CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 515

_id caadria2016_373
id caadria2016_373
authors Heinrich, Mary Katherine and Phil Ayres
year 2016
title For Time-Continuous Optimisation: Replacing Automation with Interactive Visualisation in Multi-Objective Behavioural Design
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 373-382
doi https://doi.org/10.52842/conf.caadria.2016.373
summary Strategies for optimisation in design normatively assume an artefact end-point, disallowing continuous architecture that engages living systems, dynamic behaviour, and complex systems. In our Flora Robotica investigations of symbiotic plant-robot bio-hybrids, we re- quire computational tools and strategies that help us evaluate designed behaviours, rather than discrete ‘things’. In this paper, we present our strategy of using embodied interaction to facilitate engagement with a scenario’s full scope of possible states and their continuous changes over time. We detail the ways in which this approach to time- continuous optimisation can be broadly impactful for decision- making, especially in architectural systems that aspire to effective dealings with control flows and lifecycle management.
keywords Multi-objective; dynamic; visualisation; interaction; optimisation
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2016_259
id caadria2016_259
authors Chen, Jia-Yih and Shao-Chu Huang
year 2016
title Adaptive Building Facade Optimisation: An integrated Green-BIM approach
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 259-268
doi https://doi.org/10.52842/conf.caadria.2016.259
summary This study focused on the optimal design of adaptive build- ing fac?ade for achieving better energy performance. Iterative fac?ade components design are studied between virtual and physical models with integrated tools of BIM, parametric design and sensor devices. The main objectives of this study are: (1) exploring systematic design process via the analysis of adaptive components in responsive fac?ade design; (2) developing compliance checking system for green building regulations; (3) developing optimization system for adaptive fac?ade design process. This paper demonstrated the integration of various digital design methods and concluded with the energy modelling re- sults of a demo project unit for various fac?ade component designs.
keywords Building fac?ade design; energy performance; design optimization; parametric design; BIM
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2016_703
id caadria2016_703
authors Ding, Yakui; Tomohiro Fukuda, Nobuyoshi Yabuki, Takashi Michikawa and Ali Motamedi
year 2016
title Automatic Measurement System of Visible Greenery Ratio Using Augmented Reality
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 703-712
doi https://doi.org/10.52842/conf.caadria.2016.703
summary Greening has been promoted to improve the living condi- tions in urban environments. Quantification of greenery is an im- portant issue to identify the criteria for stakeholders in the process of greening. This research focuses on the quantification of visible green- ery ratio which is defined as the amount of greenery in the field of vi- sion. Some measurement methods of visible greenery ratio have been already proposed. However, the quantification process is usually time consuming and prone to human errors due to manual operations by us- ing an image processing software. Therefore, in this research, the au- thors developed an automated measurement system based on image processing technology for the efficient visible greenery ratio meas- urement. In the verification experiment, the proposed method achieved similar results for extracted pixels of green areas as the tradi- tional manual method, with decreased calculation time. Furthermore, in addition to measuring the current ratio of greenery, this system can visualize possible future changes in visible greenery by adding plant- ing (landscape) design models in an Augmented Reality (AR) envi- ronment. Using the proposed method, an ideal greening environment can be designed and evaluated by end-users, more intuitively. The de- veloped design system is expected to eventually result in increasing the amount of greenery in the urban environment.
keywords Visible greenery ratio; image processing; automatic measurement tool; augmented reality
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2016_819
id caadria2016_819
authors Foulcher, Nicholas C.; Hedda H. Askland and Ning Gu
year 2016
title Disruptions: Impact of Digital Design Technologies on Continuity in Established Design Process Paradigms
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 819-828
doi https://doi.org/10.52842/conf.caadria.2016.819
summary This paper aims to provide a critical understanding of the discipline of architectural education, exploring how digital technology forms part of two Australian architecture schools. Generally accepted as the unbroken and consistent existence or operation of something over a period of time, continuity represents stability without interrup- tion. In the context of architectural design education, continuity aligns almost symbiotically with the design process; a system that facilitates a continuous loop of input, output and feedback for the designer— from defining the brief, collecting information, synthesising and pre- senting a design proposal. Preliminary findings of a larger research study that investigates the role of technology in architecture educa- tion, suggest that cultural patterns of technology adoption and valua- tion exist, valorising particular tools and establishing a framework for design teaching and practice that might disrupt the continuity of stu- dents’ design process. Moreover, the study shows evidence of a dis- ruption of continuity in design school narratives, emphasising the need to rethink design pedagogy and the place of technology herein. Reflecting on these observations, this paper explores the question: when the tools of digital technology challenge the established design process paradigm of an architectural school, how do educators re- spond to such a disruption in continuity?
keywords Digital design technology: student learning; course delivery; perception; phenomenology
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2016_363
id caadria2016_363
authors Lee, Alexander; Suleiman Alhadidi and M. Hank Haeusler
year 2016
title Developing a Workflow for Daylight Simulation
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 363-372
doi https://doi.org/10.52842/conf.caadria.2016.363
summary Daylight simulations are occasionally used as active tools in regards to local governing regulations, which are necessary for providing documentation. Simulation tools have been avoided in the past due to their barriers. Daylight simulation tools are used within documentation design stages as ‘passive tools’, however they do not have a direct impact on the architecture design decisions, as passive tools are used by engineers usually to derive material and glass speci- fications. Recent developments within an online community have pro- vided designers with access to daylight simulation tools within a de- sign platform accessible data can be modified and represented with local governing codes to provide designers with relevant information. The paper aimed to develop an active daylight simulation tool within a design platform. Data is filtered with the Green Star benchmarks to export visual information as well as a voxel matrix instead of 2D lu- minance maps. This paper outlines a workflow of the simulation tool used to evaluate daylight performance of a selected building as a case study in real time. The paper also details potential problems and justi- fied suggestions derived from the analysis for the building to reach the requirements within the Green Star Multi Unit Residential.
keywords Data-driven design; computation environmental design; daylight simulation; Green Star
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2016_755
id caadria2016_755
authors Loh, Paul; David Leggett and Timothy Cameron
year 2016
title Smart assembly in digital fabrication: designing workflow
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 755-764
doi https://doi.org/10.52842/conf.caadria.2016.755
summary Digital fabrication project in academia has produced many grounds for experimentation. In recent years, techniques have also been tested extensively in practice within commercial project setting. This gives rise to an emerging breed of architectural practices whose work is increasingly centred on resolution of complex geometry to re- alizable projects. The resolution of parametrically driven design to production projects requires a different workflow, as often the com- pressed timeframe and budget requires the parametric model to cope with multiple streams of construction output as well as utilize the model in concurrent design processes. This paper examines a com- mercial project as case study to explore the abstraction, reduction and dissemination of information within a digital fabrication workflow. In this project, digital fabrication is deployed to reduce risk; mainly in manufacturing and its lead time. The research reveals how metadesign process at an early stage of the project can contribute to increase effi- ciency of the parametric model as well as delivering multiple streams of information for all the collaborators: architects, fabricators and builders. The team designed the assembly procedure into the paramet- ric workflow to facilitate off-site and on-site assembly. This is possi- ble through imbedding ‘smart’ detailing and structuring information with the workflow. The paper concludes by reflecting on the work- flow and asks if a metadesign driven fabrication workflow can create a more holistic approach to digital fabrication. The outcome of the case study is just one instance of the parametric machine that is devel- oped from an understanding of assembly process. This paper responds to the theme of continuous designing, through looking at digital fabri- cation as co-emergence of design procedure and practice.
keywords Digital fabrication; construction; design workflow
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2016_539
id caadria2016_539
authors Lublasser, E.; J. Braumann, D. Goldbach and S. Brell-Cokcan
year 2016
title Robotic Forming: Rapidly Generating 3D Forms and Structures through Incremental Forming
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 539-548
doi https://doi.org/10.52842/conf.caadria.2016.539
summary The past years have seen significant developments in the area of robotic design interfaces. Building upon visual programming environments, these interfaces now allow the creative industry to de- fine even complex fabrication processes in an easy, accessible way, while providing instant, production-immanent feedback. However, while these software tools greatly speed up the programming of robot- ic arms, many processes are still inherently slow: Subtractive process- es need to remove a large amount of material with comparably small tools, while additive processes are limited by the speed of the extruder and the properties of the extruded material. In this research we present a new method for incrementally shaping transparent polymer materi- als with a robotic arm, without requiring heat or dies for deep- drawing, thus allowing us to rapidly fabricate individual panels within a minimum of time.
keywords Incremental forming; robotic fabrication; visual programming
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2016_477
id caadria2016_477
authors Ma, Y. P.; M. C. Lin and C. C. Hsu
year 2016
title Enhance Architectural Heritage Conservation Using BIM Technology
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 477-486
doi https://doi.org/10.52842/conf.caadria.2016.477
summary Common problems tend to surface during the restoration and maintenance of wooden structures for architectural heritage: (1) recording and communicating geometric and non-geometric infor- mation, (2) integrating and managing the multiple phases of construc- tion and (3) the structural damage that can be incurred during the dis- mantling process. This leads to less confidence in the quality of restoration and maintenance. This study considers the traditional wooden structures in Taiwan as a basis to discuss the issues faced dur- ing restoration and the gap in communication between designers and builders. Using new techniques, resources and the concept of BIM, a plugin is developed for guiding restoration. It serves as a BIM-based communication platform for designers and builders, enabling the real- time exchange of information to minimise any gaps that may exist be- tween the designers’ information and that of the builders. This allows information related to the restoration to be more accurate and offers the assurance that the traditional architecture retains its original struc- ture and value.
keywords Architectural heritage; conservation; digital achievement; BIM; wooden frameworks
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2016_023
id caadria2016_023
authors Park, Hyoung-June and Bewketu Kassa
year 2016
title A Tale of Two Cities: A Cost-driven Design Optimisation in Addis Ababa & Honolulu
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 23-32
doi https://doi.org/10.52842/conf.caadria.2016.023
summary A cost-driven design optimisation is introduced through two case studies: 1) a design prototype of a large scale housing com- munity for social mix of its tenants in Addis Ababa, Ethiopia, and 2) the one of a luxurious high-rise condominium with maintaining a de- cent level of its maintenance fee in Honolulu, Hawaii, USA. For both cases, the computation of the optimisation was performed with re- gards to targeted financial concerns which are as following: 1) mar- keting value, construction cost, and government subsidy (incentives) for the case in Addis Ababa and 2) maintenance fee and construction cost for the case in Honolulu. Design factors are employed as a guide for computational outcomes in the optimisation of both architectural problems. The computational outcomes become the basis for project- ing three-dimensional forms as design alternatives. Its application process is delineated within the integrated environment of parametric modelling applications.
keywords Optimisation; financial model; social mix; design feasibility; parametric modelling
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2016_579
id caadria2016_579
authors Tan, Rachel and Stylianos Dritsas
year 2016
title Clay Robotics: Tool making and sculpting of clay with a six-axis robot
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 579-588
doi https://doi.org/10.52842/conf.caadria.2016.579
summary The objective of the project is to design a reproducible clay sculpting process with an industrial robotic arm using parametric con- trol to directly translate mesh geometry from Computer Aided Design (CAD) environment into a lump of clay. This is accomplished through an algorithmic design process developed in Grasshopper using the C# programming language. The design process is enabled by our robotics modelling and simulation library which provides tools for kinematics modelling, motion planning, visual simulation and networked com- munication with the robotic system. Our process generates robot joint axis angle instructions through inverse kinematics which results into linear tool paths realised in physical space. Unlike common subtrac- tive processes such as Computer Numeric Control (CNC) milling where solid material is often pulverised during machining operations, our process employs a carving technique to remove material by dis- placement and deposition due to the soft and self-adhesive nature of the clay material. Optimisation of self-cleaning paths are implemented and integrated into the sculpting process to increase pathing efficiency and end product quality. This paper documents the process developed, the obstacles faced in motion planning of the robotic system and dis- cusses the potential for creative applications in digital fabrication us- ing advanced machines that in certain terms exceed human capability yet in others are unable to reach the quality of handmade works of art.
keywords Design computation; digital fabrication; architectural robotics
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2016_395
id caadria2016_395
authors Ugarte, J. P. and M. Leef
year 2016
title Digital Geo-Plexus: Instagram as a tool for re-evaluating notions of proximity
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 395-404
doi https://doi.org/10.52842/conf.caadria.2016.395
summary The research presented in this paper describes the develop- ment of an Instagram-based multidimensional clustering algorithm. The algorithm analyses large datasets of Instagram images to establish new metrics that qualitatively assess proximity relations in a given geographical area —i.e. negotiates multiple acceptations of proximity. Influenced by Qualitative Spatial Reasoning, Lewis Mumford’s geo- graphic plexus and Kevin Lynch’s perceptual mapping, a graphic GUI-based application has been developed to produce real-time visu- alizations —maps, network graphs, and charts— by means of brows- ing, downloading and post-processing Instagram feeds. First, the ap- plication’s functioning will be described; second, several graphic visualizations will demonstrate the capabilities of the software; third, limitations and further development will be discussed.
keywords Instagram; big data; social network
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2016_209
id caadria2016_209
authors Wang, Likai; Zilong Tan and Guohua Ji
year 2016
title Toward the wind-related building performative design
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 109-218
doi https://doi.org/10.52842/conf.caadria.2016.109
summary The integration of optimization algorithms and building performance simulation tools make it possible to carry out performa- tive design or performance-driven design, which aims to guide the de- sign synthesis process of the simulation results to continuously im- prove the design. However, the associated research work of wind- related building performance is still deficient, resulting from lack of applicable interface and the time consumption. Meanwhile, in the in- dustrial design realm, the aero-dynamics or fluid-dynamics behaviour of the production under development has been vastly analysed and op- timized based on the multi-discipline optimization (MDO) techniques. Owing to offering numerous built-in interface and integrated optimi- zation algorithm, MDO application software has begun to be used in building optimization design with the complex relationship between various objectives. With the advantage of MDO tools and aimed to provide an efficient optimization approach from the perspective of ar- chitect, this paper proposes a wind-related building performance op- timization design system integrating Rhinoceros and Fluent based on iSIGHT - a MDO application software. In addition, the lighting per- formance is considered in this research as well for implementing the multi-objective optimization. Two case studies of tall building optimi- zation design based on varied generative approaches are introduced to investigate the effect and efficiency of this system.
keywords Performative design; wind-related building performance; MDO; parametric generating design
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2016_177
id caadria2016_177
authors Wortmann, Thomas and Giacomo Nannicini
year 2016
title Black-Box Optimisation Methods for Architectural Design
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 177-186
doi https://doi.org/10.52842/conf.caadria.2016.177
summary Black-box optimization methods play an important role in automated design space exploration, but to-date have not been sys- tematically compared on problems from architectural design optimiza- tion. This paper presents a quantitative comparison of the three major types of black-box optimization: metaheuristics, direct search, and model-based methods. We compare the performance of one repre- sentative algorithm of each type (including a genetic algorithm) on four performance-based design problems of varying complexity and characteristics. Our results show that metaheuristics are greatly out- performed whenever evaluating tens of thousands of design candi- dates is not an option, and suggest direct search and model-based methods as viable and more efficient alternatives.
keywords Black-box optimization; simulation; direct search; surrogate models; genetic algorithms
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2016_537
id sigradi2016_537
authors Abreu, Sandro Canavezzi de; Vasconcelos, Guilherme Nunes de; Stralen, Mateus van
year 2016
title Meta-Lab: programação de um laboratório interativo [Metal-Lab: the programming of an interactive lab]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.769-775
summary Here we discuss the technological and theoretical issues that conform the restructuring proposal of the Computer Laboratory of Escola de Arquitetura e Urbanismo da UFMG, reconfiguring it in what we call “Meta-Lab”: a space composed of programmable modules that make up the so called Sistema Hidra(!), a system structured in three levels (sensory, processor and actuator level) which receives environmental information via sensors, processes these information and changes the environment using actuators. We will address in more detail the processing level, a fundamental layer for enabling the implementation of “interactive permanency” through continuous reprogramming of interactions in Meta-Lab.
keywords Interactivity; Combinatory; Interactive Architecture
series other
type normal paper
email
last changed 2017/06/21 14:52

_id caadria2016_777
id caadria2016_777
authors Aditra, Rakhmat F. and Andry Widyowijatnoko
year 2016
title Combination of mass customisation and conventional construction: A case study of geodesic bamboo dome
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 777-786
doi https://doi.org/10.52842/conf.caadria.2016.777
summary With the development of advance fabrication, several digi- tal fabrication approaches have been developed. These approaches en- able better form exploration than the conventional manufacturing pro- cess. But, the built examples mostly rely on advance machinery which was not familiar or available in developed country where construction workers are still abundant. Meanwhile, much knowledge gathers in the field practice. This research is aimed to explore an alternative con- struction workflow and method with the combination of mass custom- ization and conventional construction method and to propose the structure system that emphasized this alternative workflow and meth- od. Lattice structure was proposed. The conventional construction method was used in the struts production and mass customization method, laser cutting, and was used for connection production. The algorithmic process was used mainly for data mining, details design, and component production. The backtracking was needed to be pre- dicted and addressed previously. Considerations that will be needed to be tested by further example are on the transition from the digital pro- cess to the manual process. Next research could be for analysing the other engineering aspect for this prototype and suggesting other struc- tural system with more optimal combination of conventional construc- tion and mass customization.
keywords Mass customisation; algorithmic design; digital fabrication; geodesic dome; lattice structure
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2016_063
id ecaade2016_063
authors Al-Qattan, Emad, Galanter, Philip and Yan, Wei
year 2016
title Developing a Tangible User Interface for Parametric and BIM Applications Using Physical Computing Systems.
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 621-630
doi https://doi.org/10.52842/conf.ecaade.2016.2.621
wos WOS:000402064400063
summary This paper discusses the development of an interactive and a responsive Tangible User-Interface (TUI) for parametric and Building Information Modeling (BIM) applications. The prototypes presented in this paper utilizes physical computing systems to establish a flexible and intuitive method to engage digital design processes.The prototypes are hybrid UIs that consist of a digital modeling tool and an artifact. The artifact consists of a control system (sensors, actuators, and microcontrollers) and physical objects (architectural elements). The link between both environments associates physical objects with their digital design information to assist users in the digital design process. The integration of physical computing systems will enable the objects to physically respond to analog input and provide real-time feedback to users. The research aims to foster tangible computing methods to extend the capabilities of digital design tools. The prototypes demonstrate a method that allows architects to simultaneously interact with complex architectural systems digitally and physically.
keywords Physical Computing; Parametric Design; BIM; Tangible UI
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_631
id caadria2016_631
authors Alambeigi, Pantea; Sipei Zhao, Jane Burry and Xiaojun Qiu
year 2016
title Complex human auditory perception and simulated sound performance prediction
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 631-640
doi https://doi.org/10.52842/conf.caadria.2016.631
summary This paper reports an investigation into the degree of con- sistency between three different methods of sound performance evalu- ation through studying the performance of a built project as a case study. The non-controlled office environment with natural human speech as a source was selected for the subjective experiment and ODEON room acoustics modelling software was applied for digital simulation. The results indicate that although each participant may in- terpret and perceive sound in a particular way, the simulation can pre- dict this complexity to some extent to help architects in designing acoustically better spaces. Also the results imply that architects can make valid comparative evaluations of their designs in an architectur- ally intuitive way, using architectural language. The research acknowledges that complicated engineering approaches to subjective analysis and to controlling the test environment and participants is dif- ficult for architects to comprehend and implement.
keywords Human sound perception; acoustic simulation; experiment and measurement
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2016_032
id ascaad2016_032
authors Alhadidi, Suleiman; Justin Mclean, Luchlan Sharah, Isabel Chia, Roger Sam
year 2016
title Multiflight - Creating Interactive Stairs through Positive Technology
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 295-308
summary This paper details a pedagogical project which calls for an improved design performance of the existing built environment through the use of smart technology and data-driven design. The project is an investigation into ways in which to improve the performance of a ‘pre-selected university building’ through the use of a media facade that allows for interactive experiences. Existing problems of the selected building have been identified through observation and research using a rich picture and agile approach. An underutilised staircase was selected as the focus site for a series of computational design and interactive design studies. The brief of this mini-research project aims to encourage more people to use the stairs and create a memorable experience with a technological approach through the application of a site specific interactive media installation. The project is an interactive staircase which utilises LED strips and generative sound. The project features a series of light boxes which are connected to the existing staircase balustrade. Arduino, passive infra-red sensors, and other motion detection sensors were used to allow for light and generative sound interaction with users using visual scripting tools and a generative design platform. Sensing technology was used as a real-time data-gathering device during the site analysis phase as well as an input device for the designed prototype to allow the testing of the data-driven design. This paper details the study and resultant interactive prototypes. It also discusses the exploration of performance based design ideas into design workflows and the integration of sensing tools into the design process. It concludes by identifying possible implications on using the Internet of Things concepts to facilitate the design of interactive architecture.
series ASCAAD
email
last changed 2017/05/25 13:33

_id caadria2016_055
id caadria2016_055
authors An, Seyun; Yountaik Leem, Soyeon Kim and Sangho Lee
year 2016
title A Study of Media Façade Service Design for Promotion of Local Community
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 55-62
doi https://doi.org/10.52842/conf.caadria.2016.055
summary This research was progressed as a media fac?ade service de- sign research for the development of a residential U-city experiencing zone in the Sejong City.
keywords Media fac?ade; community; service design; U-City; Sejong C!ty
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2016_450
id sigradi2016_450
authors Araujo, André L.; Celani, Gabriela
year 2016
title Exploring Weaire-Phelan through Cellular Automata: A proposal for a structural variance-producing engine
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.710-714
summary Complex forms and structures have always been highly valued in architecture, even much before the development of computers. Many architects and engineers have strived to develop structures that look very complex but at the same time are relatively simple to understand, calculate and build. A good example of this approach is the Beijing National Aquatics Centre design for the 2008 Olympic Games, also known as the Water Cube. This paper presents a proposal for a structural variance-producing engine using cellular automata (CA) techniques to produce complex structures based on Weaire-Phelan geometry. In other words, this research evaluates how generative and parametric design can be integrated with structural performance in order to enhance design flexibility and control in different stages of the design process. The method we propose was built in three groups of procedures: 1) we developed a method to generate several fits for the two Weaire-Phelan polyhedrons using CA computation techniques; 2) through the finite elements method, we codify the structural analysis outcomes to use them as inputs for the CA algorithm; 3) evaluation: we propose a framework to compare how the final outcomes deviate for the good solutions in terms of structural performance and rationalization of components. We are interested in knowing how the combination of the procedures could contribute to produce complex structures that are at the same time certain rational. The system developed allows the structural analysis of structured automatically generated by a generative system. However, some efficient solutions from the structural performance point of view do not necessarily represent a rational solution from the feasibility aspects.
keywords Structural design; Complex structures; Bottom-up design approach
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_358250 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002