CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 550

_id acadia16_34
id acadia16_34
authors Johnson, Jason S.; Parker, Matthew
year 2016
title Architectural Heat Maps: A Workflow for Synthesizing Data
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 34-33
doi https://doi.org/10.52842/conf.acadia.2016.034
summary Over the last 5 years, large-scale ‘data dumps’ of architectural production have been made available online through project-specific websites (mainly competitions) and architectural aggregation/dissemination sites like Architizer, Suckerpunch, and Archinect. This reinforces the broader context of Ubiquitous Simultaneity, in which large amounts of data are continuously updated and easily accessed through a dizzying array of mobile devices. This condition is being exploited by sports leagues and financial speculators through the development of tools that collect, visualize, and analyze historical data for the purpose of producing speculative predictive simulations that could lead to strategies for enhanced performance. We explore the development of a workflow for deploying computer vision, SIFT algorithms, image aggregation, and heteromorphic deformation as a design strategy. These techniques have all been developed separately for various applications and here we combine them in such a way as to allow for the embedding of the historical and speculative artifacts of architectural production into newly formed three-dimensional architectural bodies. This work builds on past research, which resulted in a more two-dimensional image-based mapping and translation process found in existing imaging protocols for projects like Google Earth, and transitions towards the production of data-rich formal assemblies. Outliers and concentrations of visual data are exploited as a means to encourage innovation within the production of architecture.
keywords historical and speculative data, generative design, computer vision, ubiquitous simultaneity, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id acadia16_382
id acadia16_382
authors Lopez, Deborah; Charbel, Hadin; Obuchi, Yusuke; Sato, Jun; Igarashi, Takeo; Takami, Yosuke; Kiuchi, Toshikatsu
year 2016
title Human Touch in Digital Fabrication
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 382-393
doi https://doi.org/10.52842/conf.acadia.2016.382
summary Human capabilities in architecture-scaled fabrication have the potential of being a driving force in both design and construction processes. However, while intuitive and flexible, humans are still often seen as being relatively slow, weak, and lacking the exacting precision necessary for structurally stable large-scale outputs—thus, hands-on involvement in on-site fabrication is typically kept at a minimum. Moreover, with increasingly advanced computational tools and robots in architectural contexts, the perfection and speed of production cannot be rivaled. Yet, these methods are generally non-engaging and do not necessarily require a skilled labor workforce, bringing to question the role of the craftsman in the digital age. This paper was developed with the focus of leveraging human adaptability and tendencies in the design and fabrication process, while using computational tools as a means of support. The presented setup consists of (i) a networked scanning and application of human movements and human on-site positioning, (ii) a lightweight and fast-drying extruded composite material, (iii) a handheld “smart” tool, and (iv) a structurally optimized generative form via an iterative feedback system. By redistributing the roles and interactions of humans and machines, the hybridized method makes use of the inherently intuitive yet imprecise qualities of humans, while maximizing the precision and optimization capabilities afforded by computational tools—thus incorporating what is traditionally seen as “human error” into a dynamically engaging and evolving design and fabrication process. The interdisciplinary approach was realized through the collaboration of structural engineering, architecture, and computer science laboratories.
keywords human computer interaction and design, craft in design, tool streams and tool building, cognate streams, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id acadia16_236
id acadia16_236
authors Pineda, Sergio; Arora, Mallika; Williams, P. Andrew; Kariuki, Benson M.; Harris, Kenneth D. M.
year 2016
title The Grammar of Crystallographic Expression
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 236-243
doi https://doi.org/10.52842/conf.acadia.2016.236
summary This paper stems from a research collaboration which brings together two disciplines at different ends of the scale spectrum: crystallography and architecture. The science of crystallography demonstrates that the properties of crystalline materials are a function of atomic/molecular interactions and arrangements at the atomic level—i.e., functions of the form and structure of the material. Some of these nano-geometries are frameworks with special characteristics, such as uni-directional porosity, multi-directional porosity, and varied combinations of flexibility and strength. This paper posits that the symmetry operations implicit in these materials can be regarded as a spatial grammar in the design of objects, spaces, and environments. The aim is to allow designers and architects to access the wealth of structural information that is now accumulated in crystallographic databases as well as the spatial symmetry logics utilized in crystallography to describe molecular arrangements. To enable this process, a bespoke software application has been developed as a tool-path to allow for interoperability between crystallographic datasets and CAD-based modelling systems. The application embeds the descriptive logic and generative principles of crystallographic symmetry. Using this software, the project, inter alia, produces results related to a class of geometrical surfaces called Triply Periodic Minimal (TPM) surfaces. In addition to digital iterations, a physical prototype of one such surface called the gyroid was constructed to test potential applications in design. The paper describes the development of these results and the conclusions derived from the first stage of user testing.
keywords interdisciplinarity, physical prototyping, triply periodic minimal surfaces, computational workflow, bespoke software, crystallographic space groups, nano-scale symmetry, nano-scale periodicity, molecular geometry, crystallographic expression
series ACADIA
type paper
email
last changed 2022/06/07 08:00

_id acadia16_184
id acadia16_184
authors Vasey; Lauren; Long Nguyen; Tovi Grossman; Heather Kerrick; Danil Nagy; Evan Atherton; David Thomasson; Nick Cote; David Benjamin; George Fitzmaurice; Achim Menges
year 2016
title Collaborative Construction: Human and Robotic Collaboration Enabling the Fabrication and Assembly of a Filament-Wound Structure
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 184-195
doi https://doi.org/10.52842/conf.acadia.2016.184
summary In this paper, we describe an interdisciplinary project and live-exhibit that investigated whether untrained humans and robots could work together collaboratively towards the common goal of building a large-scale structure composed out of robotically fabricated modules using a filament winding process. We describe the fabrication system and exhibition setup, including a custom end effector and tension control mechanism, as well as a collaborative fabrication process in which instructions delivered via wearable devices enable the trade-off of production and assembly tasks between human and robot. We describe the necessary robotic developments that facilitated a live fabrication process, including a generic robot inverse kinematic solver engine for non-spherical wrist robots, and wireless network communication connecting hardware and software. In addition, we discuss computational strategies for the fiber syntax generation and robotic motion planning which mitigated constraints such as reachability, axis limitations, and collisions, and ensured predictable and therefore safe motion in a live exhibition setting. We discuss the larger implications of this project as a case study for handling deviations due to non-standardized materials or human error, as well as a means to reconsider the fundamental separation of human and robotic tasks in a production workflow. Most significantly, the project exemplifies a hybrid domain of human and robot collaboration in which coordination and communication between robots, people, and devices can enhance the integration of robotic processes and computational control into the characteristic processes of construction.
keywords machin vision, cyber-physical systems, internet of things, robotic fabrication, human robot collaboration, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id acadia16_298
id acadia16_298
authors Yu, Lei; Huang, Yijiang; Zhongyuan, Liu; Xiao, Sai; Liu, Ligang; Song, Guoxian; Wang, Yanxin
year 2016
title Highly Informed Robotic 3D Printed Polygon Mesh: A Nobel Strategy of 3D Spatial Printing
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 298-307
doi https://doi.org/10.52842/conf.acadia.2016.298
summary Though robotic 3D printing technology is currently undergoing rapid development, most of the research and experiments are still based on a bottom up layering process. This paper addresses long term research into a robotic 3D printed polygon mesh whose struts are directly built up and joined together as rapidly generated physical wireframes. This paper presents a novel “multi-threaded” robotic extruder, as well as a technical strategy to create a “printable” polygon mesh that is collision-free during robotic operation. Compared to standard 3D printing, architectural applications demand much larger dimensions at human scale, geometrically lower resolution and faster production speed. Taking these features into consideration, 3D printed frameworks have huge potential in the building industry by combining robot arm technology together with FDM 3D printing technology. Currently, this methodology of rapid prototyping could potentially be applied on pre-fabricated building components, especially ones with uniform parabolic features. Owing to the mechanical features of the robot arm, the most crucial challenge of this research is the consistency of non-stop automated control. Here, an algorithm is employed not only to predict and solve problems, but also to optimize for a highly efficient construction process in coordination of the robotic 3D printing system. Since every stroke of the wireframe contains many parameters and calculations in order to reflect its native organization and structure, this robotic 3D printing process requires processing an intensive amount of data in the back stage.
keywords interdisciplinary design, craft in design computation, digital fabrication
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id acadia16_432
id acadia16_432
authors Beaman, Michael Leighton
year 2016
title Landscapes After The Bifurcation of Nature: Models for Speculative Landformations
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 432-439
doi https://doi.org/10.52842/conf.acadia.2016.432
summary Landformations have not historically been the purview of design production or intervention. Whether it is the spatial extensions in which they emerge, the temporal extensions in which they operate, the complexities of their generative and sustaining processes, or a cultural and institutional deference to a notion of natural processes, designers as individuals or design as a discipline has not treated landformation as an area of design inquiry. But the inability to grasp nature fully has not stopped geological-scale manipulation by humans. In fact, anthropogenic activity is responsible for the re-formation of more of the Earth’s surface than all other agents combined. And yet as designers we often disregard this transformation as a design problem, precisely because it eludes the artifices of information visualization employed by designers. This paper examines ongoing research into the generation of speculative landformations through an analysis of underlying geological and anthropogenic processes as the quantitative basis for creating generative computational models (figure 1). The Speculative Landformations Project posits human geological-scale activity as a design problem by expanding the operability and agency of environmental design practice through hybrid human/digital computations.
keywords design decision-making, simulation and design optimization, responsive urban and landscape systems, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia16_318
id acadia16_318
authors Huang, Alvin
year 2016
title From Bones to Bricks: Design the 3D Printed Durotaxis Chair and La Burbuja Lamp
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 318-325
doi https://doi.org/10.52842/conf.acadia.2016.318
summary Drawing inspiration from the variable density structures of bones and the self-supported cantilvers of corbelled brick arches, the Durotaxis Chair and the La Burbuja lamp explore a material-based design process by responding to the challenge of designing a 3D print, rather than 3D printing a design. As such, the fabrication method and materiality of 3D printing define the generative design constraints that inform the geometry of each. Both projects are seen as experiments in the design of 3D printed three-dimensional space packing structures that have been designed specifically for the machines by which they are manufactured. The geometry of each project has been carefully calibrated to capitalize on a selection of specific design opportunities enabled by the capabilities and constraints of additive manufacturing. The Durotaxis Chair is a half-scale prototype of a fully 3D printed multi-material rocking chair that is defined by a densely packed, variable density three-dimensional wire mesh that gradates in size, scale, density, color, and rigidity. Inspired by the variable density structure of bones, the design utilizes principal stress analysis, asymptotic stability, and ergonomics to drive the logics of the various gradient conditions. The La Burbuja Lamp is a full scale prototype for a zero-waste fully 3D printed pendant lamp. The geometric articulation of the project is defined by a cellular 3D space packing structure that is constrained to the angles of repose and back-spans required to produce un-supported 3D printing.
keywords parametic design, digital fabrication, structural analysis, additive manufacturing, 3d printing
series ACADIA
type paper
email
last changed 2022/06/07 07:50

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
doi https://doi.org/10.52842/conf.acadia.2016.140
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id acadia16_332
id acadia16_332
authors Retsin, Gilles; Garcia, Manuel Jimenez
year 2016
title Discrete Computational Methods for Robotic Additive Manufacturing: Combinatorial Toolpaths
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 332-341
doi https://doi.org/10.52842/conf.acadia.2016.332
summary The research presented in this paper is part of a larger, emerging body of research into large-scale 3D printing. The research attempts to develop a computational design method specifically for large-scale 3D printing of architecture. Influenced by the concept of Digital Materials, this research is situated within a critical discussion of what fundamentally constitutes a digital object and process. This requires a holistic understanding, taking into account both computational design and fabrication. The intrinsic constraints of the fabrication process are used as opportunities and generative drivers in the design process. The paper argues that a design method specifically for 3D printing should revolve around the question of how to organize toolpaths for the continuous addition or layering of material. Two case-study projects advance discrete methods as efficient ways to compute a continuous printing process. In contrast to continuous models, discrete models allow users to serialize problems and errors in toolpaths. This allows a local optimization of the structure, avoiding the use of global, computationally expensive, problem-solving algorithms. Both projects make use of a voxel-based approach, where a design is generated directly from the combination of thousands of serialized toolpath fragments. The understanding that serially repeated elements can be assembled into highly complex and heterogeneous structures has implications stretching beyond 3D printing. This combinatorial approach for example also becomes highly valuable for construction systems based on modularity and prefabrication.
keywords prgrammable materials, simulation and design optimization, digital fabrication, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2016_209
id caadria2016_209
authors Wang, Likai; Zilong Tan and Guohua Ji
year 2016
title Toward the wind-related building performative design
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 109-218
doi https://doi.org/10.52842/conf.caadria.2016.109
summary The integration of optimization algorithms and building performance simulation tools make it possible to carry out performa- tive design or performance-driven design, which aims to guide the de- sign synthesis process of the simulation results to continuously im- prove the design. However, the associated research work of wind- related building performance is still deficient, resulting from lack of applicable interface and the time consumption. Meanwhile, in the in- dustrial design realm, the aero-dynamics or fluid-dynamics behaviour of the production under development has been vastly analysed and op- timized based on the multi-discipline optimization (MDO) techniques. Owing to offering numerous built-in interface and integrated optimi- zation algorithm, MDO application software has begun to be used in building optimization design with the complex relationship between various objectives. With the advantage of MDO tools and aimed to provide an efficient optimization approach from the perspective of ar- chitect, this paper proposes a wind-related building performance op- timization design system integrating Rhinoceros and Fluent based on iSIGHT - a MDO application software. In addition, the lighting per- formance is considered in this research as well for implementing the multi-objective optimization. Two case studies of tall building optimi- zation design based on varied generative approaches are introduced to investigate the effect and efficiency of this system.
keywords Performative design; wind-related building performance; MDO; parametric generating design
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2016_797
id caadria2016_797
authors Agusti?-Juan, Isolda and Guillaume Habert
year 2016
title An environmental perspective on digital fabrication in architecture and construction
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 797-806
doi https://doi.org/10.52842/conf.caadria.2016.797
summary Digital fabrication processes and technologies are becom- ing an essential part of the modern product manufacturing. As the use of 3D printing grows, potential applications into large scale processes are emerging. The combined methods of computational design and robotic fabrication have demonstrated potential to expand architectur- al design. However, factors such as material use, energy demands, du- rability, GHG emissions and waste production must be recognized as the priorities over the entire life of any architectural project. Given the recent developments at architecture scale, this study aims to investi- gate the environmental consequences and opportunities of digital fab- rication in construction. This paper presents two case studies of classic building elements digitally fabricated. In each case study, the projects were assessed according to the Life Cycle Assessment (LCA) frame- work and compared with conventional construction with similar func- tion. The analysis highlighted the importance of material-efficient de- sign to achieve high environmental benefits in digitally fabricated architecture. The knowledge established in this research should be di- rected to the development of guidelines that help designers to make more sustainable choices in the implementation of digital fabrication in architecture and construction.
keywords Digital fabrication; LCA; sustainability; environment
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia17_102
id acadia17_102
authors Aparicio, German
year 2017
title Data-Insight-Driven Project Delivery: Approach to Accelerated Project Delivery Using Data Analytics, Data Mining and Data Visualization
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 102-109
doi https://doi.org/10.52842/conf.acadia.2017.102
summary Today, 98% of megaprojects face cost overruns or delays. The average cost increase is 80% and the average slippage is 20 months behind schedule (McKinsey 2015). It is becoming increasingly challenging to efficiently support the scale, complexity and ambition of these projects. Simultaneously, project data is being captured at growing rates. We continue to capture more data on a project than ever before. Total data captured back in 2009 in the construction industry reached over 51 petabytes, or 51 million gigabytes (Mckinsey 2016). It is becoming increasingly necessary to develop new ways to leverage our project data to better manage the complexity on our projects and allow the many stakeholders to make better more informed decisions. This paper focuses on utilizing advances in data mining, data analytics and data visualization as means to extract project information from massive datasets in a timely fashion to assist in making key informed decisions for project delivery. As part of this paper, we present an innovative new use of these technologies as applied to a large-scale infrastructural megaproject, to deliver a set of over 4,000 construction documents in a six-month period that has the potential to dramatically transform our industry and the way we deliver projects in the future. This paper describes a framework used to measure production performance as part of any project’s set of project controls for accelerated project delivery.
keywords design methods; information processing; data mining; big data; data visualization
series ACADIA
email
last changed 2022/06/07 07:55

_id caadria2016_589
id caadria2016_589
authors Grigoriadis, Kostas
year 2016
title Translating Digital to Physical Gradients
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 589-598
doi https://doi.org/10.52842/conf.caadria.2016.589
summary As the practice of using notations to translate from two to three-dimensions is becoming superseded by the direct relaying of building information digitally, the separation between designing and building is diminishing. A key aspect in lessening further this divi- sion, is heterogeneous materiality that supersedes component thinking and effectively tectonics. Being an embodiment of the redundancies of tectonic assembly, a curtain wall detail has been redesigned with a heterogeneous and continuous multi-material using CFD. The main research problem following this redesign has been the conversion of material data from the CFD program into a 3D-printable format and in order to achieve a closer linkage between design and building. This has been pursued by initially converting the fused material parameters into fluid weight data and eventually into RGB colour values. The re- sulting configuration was output initially as a multi-colour print and effectively fabricated in a multi-material.
keywords Multi-materials; CFD; 3D-printing; autography
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2016_745
id caadria2016_745
authors Suzuki E., Seiichi
year 2016
title Extruded Architectures: Grading weight-to-strength ratio of cement based materials through extrusion techniques
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 745-754
doi https://doi.org/10.52842/conf.caadria.2016.745
summary In recent years, a growing research agenda on the subject of additive manufacturing for architectural design has been established on the basis of jetting and extrusion technology. While jetting pro- vides enough flexibility to print multiple digital materials in a single run, extrusion has proven to be the most viable technique for large- scale and on-site manufacturing. Because major contributions of both research lines cannot be combined due to technological differences, special attention has been devoted towards the development of print- ing strategies that could approximate similar material flexibility of jet- ting by means of extrusion techniques. In this context, this paper pre- sents a computational design methodology for architectural components that enables grading weight-strength ratio of cement based materials through extrusion. Built upon the integration of mod- elling, analysis and fabrication, such methodology allows to optimize material distribution and geometric definition on the basis of physical and fabrication constraints. A case study is presented for describing the design processes of a circular column and the fabrication of a sec- tion it.
keywords Additive manufacturing; cement based materials; computational design
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia16_196
id acadia16_196
authors Yuan, Philip F.; Chai, Hua; Yan, Chao; Zhou, Jin Jiang
year 2016
title Robotic Fabrication of Structural Performance-based Timber Gridshell in Large-Scale Building Scenario
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp 196-205
doi https://doi.org/10.52842/conf.acadia.2016.196
summary This paper investigates the potential of a digital geometry system to integrate structural performance-based design and robotic fabrication in the scenario of building a large-scale non-uniform timber shell. It argues that a synthesis of multi-objective optimization, design and construction phases is required in the realization of timber shell construction in architecture practice in order to fulfill the demands of building regulation. Confronting the structural challenge of the non-uniform shell, a digital geometry system correlates all the three phases by translating geometrical information between them. First, a series of structural simulations and experimentations with different objectives are executed to inform the particular shape and tectonic details of each shell component based on its local condition in the geometrical system. Then, controlled by the geometrical system, a hybrid process of different digital fabrication technologies, including a customized robotic timber mill, is established to enable the manufacture of the heterogeneous shell components. Ultimately, the Timber Structure Enterprise Pavilion as the demonstration and evaluation of this method is fabricated and assembled on site through a notational system to indicate the applicability of this research in practical scenarios.
keywords robotic fabrication, geometrical information modeling, simulation and design optimization, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id caadria2016_767
id caadria2016_767
authors De Azambuja Varela, Pedro and Timothy Merritt
year 2016
title CorkVault Aarhus: exploring stereotomic design space of cork and 5-axis CNC waterjet cutting
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 767-776
doi https://doi.org/10.52842/conf.caadria.2016.767
summary This paper presents the design, fabrication, and construc- tion of CorkVault Aarhus, which was designed using parametric and physics simulation software and realized from ECA cork sheets cut using a CNC waterjet cutter. We recount the lessons learned through the intensive two-week workshop that explored the limits of the mate- rials and tools through prototypes and culminated with the assembly of the final free-form vault structure. Various vaults and arch proto- types provided pedagogical and research value, building up knowledge essential to the final structure built, a human scale pavilion designed and built in three days and made of a thin shell of cork pan- els working only in compression. Three driving concepts were crucial to the experience: stereotomy as a supporting theory, expanded cork agglomerate (ECA) as the main material and water jet cutting as the principal means of fabrication. The complex vault shape called for precise 5-axis cuts supporting a new paradigm in building stereotomic components for architecture.
keywords Stereotomy; generative algorithm; digital fabrication; waterjet; cork
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2016_224
id ecaade2016_224
authors Gerber, David and Pantazis, Evangelos
year 2016
title Design Exploring Complexity in Architectural Shells - Interactive form finding of reciprocal frames through a multi-agent system
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 455-464
doi https://doi.org/10.52842/conf.ecaade.2016.1.455
wos WOS:000402063700050
summary This paper presents an integrated workflow for interactive design of shell structures, which couples structural and environmental analysis through a multi-agent systems (MAS) for design. The work lies at the intersection of architecture, engineering and computer science research, incorporating generative design with analytical techniques. A brief review on architectural shell structures and the structural logic of reciprocal frames is described. Through the morphological study of reciprocal frames locally we seek to inform the behavior of a MAS, which integrates form-finding techniques, with daylight factor analysis (DFA) and finite element analysis (FEA) on a global configuration. An experimental design is developed in order to explore the solution space of large span free form shells with varying topologies and boundary conditions, as well as identify the relationships between local design parameters of the reciprocal frames (i.e. number of elements, profile) and the analyses (i.e. stress distribution, solar radiation) for enabling the generation of different global design alternatives. The research improves upon design decision-making latency and certainty through harnessing geometric complexity and structural form finding for early stage design. Additionally, the research improves upon design outcomes by establishing a feedback loop between design generation, analysis and performance.
keywords Generative design; computational design; multi-agent systems; shell structures; reciprocal frames; form finding; parametric design
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia16_12
id acadia16_12
authors Gerber, David Jason; Pantazis, Evangelos
year 2016
title A Multi-Agent System for Facade Design: A design methodology for Design Exploration, Analysis and Simulated Robotic Fabrication
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 12-23
doi https://doi.org/10.52842/conf.acadia.2016.012
summary For contemporary design practices, there still remains a disconnect between design tools used for early stage design exploration and performance analysis, and those used for fabrication and construction of complex tectonic architectural systems. The research brings forward downstream fabrication constraints into the up-stream design exploration and design decision making. This paper addresses the issues of developing an integrated digital design work-flow and details a research framework for the incorporation of environmental performance into a robotic fabrication for early stage design exploration and generation of intricate and complex alternative façade designs. The method allows the user to import a design surface, define design parameters, set a number of environmental performance objectives, and then simulate and select a robotic construction strategy. Based on these inputs, design alternatives are generated and evaluated in terms of their performance criteria in consideration of their robotically simulated constructability. In order to validate the proposed framework, an experimental case study of office building façade designs that are generatively created from a multi-agent system for design methodology is design explored and evaluated. Initial results define a heuristic function for improving simulated robotic constructability and illustrate the functionality of our prototype. Project limitations and future research steps are then discussed.
keywords generative design, multi-objective design optimization, robotic fabrication, simulation, design performance, design decision making
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaade2016_217
id ecaade2016_217
authors Klerk, Rui de and Beir?o, José
year 2016
title Ontologies and Shape Grammars - A Relational Overview Towards Semantic Design Systems
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 305-314
doi https://doi.org/10.52842/conf.ecaade.2016.2.305
wos WOS:000402064400030
summary This paper provides an overview on the relation between computational ontologies and shape grammars regarding the development and production of multi-purpose Semantic Design Systems. The objective of the author's ongoing research is to assist the creation of generative design systems, applicable to design processes in general. Shape grammar rules and ontologies in these systems will be focusing on abstract, generic rules and generic descriptions. When combined through contextually specified relations, these assume semantic expressions and should be able to produce meaningful results.We collect here a short state of the art of the research developed in the fields of architecture, urbanism and computer science in the past ten years regarding the use of knowledge bases (ontologies) combined with generative design systems (with a particular focus on shape grammars). We expect to provide both insight about architectural and urban typologies and the production of meaningful designs using automated generative design systems.
keywords Ontologies; Shape Grammars; Semantic Design Systems; Architectural Design; Urban Planning
series eCAADe
email
last changed 2022/06/07 07:51

_id ijac201614205
id ijac201614205
authors Leitao, Anto?nio; Ines Caetano and Hugo Correia
year 2016
title Processing architecture
source International Journal of Architectural Computing vol. 14 - no. 2, 147-157
summary Programming promotes creative freedom but might require considerable effort to learn. The Processing language was created to simplify this learning process. Due to its graphical capabilities, the language has become very popular among the electronic arts and design communities. Unfortunately, this popularity could not be extended to the architecture community, which relies on traditional heavyweight computer-aided design and building information modeling applications that cannot be programmed using Processing. As a result, it becomes difficult for architects to take advantage of Processing. To solve this problem, we propose an implementation of Processing that runs in the context of the most used computer-aided design tools in architecture. Our implementation allows Processing to generate two- or three-dimensional models that are directly usable for architectural work. To this end, we also propose extensions to the language, including three-dimensional modeling primitives that dramatically simplify the effort needed for developing large and complex architectural models with Processing.
keywords Generative Design, Programming, Processing, Architecture, 3D Modeling
series journal
last changed 2016/06/13 08:34

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_873542 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002