CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id ecaade2016_241
id ecaade2016_241
authors Janssen, Patrick, Stouffs, Rudi, Mohanty, Akshata, Tan, Elvira and Li, Ruize
year 2016
title Parametric Modelling with GIS
doi https://doi.org/10.52842/conf.ecaade.2016.2.059
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 59-68
summary Existing urban planning and design systems and workflows do not effectively support a fast iterative design process capable of generating and evaluating large-scale urban models. One of the key issues is the lack of flexibility in workflows to support iterative design generation and performance analyses, and easily integrate into design and planning processes. We present and demonstrate a parametric modelling system, Möbius, that can easily be linked to Geographic Information Systems for creating modular workflows, provides a novel approach for visual programming that integrates associative and imperative programming styles, uses a rich topological data structure that allows custom data attributes to be added to geometric entities at any topological level, and is fully web-based. The demonstration consists of five main stages that alternate between QGIS and Möbius, generating and analysing an urban model reflecting on site conditions and using a library of parametric urban typologies, and uses as a case study an urban design studio project in which the students sketched a set of rules that defined site coverage and building heights based on the proximity to various elements in the design.
wos WOS:000402064400005
keywords generative design; urban planning; Geographic Information Systems; parametric modelling
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia16_88
id acadia16_88
authors Klemmt, Christoph; Bollinger, Klaus
year 2016
title Load Responsive Angiogenesis Networks: Structural Growth Simulations of Discrete Members using Variable Topology Spring Systems
doi https://doi.org/10.52842/conf.acadia.2016.088
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 88-97
summary Venation systems in leaves, which form their structural support, always connect back to one seed point, the petiole of the leaf. In order to develop similar structural networks for architectural use which connect to more seed points on the ground, an algorithm has been developed which can develop from two or three seed points, inspired by angiogenesis, the process through which the vascular system grows. This allows for the generation of structurally suitable topologies based on discrete members, which can be evaluated using Finite Element Analysis and which can be constructed from linear structural members without an additional interpretation of the results. The networks have been developed as load bearing spring systems above the support points. Different structures have been compared and tested using Finite Element Analysis. Compared to traditional column and beam structures, the angiogenesis networks as well as the venation networks are shown to perform well under load.
keywords venation, finite element analysis, angiongenesis, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaade2016_070
id ecaade2016_070
authors Takagi, Naoya and Takizawa, Atsushi
year 2016
title Development of The Method for Estimating Traffic Volume of Pedestrians in An Underground Mall by Use of Watch Cameras
doi https://doi.org/10.52842/conf.ecaade.2016.2.463
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 463-472
summary This paper describes a method for estimating pedestrian traffic volume by using video cameras. In the Umeda underground mall in Osaka City, we estimated the traffic volume without tracking technology and while protecting pedestrian's privacy. We developed an original algorithm that roughly estimates the traffic volume of pedestrians from sequential images of video cameras. We focused on a line on each image cut out from video and made a new image which shows the spatiotemporal distribution of pedestrians. We defined this image as 'time historical image of pedestrian spots (THIPS)'. In a THIPS, a pedestrian is regarded as a cluster of connected pixels with the same label. We captured the spatiotemporal distribution of pedestrians by using these images. We found that this algorithm requires a THIPS to estimate the number of pedestrians who passed the spot for a few minutes and plural THIPSs to estimate their traveling directions. Finally, we concluded that this algorithm is an efficient means of estimating pedestrian traffic volume.
wos WOS:000402064400046
keywords Pedestrian Flow; Underground Mall; Spatiotemporal Distribution; Watch Cameras; Background Subtraction; Integer Linear Problem
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2016_120
id ecaade2016_120
authors Takizawa, Atsushi
year 2016
title Estimating Potential Event Occurrence Areas in Small Space based on Semi-supervised Learning
doi https://doi.org/10.52842/conf.ecaade.2016.2.169
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 169-178
summary We propose a method for relatively small space that can optimize the size and shape of the neighborhood of an event occurrence spot on a grid space to minimize the classification error using classification by aggregating emerging patterns based on the concept of semi-supervised learning. We apply this method to data of waiting people in the Umeda Underground Mall and show that the proposed method can improve classification accuracy and understandability of classification rules.
wos WOS:000402064400016
keywords Small space; spatial event; clustering; classification; mixed integer quadratic programing
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2016_579
id caadria2016_579
authors Tan, Rachel and Stylianos Dritsas
year 2016
title Clay Robotics: Tool making and sculpting of clay with a six-axis robot
doi https://doi.org/10.52842/conf.caadria.2016.579
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 579-588
summary The objective of the project is to design a reproducible clay sculpting process with an industrial robotic arm using parametric con- trol to directly translate mesh geometry from Computer Aided Design (CAD) environment into a lump of clay. This is accomplished through an algorithmic design process developed in Grasshopper using the C# programming language. The design process is enabled by our robotics modelling and simulation library which provides tools for kinematics modelling, motion planning, visual simulation and networked com- munication with the robotic system. Our process generates robot joint axis angle instructions through inverse kinematics which results into linear tool paths realised in physical space. Unlike common subtrac- tive processes such as Computer Numeric Control (CNC) milling where solid material is often pulverised during machining operations, our process employs a carving technique to remove material by dis- placement and deposition due to the soft and self-adhesive nature of the clay material. Optimisation of self-cleaning paths are implemented and integrated into the sculpting process to increase pathing efficiency and end product quality. This paper documents the process developed, the obstacles faced in motion planning of the robotic system and dis- cusses the potential for creative applications in digital fabrication us- ing advanced machines that in certain terms exceed human capability yet in others are unable to reach the quality of handmade works of art.
keywords Design computation; digital fabrication; architectural robotics
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2016_583
id sigradi2016_583
authors Chiarella, Mauro; Martini, Sebastián; Giraldi, Sebastián; Góngora, Nicolás; Picco, Camila
year 2016
title Cultura Maker. Dispositivos, Prótesis Robóticas y Programación Visual en Arquitectura y Dise?o para eficiencia energética [Culture Maker. Devices, Prostheses Robotics and Visual Programming in Architecture and Design for energy efficiency.]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.961-968
summary The Maker movement is the ability to be small and at the same time world; craftsmanship and innovative; high technology and low cost. The Maker movement is doing for physical products what the open source made by the software. The Maker culture emphasizes collaborative learning and distributed cognition. Its knowledge base repository and channels of exchange of ideas and information are: web sites; social networks; the Hackerspaces and Fab-Labs. Three experiences presented with devices; prostheses robotics and CNC machines, based on logical replacement; adaptation and generation. Its authors are undergraduate and graduate fellows Industrial Design and Architecture.
keywords Maker culture; Prostheses Robotics; Visual Programming; Energy Efficiency; Adaptive Skin
series SIGRADI
email
last changed 2021/03/28 19:58

_id ascaad2016_045
id ascaad2016_045
authors Dahadreh, Saleem; Rasha Alshami
year 2016
title The Four F's of Architecture - A conceptual framework for understanding architectural works
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 439-450
summary This paper presents a conceptual framework for understanding architectural works. This framework provides an understanding of an architectural building through qualitatively discerning the complexity of issues involved in its design and enabling their systematic integration into a theoretical construct. The premise behind this framework is that in design a better understanding of ‘what’ to design leads to a more informed base to ‘how’ to design. Using a grounded theory method, the paper postulates an ontological framework that recasts the Vitruvian triad of utilitas, venustas, and firmitas into spatial, intellectual, and structural forms respectively, and more importantly expands the triad to include context and architectural thinking as formative ideas, as integral components in any architectural work, thus closing a gap that existed in many frameworks dealing with architecture. The paper concluded that this framework offers a level of robust understanding of architecture that can be used in structuring the generation of architectural form as well as the description and analysis of existing works of architecture. Its value exceeds theory framing and extends towards architectural pedagogy as a theoretical framework in teaching design studio.
series ASCAAD
email
last changed 2017/05/25 13:33

_id caadria2016_095
id caadria2016_095
authors Gu, Ning; Rongrong Yu and Michael Ostwald
year 2016
title Computational Analysis and Generation of Traditional Chinese Private Gardens through Space Syntax and Parametric Design
doi https://doi.org/10.52842/conf.caadria.2016.095
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 95-104
summary This research develops a methodological framework for computational analysis and generation of traditional Chinese private gardens, powered by two well-known algorithms in the field, with Space Syntax for analysis and parametric design for generation. Ap- plying this framework, the paper commences with an analysis of two different categories of Chinese private gardens using selected Space Syntax techniques. Next, mathematical measurements derived from the analysis are used as the basis to capture essential spatial patterns in these two garden types. These quantitative results are then used to di- rect the development of a parametric design system to generate new design instances that share the same spatial patterns of the original traditional Chinese private gardens. The effectiveness of this computa- tional approach is demonstrated through two case studies, Yuyuan Garden and Wangshiyuan Garden, both located in Southeast China and each representing a different category of traditional Chinese pri- vate gardens with a typical planning structure. The outcomes of the paper contribute to potential new insights about these important herit- age sites, and demonstrate a formal approach to their computational analysis and generation.
keywords Computational design analysis; generative design; Space Syntax; parametric design; traditional Chinese private gardens
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2016_085
id caadria2016_085
authors Ji, Guohua
year 2016
title Digital Generation of Chinese Ice-Ray Lattice Designs
doi https://doi.org/10.52842/conf.caadria.2016.085
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 85-94
summary Being a rich source of geometric forms, Chinese lattice de- signs have interested some scholars. With shape grammar and algo- rithmic approaches, the generation of Chinese lattice designs has been achieved except for that of irregular interdependently structured ice- ray designs. This paper introduced an algorithmic approach to solve the problem. The algorithm includes crack-track presetting, crack- track cutting, crack correcting, and bad shape disposing, realized by programming with Grasshopper VB script component.
keywords Ice-ray; algorithm; designs; generation
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2016_136
id ecaade2016_136
authors Kwiecinski, Krystian, Santos, Filipe, Almeida, Ana de, Taborda, Bruno and Eloy, Sara
year 2016
title Wood Mass-Customized Housing - A dual computer implementation design strategy
doi https://doi.org/10.52842/conf.ecaade.2016.2.349
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 349-358
summary This paper reports our current research on automatic generation of houses layouts according to future inhabitant's requirements. For that generation we propose the use of a design method based on shape grammars that encodes light wood frame construction guidelines. Two different implementations for the design system are presently under development. One based on shape grammars supplemented with procedural knowledge and another using a genetic algorithm. Both implementations allow the generation of house layouts that fulfill both the user requirements and the design language.
wos WOS:000402064400034
keywords shape grammar; genetic algorithm; computer implementation
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2016_013
id ecaade2016_013
authors Lorenz, Wolfgang E. and Wurzer, Gabriel
year 2016
title Flying Bricks - Algorithmic Design Studio
doi https://doi.org/10.52842/conf.ecaade.2016.1.205
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 205-212
summary The design studio 'Flying Bricks' was held during the summer semester 2015. Its main objective was to redesign an existing building with the use of facing bricks algorithmically, utilizing algorithmic thinking and programming as a means for form generation. The purpose of having students express their designs in terms of code was to emphasize problem thinking over solution generation, which has several advantages but also disadvantages which we would like to share in this paper. Furthermore, we would like to show how our implementation process worked, so that others can leverage that for their own algorithmic design courses.
wos WOS:000402063700023
keywords NetLogo; Digital Design; Bricks; Education
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2016_042
id ecaade2016_042
authors Narangerel, Amartuvshin, Lee, Ji-Hyun and Stouffs, Rudi
year 2016
title Daylighting Based Parametric Design Exploration of 3D Facade Patterns
doi https://doi.org/10.52842/conf.ecaade.2016.2.379
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 379-388
summary A building façade plays an important role of reducing artificial lighting by introducing natural light into the interior space. A majority of research and current technology heavily focuses on the optimization of window properties such as the size, location, and glazing with the consideration of external shading device as well as the building wall in order to obtain appropriate natural lit space. In the present work, we propose a 3-dimensional approach that can explore the trade-offs between two objectives, daylight performance and electricity generation, by means of paramedic modeling and multi-objective optimization algorithm. The case study was simulated under the environmental setting of the geographical location of Incheon, Korea without any urban context. Using the proposed methods, 50 pareto-front optimal solutions were derived and investigated based on the achieved daylighting and generated electricity.
wos WOS:000402064400037
keywords Parametric design; façade design; daylight performance; building-integrated photovoltaics; multi-objective optimization
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia17_446
id acadia17_446
authors Nejur, Andrei; Steinfeld, Kyle
year 2017
title Ivy: Progress in Developing Practical Applications for a Weighted-Mesh Representation for Use in Generative Architectural Design
doi https://doi.org/10.52842/conf.acadia.2017.446
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 446- 455
summary This paper presents progress in the development of practical applications for graph representations of meshes for a variety of problems relevant to generative architectural design (GAD). In previous work (Nejur and Steinfeld 2016), the authors demonstrated that while approaches to marrying mesh and graph representations drawn from computer graphics (CG) can be effective within the domains of applications for which they have been developed, they have not adequately addressed wider classes of problems in GAD. There, the authors asserted that a generalized framework for working with graph representations of meshes can effectively bring recent advances in mesh segmentation to bear on GAD problems, a utility demonstrated through the development of a plug-in for the visual programming environment Grasshopper. Here, we describe a number of implemented solutions to mesh segmentation and transformation problems, articulated as a series of additional features developed as a part of this same software. Included are problems of mesh segmentation approached through the creation of acyclic connected graphs (trees); problems of mesh transformations, such as those that unfold a segmented mesh in anticipation of fabrication; and problems of geometry generation in relation to a segmented mesh, as demonstrated through a generalized approach to mesh weaving. We present these features in the context of their potential applications in GAD and provide a limited set of examples for their use.
keywords design methods; information processing
series ACADIA
email
last changed 2022/06/07 07:58

_id caadria2016_683
id caadria2016_683
authors Schnabel, Marc Aurel; Serdar Aydin, Tane Moleta, Davide Pierini and Toma?S Dorta
year 2016
title Unmediated cultural heritage via Hyve-3D: Collecting individual and collective narratives with 3D sketching
doi https://doi.org/10.52842/conf.caadria.2016.683
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 683-692
summary Cultural heritage is traditionally mediated through institu- tional bodies that are authorised to broadcast heritage information, whereas new media technologies such as social media platforms con- tinue to enforce individual storytelling and information sharing. Therefore GLAMs (Galleries, Libraries, Archives and Museums) have to cope with a shift of public interest from their services to more ac- cessible, entertaining and democratic engagements available as ‘liv- ing’ media. Unmediated cultural heritage is the paramount aim of this work and, in a theoretical sense, a utopia for generation of authenticity or meaning-making. Within the realm of digital heritage, this study explores the nature of engagement with cultural heritage using an in- novative means. In this phase of the research, a photogrammetric model of Kashgar’s narrow alleys is deployed in a system, called Hy- brid Virtual Environment 3D (Hyve-3D). Via its 3D cursor technolo- gy, the concept of unmediated cultural heritage is unfolded through active participation, collaboration and interaction. Thus, in the context of heritage, this research explores a hitherto undocumented frontier of Hyve-3D designated to immersive collaborative 3D sketching.
keywords Digital heritage; Hyve-3D; photogrammetry; authenticity; 3D sketching
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2016_492
id sigradi2016_492
authors Stumpp, Monika Maria; Braga, Gisele Pinna
year 2016
title Imagens Digitais na Apresentaç?o de Projetos de Arquitetura: estudo na arquitetura brasileira contemporânea – Jacobsen Arquitetura [Digital images in Architecture Project Presentation: Study in contemporary Brazilian architecture - Jacobsen Arquitetura]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.50-57
summary Architectural offices have been using rendered images in their electronic portfolios. What are the characteristics of these images? Is there any prevalent technique? Has a standard presentation already been established? This article presents a research that analyzed the rendered images found on the website of Jacobsen Arquitetura, one of the 25 offices elected in 2010 as the "new generation of Brazilian architecture". This study is part of the authors' research, which aims to identify how Brazilian contemporary architectural offices, which stand out in the architectural field, deal with these issues. The results provide subsidies for reflection on Brazilian architectural field, consequently, on architects and urban planners' education.
keywords 3D Rendering; Portfolio; Digital perspective, Digital Images
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia16_184
id acadia16_184
authors Vasey; Lauren; Long Nguyen; Tovi Grossman; Heather Kerrick; Danil Nagy; Evan Atherton; David Thomasson; Nick Cote; David Benjamin; George Fitzmaurice; Achim Menges
year 2016
title Collaborative Construction: Human and Robotic Collaboration Enabling the Fabrication and Assembly of a Filament-Wound Structure
doi https://doi.org/10.52842/conf.acadia.2016.184
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 184-195
summary In this paper, we describe an interdisciplinary project and live-exhibit that investigated whether untrained humans and robots could work together collaboratively towards the common goal of building a large-scale structure composed out of robotically fabricated modules using a filament winding process. We describe the fabrication system and exhibition setup, including a custom end effector and tension control mechanism, as well as a collaborative fabrication process in which instructions delivered via wearable devices enable the trade-off of production and assembly tasks between human and robot. We describe the necessary robotic developments that facilitated a live fabrication process, including a generic robot inverse kinematic solver engine for non-spherical wrist robots, and wireless network communication connecting hardware and software. In addition, we discuss computational strategies for the fiber syntax generation and robotic motion planning which mitigated constraints such as reachability, axis limitations, and collisions, and ensured predictable and therefore safe motion in a live exhibition setting. We discuss the larger implications of this project as a case study for handling deviations due to non-standardized materials or human error, as well as a means to reconsider the fundamental separation of human and robotic tasks in a production workflow. Most significantly, the project exemplifies a hybrid domain of human and robot collaboration in which coordination and communication between robots, people, and devices can enhance the integration of robotic processes and computational control into the characteristic processes of construction.
keywords machin vision, cyber-physical systems, internet of things, robotic fabrication, human robot collaboration, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id caadria2016_105
id caadria2016_105
authors Yan, Dong; Weixin Huang and Zhida Song
year 2016
title Generation of Weaving Structure on Free-Form Surface Using a Remeshing Algorithm
doi https://doi.org/10.52842/conf.caadria.2016.105
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 105-114
summary Inspired by the study on traditional weaving handicrafts, this paper focuses on a new weaving structure system that could be used in construction of different organic geometries. A new and viable remeshing algorithm is proposed that a free-form surface could be converted into a certain mesh grid, in which the edges represent the weaving elements, and the vertices represent their joints. The research essentially seeks to integrate the intangible cultural heritage into the construction technique, as well as to narrow the gap between the com- plex geometry with digital fabrication.
keywords Weaving structure; free-form surface; remeshing; complex topology
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2016_537
id sigradi2016_537
authors Abreu, Sandro Canavezzi de; Vasconcelos, Guilherme Nunes de; Stralen, Mateus van
year 2016
title Meta-Lab: programaçăo de um laboratório interativo [Metal-Lab: the programming of an interactive lab]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.769-775
summary Here we discuss the technological and theoretical issues that conform the restructuring proposal of the Computer Laboratory of Escola de Arquitetura e Urbanismo da UFMG, reconfiguring it in what we call “Meta-Lab”: a space composed of programmable modules that make up the so called Sistema Hidra(!), a system structured in three levels (sensory, processor and actuator level) which receives environmental information via sensors, processes these information and changes the environment using actuators. We will address in more detail the processing level, a fundamental layer for enabling the implementation of “interactive permanency” through continuous reprogramming of interactions in Meta-Lab.
keywords Interactivity; Combinatory; Interactive Architecture
series other
type normal paper
email
last changed 2017/06/21 14:52

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id acadia16_54
id acadia16_54
authors Andreen, David; Jenning, Petra; Napp, Nils; Petersen, Kirstin
year 2016
title Emergent Structures Assembled by Large Swarms of Simple Robots
doi https://doi.org/10.52842/conf.acadia.2016.054
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 54-61
summary Traditional architecture relies on construction processes that require careful planning and strictly defined outcomes at every stage; yet in nature, millions of relatively simple social insects collectively build large complex nests without any global coordination or blueprint. Here, we present a testbed designed to explore how emergent structures can be assembled using swarms of active robots manipulating passive building blocks in two dimensions. The robot swarm is based on the toy “bristlebot”; a simple vibrating motor mounted on top of bristles to propel the body forward. Since shape largely determines the details of physical interactions, the robot behavior is altered by carefully designing its geometry instead of uploading a digital program. Through this mechanical programming, we plan to investigate how to tune emergent structural properties such as the size and temporal stability of assemblies. Alongside a physical testbed with 200 robots, this work involves comprehensive simulation and analysis tools. This simple, reliable platform will help provide better insight on how to coordinate large swarms of robots to construct functional structures.
keywords emergent structures, mechanical intelligence, swarm robotics
series ACADIA
type paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_699669 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002