CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id acadia23_v3_39
id acadia23_v3_39
authors Goti, Kyriaki; A. Scelsa, Jonathan; Rossi, Natalia; Wang, Wei; Palaci, Arthur
year 2023
title Bric(k)olage: Spoliated Masonry C+D Waste
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The 2016 US Environmental Protection Agency reported that 23.1 million tons of broken pieces of concrete waste are annually discarded from new construction sites (EPA -2) and in example states in the north american context only 6.6% of C&D concrete is recycled; the rest is thrown out in landfills as it is labeled “contaminated or too hard to process on a large scale.” (CT DOE 25) Relatively little investigation has occurred in how this material could reappear in the architectural project that might honor its intrinsic broken quality as a part of its materiality within a life-cycle of continual usage. This project speaks towards a problematic Habit of the Anthropocene in how we construct buildings placing intrinsic cultural value on new parts over the broken and old due to economic efficiencies.
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2016_057
id ecaade2016_057
authors Kreutzberg, Anette
year 2016
title High quality Virtual Reality for Architectural Exhibitions
doi https://doi.org/10.52842/conf.ecaade.2016.2.547
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 547-554
summary This paper will summarise the findings from creating and implementing a visually high quality Virtual Reality (VR) experiment as part of an international architecture exhibition. It was the aim to represent the architectural spatial qualities as well as the atmosphere created from combining natural and artificial lighting in a prominent not yet built project. The outcome is twofold: Findings concerning the integration of VR in an exhibition space and findings concerning the experience of the virtual space itself. In the exhibition, an important aspect was the unmanned exhibition space, requiring the VR experience to be self-explanatory. Observations of different visitor reactions to the unmanned VR experience compared with visitor reactions at guided tours with personal instructions are evaluated. Data on perception of realism, spatial quality and light in the VR model were collected with qualitative and quantitative methods at two different occasions and setups after the exhibition, both showing a high degree of immersion and experience of reality.
wos WOS:000402064400055
keywords Virtual Reality; Oculus Rift; GearVR; Exhibition display
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2020_147
id ecaade2020_147
authors Matìjovská, Dana and Achten, Henri
year 2020
title It’s Art Baby - The Science of Comparing and Scoring Artistic Endeavour at Schools of Higher Education
doi https://doi.org/10.52842/conf.ecaade.2020.2.527
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 527-534
summary Scientific output has well-established methods for comparing and scoring the quality and quantity of the work. For artistic output this matter is not settled at all and a subject of much debate. We present a method which has been developed in Czech republic since 2011. This method is used to compare and score the artistic output of all schools of arts in the country (for example, music, performative arts, architecture, literature, sculpture, painting). The system presented in this paper is based on the Saaty-method (also known as Analytic Hierarchy Process). After almost eight years of development and use, the system has proven as a valuable asset to assess in an objective way output between many different forms of artistic works. In 2016 the system was incorporated in the Higher Education Act. In the paper we present a brief history of the development and the principles of AHP applied in the system. In particular, we will focus on the findings in architecture derived from the system. Finally, we will discuss possible implications for architectural education in general.
keywords Register of Artistic Performance; SAATY method
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2016_013
id caadria2016_013
authors Aschwanden, Gideon D.P.A.
year 2016
title Neighbourhood detection with analytical tools
doi https://doi.org/10.52842/conf.caadria.2016.013
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 13-22
summary The increasing population size of cities makes the urban fabric ever more complex and more disintegrated into smaller areas, called neighbourhoods. This project applies methods from geoscience and software engineering to the process of identification of those neighbourhoods. Neighbourhoods, by nature, are defined by connec- tivity, centrality and similarity. Transport and geospatial datasets are used to detect the characteristics of places. An unsupervised learning algorithm is then applied to sort places according to their characteris- tics and detect areas with similar make up: the neighbourhood. The at- tributes can be static like land use or space syntax attributes as well as dynamic like transportation patterns over the course of a day. An un- supervised learning algorithm called Self Organizing Map is applied to project this high dimensional space constituting of places and their attributes to a two dimensional space where proximity is similarity and patterns can be detected – the neighbourhoods. To summarize, the proposed approach yields interesting insights into the structure of the urban fabric generated by human movement, interactions and the built environment. The approach represents a quantitative approach to ur- ban analysis. It reveals that the city is not a polychotomy of neigh- bourhoods but that neighbourhoods overlap and don’t have a sharp edge.
keywords Data analytics; urban; learning algorithms; neighbourhood delineation
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2016_096
id ecaade2016_096
authors Chen, Nai Chun, Nagakura, Takehiko and Larson, Kent
year 2016
title Social Media as Complementary Tool to Evaluate Cities - Data Mining Innovation Districts in Boston
doi https://doi.org/10.52842/conf.ecaade.2016.2.447
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 447-456
summary High tech industries are playing an important role in the economic development in the United States. While some cities are shrinking, the "innovation" cities are growing. The attributes that cause some cities to successfully become innovative is a very relevant 21st century topic and will be investigated here.Previous work conduct city analysis through conventional government GIS or census data but such analyses do not answer questions about the perception of citizens inhabiting the city, and the activities they conduct. The novelty of this current project is to make use of large-scale bottom-up data available from social media. Several social media sources-CrunchBase, Twitter, Yelp, and Flickr- were data mined pertaining to four innovation districts in Boston. We found that the success of innovation districts in Boston were correlated with several important variables: the most successful districts tended to occur near research institutions, in very "mixed use" areas, and were unexpectedly not correlated with land and labor prices, unlike technology districts in the past. Based on our study, we make recommendations for the urban design that cities should put in place to increase the potential for "innovation".
wos WOS:000402064400044
keywords Smart Cities; Social Media; Innovation District; Spatial Analysis; Data Mining; Natural Language Processing
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia23_v1_122
id acadia23_v1_122
authors Crawford, Assia
year 2023
title Mycelium Making: An exploration in Growing Modular Interiors
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 122-127.
summary The project was developed as part of an MArch Architecture design studio that looked at emerging bio-degradable living materials in the form of mycelium bio-composites as a way of manufacturing temporary structures. The project introduced students to laboratory methods for material development and bio-material cultivation. Students were asked to consider the implications of designing with a material that has agency and needs. The studio explored what it means to “make kin” (Haraway 2016) on a planet that has reached a tipping point. It approached the topic from the assumption that the breakdown of existing economic models and resource scarcity offers potent ground for new forms of space making to emerge. The studio looked to nature’s ability to respond to environmental stimuli and design constraints. Students harnessed advances in our scientific understanding to cultivate an architectural language that captures the transient and unstable nature of this new family of biomaterials
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2016_693
id caadria2016_693
authors Fernando, Ruwan; Karine Dupre and Henry Skates
year 2016
title Tangible User Interfaces for Teaching Building Physics: Towards continuous designing in education
doi https://doi.org/10.52842/conf.caadria.2016.693
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 693-702
summary This paper follows our evaluation and research into designing tangible physical media for the purposes of teaching building physics to undergraduate architecture students. These media interfaces make use of a virtual environment to promote an understanding of the cycles, which govern architectural and urban projects (for example solar studies, the flow of heat, air and water). This project aims to create an ecology of devices which can be used by students to self-direct themselves and harbour critical making in their research methods (with the explicit intent of dissolving the barrier between design and research). The basic premise of this research, is that in light of growing student numbers, more students lacking confidence in numeracy skills as well as the desire to have self-directed or group-directed learning, tangible media has a promising role to play. There are several reasons for this optimism. The first is that a better sense of intuition is gained from an interactive model over reading notes from a lecture or textbook. The second is that tangible media engages in other modes of learning, being valuable to students who have an aptitude for kinesthetic and spatial learning over text-dominant learning.
keywords Pedagogy; tangible user interfaces; augmented reality; internet of things; designing for teaching
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2016_467
id caadria2016_467
authors Kim, Mikyoung; Seungyeul Ji, Eonyong Kim and Hanjong Jun
year 2016
title BIM-based File Synchronisation and Permission Management System for Architectural Design Collaboration
doi https://doi.org/10.52842/conf.caadria.2016.467
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 467-476
summary In building information modelling (BIM), the amount of in- formation increased and architectural design processes became more complex as projects expand. This is because while a collaboration en- vironment is important for smooth communication among experts, this has not been realised because of unclassified file synchronisation and permission settings among team members. Therefore, this study aims to support cooperation in BIM modelling projects by synchronising BIM data from different computers and rendering BIM project man- agement easier by providing a BIM model viewer and data through the Web. The proposed technology, which is a construction project- type, purpose-tailored browsing technology, provides BIM infor- mation related to construction environments and planning processes only to the relevant experts.
keywords Building information modelling (BIM); architectural design collaboration; process; file synchronisation; permission management system
series CAADRIA
email
last changed 2022/06/07 07:49

_id sigradi2016_000
id sigradi2016_000
authors Martin Iglesias, Rodrigo
year 2016
title Crowdthinking
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016
summary The topic "Crowdthinking" reveals the inquiries of researchers about collaborative work, distributed intelligence and collective research. The call focuses on transdisciplinary thinking as a construct based on multiplicity and diversity. All these topics are essential not only in the field of design and architecture, but also in emerging areas of human sciences and arts . Currently, the collaborative design is considered one of the key bases for change in the city and society. In its genesis, it manifests the notion that the world around us is inadequate for many of the needs of the society and from that design can be collectively improved. Such collective research, by combining distributed intelligence, sustainable social development, design cutting edge research, theories and computational strategies, generates a research partnership based on participation and distributed cognition of complex problems. This call proposes an approach in which the results of the experiences can build a model, define or apply axioms and lead to applications. It also looks for emerging conjectures about the process, the creation of computer models and the behaviour of the resulting designs. On the other hand, the need to find solutions that improve the quality of life for the community and sustainable development includes concerns about the integration of the physical and cultural context of cities, mass education and the inclusion of parametric design, digital manufacturing and digital prototyping, and BIM as a system that organizes and ensures the correspondence between the physical urban design and sustainable archetypes. These are some of the concerns in which technology has been contributing to improve the design process by integrating information. This integration optimizes resources and enables the various project professionals to work on the same model, run simulations, improve materializations and evaluate massive amount of data. Projects with greater social and environmental responsibility can be achieved adopting into the teaching and practice this new way of design that anticipates an extensive exchange that wilt foster self-evaluation and reformulation of educational paradigms.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia16_236
id acadia16_236
authors Pineda, Sergio; Arora, Mallika; Williams, P. Andrew; Kariuki, Benson M.; Harris, Kenneth D. M.
year 2016
title The Grammar of Crystallographic Expression
doi https://doi.org/10.52842/conf.acadia.2016.236
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 236-243
summary This paper stems from a research collaboration which brings together two disciplines at different ends of the scale spectrum: crystallography and architecture. The science of crystallography demonstrates that the properties of crystalline materials are a function of atomic/molecular interactions and arrangements at the atomic level—i.e., functions of the form and structure of the material. Some of these nano-geometries are frameworks with special characteristics, such as uni-directional porosity, multi-directional porosity, and varied combinations of flexibility and strength. This paper posits that the symmetry operations implicit in these materials can be regarded as a spatial grammar in the design of objects, spaces, and environments. The aim is to allow designers and architects to access the wealth of structural information that is now accumulated in crystallographic databases as well as the spatial symmetry logics utilized in crystallography to describe molecular arrangements. To enable this process, a bespoke software application has been developed as a tool-path to allow for interoperability between crystallographic datasets and CAD-based modelling systems. The application embeds the descriptive logic and generative principles of crystallographic symmetry. Using this software, the project, inter alia, produces results related to a class of geometrical surfaces called Triply Periodic Minimal (TPM) surfaces. In addition to digital iterations, a physical prototype of one such surface called the gyroid was constructed to test potential applications in design. The paper describes the development of these results and the conclusions derived from the first stage of user testing.
keywords interdisciplinarity, physical prototyping, triply periodic minimal surfaces, computational workflow, bespoke software, crystallographic space groups, nano-scale symmetry, nano-scale periodicity, molecular geometry, crystallographic expression
series ACADIA
type paper
email
last changed 2022/06/07 08:00

_id caadria2016_673
id caadria2016_673
authors Roupe?, Mattias; Mikael Johansson, Mikael Viklund Tallgren, Fredrik Jo?Rnebrant and Petru Andrei Tomsa
year 2016
title Immersive visualisation of Building Information Models: Usage and future possibilities during design and construction
doi https://doi.org/10.52842/conf.caadria.2016.673
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 673-682
summary The design process of a building often involves many dif- ferent actors and people with different experiences, level of knowledge and ability to interpret information. The most common in- formation media in these processes are 2D-drawings, documents and 3D images of design. These media can be difficult to interpret and un- derstand and could cause communication difficulties and design er- rors. However, in this context, Building Information Modelling (BIM) and Virtual Reality (VR) have been shown to offer an efficient com- munication platform. In this paper we present and evaluate a portable immersive visualisation system that uses the BIMs directly from the design tools. The system is validated in a real construction project, where the different disciplines in the design process used the system. The result was collected through interviews and observation during usage of the system. All the participants expressed that this type of visual interface helped them to get another level of understanding and perception of space, which lead to better decision-making process and resolving of design issues.
keywords Building information modelling; virtual reality; head mounted display; Oculus Rift
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2016_421
id sigradi2016_421
authors Tramontano, Marcelo; Landim, Gabriele; Digiandomenico, Dyego; Souza, Mayara Dias de
year 2016
title Jam, ou sobre pesquisa colaborativa em Arquitetura e Urbanismo [Jam, or about collaborative research in Architecture and Urbanism]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.902-906
summary Within the scope of JAM research project being developed at Nomads.usp (www.nomads.usp.br), in collaboration with research groups from two other Brazilian public universities, this article focuses on the issue of communication between participants of remote collaborative design processes mediated by digital technologies to design buildings with complex shapes. The aim is to contribute towards reflecting on the theme crowdthinking exploring, on the one hand, issues related to the structuring of research projects in Architecture on the subject, and, on the other hand, aspects of remote collaborative design processes.
keywords Parametric design; Digital fabrication; Architectural design; Collaborative processes; BIM
series SIGRADI
email
last changed 2021/03/28 19:59

_id sigradi2016_672
id sigradi2016_672
authors Bianchi, Alejandra S.; Tripaldi, Gustavo A.; Pintos, Gladis E.; Iturriaga, José R.; Vargas, Sergio D.
year 2016
title Impacto del mundo digital sobre las representaciones gráficas del dise?o arquitectónico. La experiencia en el Taller Virtual de Arquitectura IV-UPC-UNNE [Digital world impact over the graphics representations of the architectural design. The experience in the virtual workshop of architecture IV-UPC-UNNE]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.123-128
summary The present work explains the preliminary results of the Research project that the authors are working on to know the way in which the architecture students of the UNNE represent the architectural object with analogues and digital methods. It wants to express the impact of the digital world over the representations through cross sections in five moments of their formation (beginner’s level, first, second, fourth and sixth years) in the school calendars 2013 to 2016. This qualitative research, descriptive and explanatory, expands in the virtual workshop, an innovative and unique experience of a collaborative workshop between the subjects of Architecture IV of different Universities.
keywords Graphic Representation, Architectural Design, Virtual Workshop
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_507
id caadria2016_507
authors Choi, Jungsik; Inhan Kim and Jiyong Lee
year 2016
title Development of schematic estimation system through linking QTO with Cost DB
doi https://doi.org/10.52842/conf.caadria.2016.507
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 507-516
summary Cost estimate in architectural projects is an important factor for decision-making and financing the project in both early design phase and detailed design phase. In Korea, estimate work based on 2D drawing has generated problems of difference form QTO according to worker’s mistake and know-how. In addition, 2D-based estimation are obtained uncertainty factors of estimation depending on lack of infor- mation due to becoming larger and more complex than any other pro- ject of the architectural project. In order to solve limitations, this study is to suggest an open BIM-based schematic estimation process and a prototype system within the building frame through linking QTO and cost information. This study consists of the following steps: 1) Ana- lysing Level of Detail (LoD) to apply to the process and system, 2) BIM modelling for open BIM-based QTO, 3) Verifying the quality of the BIM model, 4) Developing a schematic estimation prototype sys- tem. This study is expected to improve work efficiency as well as reli- ability of construction cost.
keywords Cost DB; Industry Foundation Classes (IFC); Open Building Information Modelling (BIM); schematic estimation; Quantity Take-Off (QTO)
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia23_v1_40
id acadia23_v1_40
authors Imai, Nate; Conway, Matthew; Lee, Rachel
year 2023
title The Colors We Share
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 40-47.
summary The Colors We Share is the winning proposal for a permanent public art installation that will be built in Los Angeles’s Little Tokyo (Figure 1). Selected through a rigorous open Request for Proposals (RFP) process organized by the city, the project honors the community’s rich and multivalent history and celebrates the voices of its next generation. In collaboration with the Little Tokyo Service Center (LTSC), the installation will feature a digital archive and will incorporate imagery gathered through social media to connect with other Nihonmachi (Japanese-descendant) communities across the globe in real time (Densho, n.d.). The vision for the project is two-fold: 1) to construct a vertical gateway that connects with the adjacent neighborhood, and 2) to create a dynamic display that allows community members to see themselves in the structure and connect with other Nihonmachi through locally, nationally, and internationally collected images and colors (Figure 2). In reference to the conference theme, this digital interface draws upon Dana Cuff and Jennifer Wolch’s Urban Humanities framework and creates a physical landmark that parses through an abundance of information to reveal the scarce voices and stories of a minority population (Cuff and Wolch 2016).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id sigradi2016_440
id sigradi2016_440
authors Amorim, Arivaldo Le?o de
year 2016
title Cidades Inteligentes e City Information Modeling [Smart Cities and City Information Modeling]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.481-488
summary This paper presents and discusses the relationship between the concepts of Smart Cities and City Information Modeling (CIM). It conveys the notion that these are complementary and not competing concepts, as one might think at first glance. On the other hand, the paper demonstrates the importance of these concepts to overcome the challenges to the cities of the 21st century, from findings contained in official documents published by the United Nations (UN), to analyze the growth of world population and the emergence of new cities to house population groups. Finally, this paper argues that the CIM with an inducing factor for the Smart City is an important resource to help improve the quality of life in cities.
keywords Smart Cities; City Information Modeling; Sustainability; Cities of the Future; Information Modeling
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_819
id caadria2016_819
authors Foulcher, Nicholas C.; Hedda H. Askland and Ning Gu
year 2016
title Disruptions: Impact of Digital Design Technologies on Continuity in Established Design Process Paradigms
doi https://doi.org/10.52842/conf.caadria.2016.819
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 819-828
summary This paper aims to provide a critical understanding of the discipline of architectural education, exploring how digital technology forms part of two Australian architecture schools. Generally accepted as the unbroken and consistent existence or operation of something over a period of time, continuity represents stability without interrup- tion. In the context of architectural design education, continuity aligns almost symbiotically with the design process; a system that facilitates a continuous loop of input, output and feedback for the designer— from defining the brief, collecting information, synthesising and pre- senting a design proposal. Preliminary findings of a larger research study that investigates the role of technology in architecture educa- tion, suggest that cultural patterns of technology adoption and valua- tion exist, valorising particular tools and establishing a framework for design teaching and practice that might disrupt the continuity of stu- dents’ design process. Moreover, the study shows evidence of a dis- ruption of continuity in design school narratives, emphasising the need to rethink design pedagogy and the place of technology herein. Reflecting on these observations, this paper explores the question: when the tools of digital technology challenge the established design process paradigm of an architectural school, how do educators re- spond to such a disruption in continuity?
keywords Digital design technology: student learning; course delivery; perception; phenomenology
series CAADRIA
email
last changed 2022/06/07 07:51

_id sigradi2016_363
id sigradi2016_363
authors Hemmerling, Marco; Mazzucchi, Alessio
year 2016
title Colonna Curva: A case study on curved folding for the production of architectural components []
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.677-680
summary The research presented in the paper focuses on computational folding. Besides the well-known straight folded structures, like the classical Miura fold, curved folding opens up more complex spatial configurations and delivers at the same time more performative structural effects, as the bended surfaces resulting from the curved crease folding enhance the overall-stiffness of the structure. Against this background the paper discusses the potential of curved folding techniques for the design and fabrication of architectural components. The findings are illustrated in a case study that documents the prototypical realization of a curved column in scale 1:1.
keywords Curved folding; developable surfaces; deployable structures; parametric design; digital fabrication
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_947067 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002