CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 615

_id sigradi2016_448
id sigradi2016_448
authors Afsari, Kereshmeh; Eastman, Charles M.; Shelden, Dennis R.
year 2016
title Data Transmission Opportunities for Collaborative Cloud-Based Building Information Modeling
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.907-913
summary Collaboration within Building Information Modeling process is mainly based on file transfer while BIM data being exchanged in either vendor specific file formats or neutral format using Industry Foundation Classes (IFC). However, since the Web enables Cloud-based BIM services, it provides an opportunity to exchange data via Web transfer services. Therefore, the main objective of this paper is to investigate what features of Cloud interoperability can assist a network-based BIM data transmission for a collaborative work flow in the Architecture, Construction, and Engineering (AEC) industry. This study indicates that Cloud-BIM interoperability needs to deploy major components such as APIs, data transfer protocols, data formats, and standardization to redefine BIM data flow in the Cloud and to reshape the collaboration process.
keywords BIM; Cloud Computing; Data Transmission; Interoperability; IFC
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_063
id ecaade2016_063
authors Al-Qattan, Emad, Galanter, Philip and Yan, Wei
year 2016
title Developing a Tangible User Interface for Parametric and BIM Applications Using Physical Computing Systems.
doi https://doi.org/10.52842/conf.ecaade.2016.2.621
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 621-630
summary This paper discusses the development of an interactive and a responsive Tangible User-Interface (TUI) for parametric and Building Information Modeling (BIM) applications. The prototypes presented in this paper utilizes physical computing systems to establish a flexible and intuitive method to engage digital design processes.The prototypes are hybrid UIs that consist of a digital modeling tool and an artifact. The artifact consists of a control system (sensors, actuators, and microcontrollers) and physical objects (architectural elements). The link between both environments associates physical objects with their digital design information to assist users in the digital design process. The integration of physical computing systems will enable the objects to physically respond to analog input and provide real-time feedback to users. The research aims to foster tangible computing methods to extend the capabilities of digital design tools. The prototypes demonstrate a method that allows architects to simultaneously interact with complex architectural systems digitally and physically.
wos WOS:000402064400063
keywords Physical Computing; Parametric Design; BIM; Tangible UI
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201614205
id ijac201614205
authors Leitao, Anto?nio; Ines Caetano and Hugo Correia
year 2016
title Processing architecture
source International Journal of Architectural Computing vol. 14 - no. 2, 147-157
summary Programming promotes creative freedom but might require considerable effort to learn. The Processing language was created to simplify this learning process. Due to its graphical capabilities, the language has become very popular among the electronic arts and design communities. Unfortunately, this popularity could not be extended to the architecture community, which relies on traditional heavyweight computer-aided design and building information modeling applications that cannot be programmed using Processing. As a result, it becomes difficult for architects to take advantage of Processing. To solve this problem, we propose an implementation of Processing that runs in the context of the most used computer-aided design tools in architecture. Our implementation allows Processing to generate two- or three-dimensional models that are directly usable for architectural work. To this end, we also propose extensions to the language, including three-dimensional modeling primitives that dramatically simplify the effort needed for developing large and complex architectural models with Processing.
keywords Generative Design, Programming, Processing, Architecture, 3D Modeling
series journal
last changed 2016/06/13 08:34

_id sigradi2016_360
id sigradi2016_360
authors Leonard, Francisca Rodríguez
year 2016
title Evaluación de las condiciones de orientación temporal en programas de modelación lumínica [Evaluation of temporal orientation conditions in lighting simulation software]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.446-452
summary The study analyzes three basic visual aspects of light (Spatial distribution of brightness, shadows and color of light) in their ability to communicate temporal information by modeling two specific scenarios using different lighting simulation software (DIALux and Relux). The results confirm the potentiality of natural light to assess temporal disorientation in indoor environments. At the same time, the study proposes new opportunities for improving natural light representation in the simulation field.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia16_196
id acadia16_196
authors Yuan, Philip F.; Chai, Hua; Yan, Chao; Zhou, Jin Jiang
year 2016
title Robotic Fabrication of Structural Performance-based Timber Gridshell in Large-Scale Building Scenario
doi https://doi.org/10.52842/conf.acadia.2016.196
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp 196-205
summary This paper investigates the potential of a digital geometry system to integrate structural performance-based design and robotic fabrication in the scenario of building a large-scale non-uniform timber shell. It argues that a synthesis of multi-objective optimization, design and construction phases is required in the realization of timber shell construction in architecture practice in order to fulfill the demands of building regulation. Confronting the structural challenge of the non-uniform shell, a digital geometry system correlates all the three phases by translating geometrical information between them. First, a series of structural simulations and experimentations with different objectives are executed to inform the particular shape and tectonic details of each shell component based on its local condition in the geometrical system. Then, controlled by the geometrical system, a hybrid process of different digital fabrication technologies, including a customized robotic timber mill, is established to enable the manufacture of the heterogeneous shell components. Ultimately, the Timber Structure Enterprise Pavilion as the demonstration and evaluation of this method is fabricated and assembled on site through a notational system to indicate the applicability of this research in practical scenarios.
keywords robotic fabrication, geometrical information modeling, simulation and design optimization, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id sigradi2016_801
id sigradi2016_801
authors Matson, Carrie Wendt; Sweet, Kevin
year 2016
title Simplified for Resilience: A parametric investigation into a bespoke joint system for bamboo
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.405-411
summary Research reveals that most of the structural failures in a natural disaster are related to improper construction assembly methodologies related to human errors. This paper aims to reduce human errors in the building process by taking advantage of computational tools, and using a renewable building material. The research investigates the creation of a novel structural system for bamboo that is able to be repaired, replaced, altered, and easily assembled to restore any damaged building structure. Bamboo is an organic product with diameters that are irregular and unpredictable. The inconsistency in this natural product requires an adaptable construction methodology that responds to its organic nature. A customised joint system is created using parametric software that quickly adapts to the irregularity of the bamboo and are then fabricated using additive printing techniques. The parametric software gives unlimited control of the joint system based on the programmed relationships between the differentiations of each unique bamboo connection. Fabricating each unique joint gives a secure connection at each intersection facilitating an adaptable architecture, whilst reducing construction waste. This paper introduces the groundwork for the implementation of “on-site” manufacturing of a framework joint system. The manufacturing utilises the power and performance of a parametric platform with the technology of bespoke three-dimensionally printed joints – a flexible system that can respond to organic materials and natural external conditions
keywords Parametric design; Three-dimensional printing; Bamboo construction
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_238
id ecaade2016_238
authors Meagher, Mark and Langley, Phillip
year 2016
title TopoBIM: Web-based Spatial Topology for Early Design Participation
doi https://doi.org/10.52842/conf.ecaade.2016.2.663
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 663-672
summary TopoBIM is a 3D web-based viewer for BIM data that facilitates the capture of stakeholder knowledge related to project requirements and constraints in early design. The software provides an interface for viewing 3D models and data for selected room types and adding topological annotations. The use of topological representation is proposed as a method for facilitating knowledge capture, allowing decisions about the details of plan layout to be deferred and widening the potential for participation in the early stage design process. Topological representation is widely employed in the engineering disciplines, but is not commonly used as a means of capturing schematic information in early design. TopoBIM is proposed as a methodology and workflow for the introduction of topology in early design, and as an example of lightweight, bespoke software that informs design by allowing stakeholders to perform specific tasks using BIM data, without the constraints and limiting complexity of BIM authoring environments.
wos WOS:000402064400067
keywords Early design; Topological representation; Participation; BIM; Knowledge capture
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2016_210
id ecaade2016_210
authors Abdelmohsen, Sherif, Massoud, Passaint and Elshafei, Ahmed
year 2016
title Using Tensegrity and Folding to Generate Soft Responsive Architectural Skins
doi https://doi.org/10.52842/conf.ecaade.2016.1.529
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 529-536
summary This paper describes the process of designing a prototype for a soft responsive system for a kinetic building facade. The prototype uses lightweight materials and mechanisms to generate a building facade skin that is both soft (less dependent on hard mechanical systems) and responsive (dynamically and simultaneously adapting to spatial and environmental conditions). By combining concepts stemming from both tensegrity structures and folding mechanisms, we develop a prototype that changes dynamically to produce varying facade patterns and perforations based on sensor-network data and feedback. We use radiation sensors and shape memory alloys to control the prototype mechanism and allow for the required parametric adaptation. Based on the data from the radiation sensors, the lengths of the shape memory alloys are altered using electric wires and are parametrically linked to the input data. The transformation in the resulting overall surface is directly linked to the desired levels of daylighting and solar exposure. We conclude with directions for future research, including full scale testing, advanced simulation, and multi-objective optimization.
wos WOS:000402063700058
keywords Soft responsive systems; tensegrity; folding; kinetic facades
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id acadia16_54
id acadia16_54
authors Andreen, David; Jenning, Petra; Napp, Nils; Petersen, Kirstin
year 2016
title Emergent Structures Assembled by Large Swarms of Simple Robots
doi https://doi.org/10.52842/conf.acadia.2016.054
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 54-61
summary Traditional architecture relies on construction processes that require careful planning and strictly defined outcomes at every stage; yet in nature, millions of relatively simple social insects collectively build large complex nests without any global coordination or blueprint. Here, we present a testbed designed to explore how emergent structures can be assembled using swarms of active robots manipulating passive building blocks in two dimensions. The robot swarm is based on the toy “bristlebot”; a simple vibrating motor mounted on top of bristles to propel the body forward. Since shape largely determines the details of physical interactions, the robot behavior is altered by carefully designing its geometry instead of uploading a digital program. Through this mechanical programming, we plan to investigate how to tune emergent structural properties such as the size and temporal stability of assemblies. Alongside a physical testbed with 200 robots, this work involves comprehensive simulation and analysis tools. This simple, reliable platform will help provide better insight on how to coordinate large swarms of robots to construct functional structures.
keywords emergent structures, mechanical intelligence, swarm robotics
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ijac201614408
id ijac201614408
authors Bard, Joshua David; David Blackwood, Nidhi Sekhar and Brian Smith
year 2016
title Reality is interface: Two motion capture case studies of human–machine collaboration in high-skill domains
source International Journal of Architectural Computing vol. 14 - no. 4, 398-408
summary This article explores hybrid digital/physical workflows in the building trades, a high-skill domain where human dexterity and craft can be augmented by the precision and repeatability of digital design and fabrication tools. In particular, the article highlights two projects where historic construction techniques were extended through live motion capture of human gesture, information-rich visualization projected in the space of fabrication and custom robotic tooling to generate free-form running moulds. The first case study explores decorative plastering techniques and an augmented workflow where designers and craftspeople can quickly explore patterns through freehand sketch, test ideas with shaded previews and seamlessly produce physical parts using robotic collaborators. The second case study reimagines a roman vaulting technique that used terracotta bottles as part of an interlocking masonry system. Motion capture is used to place building elements precisely in material arrays with real-time visual feedback guiding the hand-held placement of each bottle. These case studies serve to underscore the emerging importance of reality capture in the design and construction of the built environment. Increasingly, the algorithmic power of computational tools and the nuances of human skill can be combined in hybrid design and fabrication workflows.
keywords Reality computing, motion capture, robotic fabrication, haptic interface, hybrid skill, human–machine collaboration, reality capture
series journal
email
last changed 2016/12/09 10:52

_id caadria2016_383
id caadria2016_383
authors Beorkrem, C.; J. Ellinger, P. Bernstein and A. Hauck
year 2016
title Multivariate Schematic Design Tooling
doi https://doi.org/10.52842/conf.caadria.2016.383
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 383-394
summary This paper will examine the results from a research collaboration between (BIM Software Manufacturer) and (School), whose problem statement focused on supporting robust interoperability by defining goals focused on multivariate conceptual design tools. The collaboration included design faculty, students and software professionals, the latter providing access to a broad range of design simulation tools either commercially available or currently in development. The tools were developed first through case studies and background research, followed by the design and implementation of novel computational methods advancing the architectural design workflow by seeking to create comparative tools which allow a designer to connect multiple data typologies in a single model. With advanced computational tools employed both as standalone resources and embedded in parametric loops, we sought to provide immediate feedback on design goals.
keywords Building information modelling; simulation and prediction; education; optimization; scripting
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2017_078
id sigradi2017_078
authors Brandăo, Filipe; Ricardo Correia, Alexandra Paio
year 2017
title Rhythms of Renewal of the City
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.534-540
summary In the last few years, building renovation has gained an unprecedented relevance in Portugal, yet it is an asymmetric and urban phenomenon for the study of which, in space and in time, traditional statistic tools have limitations. Using computational tools, it is possible to generate maps that correlate building permits georeferenced data and their processing time. Using Lisbon City Hall database of planning applications and georeferenced vector information, two approaches are developed to represent the internal dynamic of renewal of the city between 2010 and 2016. These maps can be useful to improve the accessibility of planning information to citizens.
keywords Urban renewal; Building renovation; Lisbon; Time; Representation
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_767
id caadria2016_767
authors De Azambuja Varela, Pedro and Timothy Merritt
year 2016
title CorkVault Aarhus: exploring stereotomic design space of cork and 5-axis CNC waterjet cutting
doi https://doi.org/10.52842/conf.caadria.2016.767
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 767-776
summary This paper presents the design, fabrication, and construc- tion of CorkVault Aarhus, which was designed using parametric and physics simulation software and realized from ECA cork sheets cut using a CNC waterjet cutter. We recount the lessons learned through the intensive two-week workshop that explored the limits of the mate- rials and tools through prototypes and culminated with the assembly of the final free-form vault structure. Various vaults and arch proto- types provided pedagogical and research value, building up knowledge essential to the final structure built, a human scale pavilion designed and built in three days and made of a thin shell of cork pan- els working only in compression. Three driving concepts were crucial to the experience: stereotomy as a supporting theory, expanded cork agglomerate (ECA) as the main material and water jet cutting as the principal means of fabrication. The complex vault shape called for precise 5-axis cuts supporting a new paradigm in building stereotomic components for architecture.
keywords Stereotomy; generative algorithm; digital fabrication; waterjet; cork
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia20_688
id acadia20_688
authors del Campo, Matias; Carlson, Alexandra; Manninger, Sandra
year 2020
title 3D Graph Convolutional Neural Networks in Architecture Design
doi https://doi.org/10.52842/conf.acadia.2020.1.688
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 688-696.
summary The nature of the architectural design process can be described along the lines of the following representational devices: the plan and the model. Plans can be considered one of the oldest methods to represent spatial and aesthetic information in an abstract, 2D space. However, to be used in the design process of 3D architectural solutions, these representations are inherently limited by the loss of rich information that occurs when compressing the three-dimensional world into a two-dimensional representation. During the first Digital Turn (Carpo 2013), the sheer amount and availability of models increased dramatically, as it became viable to create vast amounts of model variations to explore project alternatives among a much larger range of different physical and creative dimensions. 3D models show how the design object appears in real life, and can include a wider array of object information that is more easily understandable by nonexperts, as exemplified in techniques such as building information modeling and parametric modeling. Therefore, the ground condition of this paper considers that the inherent nature of architectural design and sensibility lies in the negotiation of 3D space coupled with the organization of voids and spatial components resulting in spatial sequences based on programmatic relationships, resulting in an assemblage (DeLanda 2016). These conditions constitute objects representing a material culture (the built environment) embedded in a symbolic and aesthetic culture (DeLanda 2016) that is created by the designer and captures their sensibilities.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ascaad2016_007
id ascaad2016_007
authors Elsayed, Mohamed; Osama Tolba and Ahmed Elantably
year 2016
title Architectural Space Planning Using Parametric Modeling - Egyptian National Housing Project
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 45-54
summary The Egyptian government resorts to prototype housing for low-income citizens to meet the growing demand of the housing market. The problem with the prototype is that it does not meet specific needs. Consequently, users make modifications to the prototype without professional intervention because of the high cost. This paper discusses an automatic multi-stories space planning tool that helps low-income citizens to modify their prototype housing provided by the government. Social, spatial and functional design aspects were set in the original design prototype by an architect. The proposed tool simulates spaces spatial locations in the original design by simulating the analogy of mechanical springs through an interactive simulation of a parametric model. The authors developed the used algorithm in the generative design tool Grasshopper and the live physics engine Kangaroo, both working within the Rhino 3D environment. The algorithm has two versions, one-floor level version and two floors version targeting the wealthier users. Results indicate that this tool integrates with the exploratory nature of the design process even for non-professional users. The authors designed a tool that will help the users to study the effect of the desired modifications against the originally provided prototype, it also makes it easier for users to express their requirements to a professional designer, conserving time and financial cost.
series ASCAAD
email
last changed 2017/05/25 13:13

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id caadria2016_147
id caadria2016_147
authors Feist, S.; G. Barreto, B. Ferreira and A. Leita?o
year 2016
title Portable generative design for building information modelling
doi https://doi.org/10.52842/conf.caadria.2016.147
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 147-156
summary Generative Design (GD) is a valuable asset for architecture because it provides opportunities for innovation and improvement in the design process. Despite its availability for Computer-Aided De- sign (CAD), there are few applications of GD within the Building In- formation Modelling (BIM) paradigm, and those that exist suffer from portability issues. A portable program is one that will not only work in the application it was originally written for, but also in others with equivalent results. This paper proposes a solution that explores porta- ble GD in the context of BIM. We also propose a set of guidelines for a programming methodology for GD, adapted to the BIM paradigm. In the end, we evaluate our solution using a practical example.
keywords Building information modelling; generative design; porta- bility; programming
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2016_589
id caadria2016_589
authors Grigoriadis, Kostas
year 2016
title Translating Digital to Physical Gradients
doi https://doi.org/10.52842/conf.caadria.2016.589
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 589-598
summary As the practice of using notations to translate from two to three-dimensions is becoming superseded by the direct relaying of building information digitally, the separation between designing and building is diminishing. A key aspect in lessening further this divi- sion, is heterogeneous materiality that supersedes component thinking and effectively tectonics. Being an embodiment of the redundancies of tectonic assembly, a curtain wall detail has been redesigned with a heterogeneous and continuous multi-material using CFD. The main research problem following this redesign has been the conversion of material data from the CFD program into a 3D-printable format and in order to achieve a closer linkage between design and building. This has been pursued by initially converting the fused material parameters into fluid weight data and eventually into RGB colour values. The re- sulting configuration was output initially as a multi-colour print and effectively fabricated in a multi-material.
keywords Multi-materials; CFD; 3D-printing; autography
series CAADRIA
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_841088 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002