https://doi.org/10.52842/conf.caadria.2016.063
summary The use of computational formats and digital tools includ- ing machine fabrication by indigenous people worldwide to augment traditional practices and material culture is becoming more and more commonplace. However within the practice of architecture while there are indigenous architectural practitioners utilizing digital tools, it is unclear as to whether there is motivation to implement traditional in- digenous knowledge in conjunction with these computational instru- ments and methodologies. This paper explores how the tools might be used to investigate the potential for indigenous development, cultural empowerment and innovation. It also describes a general methodology whereby capacity can be shared between academia and indigenous groups to foster new knowledge through a recently implemented in- digenous focused design research entity, SITUA. The importance and significant research potential of what we term 'domain based research' is reinforced through the exploration of emergent materials and build- ing systems located within specific tribal domains. A recent project employing 3D clay extrusion printing is used to illustrate this ap- proach.
keywords Indigenous domain based research: Maori; materials; digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2016_602
id sigradi2016_602
authors Mattos, Erica Azevedo da Costa e; Silva, Diego Fagundes da
year 2016
title Módulos Eletrônicos Interativos: Cibernética e Indeterminaç?o para a Exploraç?o e Aprendizagem em Design [Interactive Electronic Modules: Cybernetics and Uncertainties for Exploration and Learning in Design]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.782-789
summary This paper discusses the ongoing development process of an electronic experimentation and learning open system composed by discrete modular units. Our aim is to create an expandable tool capable of support architecture students with the development of notions about electronic systems, digital interactions and the incorporation of uncertainties in design. The theoretical framework of the research is here presented - discussing design, ethics, Second-Order Cybernetics and knowledge construction theories. Also, precedent work on construction kits are introduced for critical analysis and comparison. We concluded our paper with a possible application in an actual educational setting.
keywords Design; Second-Order Cybernetics; Learning Processes; Modules; Electronic Building Blocks
series SIGRADI
email
last changed 2021/03/28 19:58

_id ijac201614407
id ijac201614407
authors Miltiadis, Constantinos
year 2016
title Project anywhere: An interface for virtual architecture
source International Journal of Architectural Computing vol. 14 - no. 4, 386-397
summary Virtual and augmented realities open a new world of great potential for spatial research and experimentation by allowing new forms of unbuilt sensible architectural space. This article starts with a sketch of the current context in virtual reality and continues by outlining the development and structure of the research ‘project Anywhere’. The project is an easily deployable, wireless, multi-user, augmented reality app system that offers full body immersion through body, head and hands tracking. It can host multiple concurrent users, able to move freely in the virtual space, by moving in the real and also perform actions through a gesture interface to affect their shared environment. In conclusion, we describe the inherent properties of such a space, which we propose as a novel spatio-temporal medium for architecture that suggests an enriched notion of space for exploration and experimentation, through an example of a potential application.
keywords Virtual reality, augmented reality, interactive environments, virtual space
series journal
email
last changed 2016/12/09 10:52

_id ecaade2016_132
id ecaade2016_132
authors Mohite, Ashish and Kotnik, Toni
year 2016
title Model Translations - Studies of translations between physical and digital architectural models
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 561-570
doi https://doi.org/10.52842/conf.ecaade.2016.1.561
wos WOS:000402063700061
summary With the rise of the digital in architecture and the availability of digital fabrication tools, the interest in the material aspect of the model has intensified. At the same time, the design space for exploration of material behavior and its design potential has been extended from the physical into the digital. This has resulted in a cyclic set of translations from the physical realm into the digital by means of mathematical descriptions and back from the digital realm into the physical by means of digitally controlled fabrication processes. Despite the availability of more and more computational power and improvement of precision in simulation, these translations from the physical into the digital and vice versa can never be exact (Eco 2006), the translations from the physical model into a digital model and from the digital into the physical are "spaces of instability" (Evans 2000). The current paper explores in more detail this space of instability between physical and digital models, its potential for architectural design, and the central role of the mathematical description in this reciprocal set of translations.
keywords Architectural model; simulation; digital fabrication; material computation; material behavior
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia16_244
id acadia16_244
authors Ramirez-Figueroa, Carolina; Hernan, Luis; Guyet, Aurelie; Dade-Robertson, Martyn
year 2016
title Bacterial Hygromorphs: Experiments into the Integration of Soft Technologies into Building Skins
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 244-253
doi https://doi.org/10.52842/conf.acadia.2016.244
summary The last few years have seen an increase in the interest to bring living systems into the process of design. Work with living systems, nonetheless, presents several challenges. Aspects such as access to specialists’ labs, samples of living systems, and knowledge to conduct experiments in controlled settings become barriers which prevent designers from developing a direct, material engagement with the material. In this paper, we propose a design methodology which combines development of experiments in laboratory settings with the use of what we call material proxies, which refer to materials that operate in analogue to some of the behaviors observed in the target organism. We will propose that combining material proxies with basic scientific experimentation constitutes a form of direct material engagement, which encourages richer exploration of the design domain. We will develop this argument by reporting on our experience in designing and delivering the primer component of a themed design studio, structured around bacterial spores as hygroscopic components of building facades. The six-week design project asked students to consider the behavior of bacterial spores, and to imagine a number of systems in which they could be employed as actuators of a membrane system that responded to fluctuations in humidity. The module is interesting in that it negotiates some of the challenges often faced by designers who want to develop a material engagement with living systems, and to produce informed speculations about their potential in architectural design.
keywords actuators, architecture, building skins, artifical muscles, hygromorphs, bacterial spores
series ACADIA
type paper
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_121237 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002