CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 615

_id ecaade2016_063
id ecaade2016_063
authors Al-Qattan, Emad, Galanter, Philip and Yan, Wei
year 2016
title Developing a Tangible User Interface for Parametric and BIM Applications Using Physical Computing Systems.
doi https://doi.org/10.52842/conf.ecaade.2016.2.621
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 621-630
summary This paper discusses the development of an interactive and a responsive Tangible User-Interface (TUI) for parametric and Building Information Modeling (BIM) applications. The prototypes presented in this paper utilizes physical computing systems to establish a flexible and intuitive method to engage digital design processes.The prototypes are hybrid UIs that consist of a digital modeling tool and an artifact. The artifact consists of a control system (sensors, actuators, and microcontrollers) and physical objects (architectural elements). The link between both environments associates physical objects with their digital design information to assist users in the digital design process. The integration of physical computing systems will enable the objects to physically respond to analog input and provide real-time feedback to users. The research aims to foster tangible computing methods to extend the capabilities of digital design tools. The prototypes demonstrate a method that allows architects to simultaneously interact with complex architectural systems digitally and physically.
wos WOS:000402064400063
keywords Physical Computing; Parametric Design; BIM; Tangible UI
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_663
id caadria2016_663
authors Hosokawa, Masahiro; Tomohiro Fukuda, Nobuyoshi Yabuki, Takashi Michikawa and Ali Motamedi
year 2016
title Integrating CFD and VR for indoor thermal environment design feedback
doi https://doi.org/10.52842/conf.caadria.2016.663
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 663-672
summary In the context of environmental consideration and im- provement of living standards, design of high performance buildings that are both comfortable and energy saving is important. Simulation tools (such as CFD) enables analysing and visualizing environmental factors (such as temperature and airflow) based on the design proper- ties and can be used to improve the building design for better perfor- mance. However, these tools have limitations in providing interactivi- ty with users for creating multiple CFD visualization results to be used for analysing design options. This research presents an integrated de- sign tool which consists of CFD and VR technologies. The proposed system visualizes CFD results in a VR environment together with ar- chitectural design. Additionally, it enables configuring CFD parame- ters within the VR environment and allows repeatedly executing simu- lation and visualizing updated results. The proposed system enables visualizing information in relationship with the actual architectural design, space configuration and thermal environment, and provides ef- ficient design feedbacks.
keywords Interdisciplinary computational design; design feedback; indoor thermal environment; Computational Fluid Dynamics (CFD); Virtual Reality (VR)
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2016_467
id caadria2016_467
authors Kim, Mikyoung; Seungyeul Ji, Eonyong Kim and Hanjong Jun
year 2016
title BIM-based File Synchronisation and Permission Management System for Architectural Design Collaboration
doi https://doi.org/10.52842/conf.caadria.2016.467
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 467-476
summary In building information modelling (BIM), the amount of in- formation increased and architectural design processes became more complex as projects expand. This is because while a collaboration en- vironment is important for smooth communication among experts, this has not been realised because of unclassified file synchronisation and permission settings among team members. Therefore, this study aims to support cooperation in BIM modelling projects by synchronising BIM data from different computers and rendering BIM project man- agement easier by providing a BIM model viewer and data through the Web. The proposed technology, which is a construction project- type, purpose-tailored browsing technology, provides BIM infor- mation related to construction environments and planning processes only to the relevant experts.
keywords Building information modelling (BIM); architectural design collaboration; process; file synchronisation; permission management system
series CAADRIA
email
last changed 2022/06/07 07:49

_id ijac201614306
id ijac201614306
authors Kuan-Ying, Wu and Hou June-Hao
year 2016
title Spark Wall: Control responsive environment by human behaviour
source International Journal of Architectural Computing vol. 14 - no. 3, 255-262
summary Responsive environment uses human–computer interface to improve how humans experience their surroundings. Many research aimed at different kinds of interactive environment modules with new digital tectonics or computation components. However, those new environments sometimes could be manipulated by components which are less user-friendly and complex than traditional counterparts. In this article, we implemented a real responsive interface – the Spark Wall system, which use 160 actuator modules as our responsive feedback interface and depth camera as sensing input. We built up multi-modal interface for different operating purposes allowing the user to control responsive environment with their behaviour. The user could change his or her body posture to change the pattern of the wall and moreover define touch-input area on any surface. From the user’s perspective, a responsive environment should be a simple system with understandable control modes. A responsive artefact should also be able to dynamically correspond to different methods of operation according to the user’s intentions.
keywords Responsive environment, human–computer interface, surface computing, multi-modal interface, depth sensing
series journal
last changed 2016/10/05 08:21

_id sigradi2016_000
id sigradi2016_000
authors Martin Iglesias, Rodrigo
year 2016
title Crowdthinking
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016
summary The topic "Crowdthinking" reveals the inquiries of researchers about collaborative work, distributed intelligence and collective research. The call focuses on transdisciplinary thinking as a construct based on multiplicity and diversity. All these topics are essential not only in the field of design and architecture, but also in emerging areas of human sciences and arts . Currently, the collaborative design is considered one of the key bases for change in the city and society. In its genesis, it manifests the notion that the world around us is inadequate for many of the needs of the society and from that design can be collectively improved. Such collective research, by combining distributed intelligence, sustainable social development, design cutting edge research, theories and computational strategies, generates a research partnership based on participation and distributed cognition of complex problems. This call proposes an approach in which the results of the experiences can build a model, define or apply axioms and lead to applications. It also looks for emerging conjectures about the process, the creation of computer models and the behaviour of the resulting designs. On the other hand, the need to find solutions that improve the quality of life for the community and sustainable development includes concerns about the integration of the physical and cultural context of cities, mass education and the inclusion of parametric design, digital manufacturing and digital prototyping, and BIM as a system that organizes and ensures the correspondence between the physical urban design and sustainable archetypes. These are some of the concerns in which technology has been contributing to improve the design process by integrating information. This integration optimizes resources and enables the various project professionals to work on the same model, run simulations, improve materializations and evaluate massive amount of data. Projects with greater social and environmental responsibility can be achieved adopting into the teaching and practice this new way of design that anticipates an extensive exchange that wilt foster self-evaluation and reformulation of educational paradigms.
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_135
id caadria2016_135
authors Min, Deedee A. and Ji-Hyun Lee
year 2016
title Finding relationships between movement and tree planting patterns in theme parks
doi https://doi.org/10.52842/conf.caadria.2016.135
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 135-144
summary Tree planting in design practice is considered simply as void fillers or view blockers. However, for a sustainable design, creat- ing places using trees need to be reconsidered. Going beyond tradi- tional tree plantings in urban environments, an application of compu- tational methods in landscape architecture for the management of the complex system is needed. While computational methods have been extensively applied to buildings, less has been applied to trees. The goal of this paper is to investigate how the presence of trees affects human movement and find out if computational methods can be used for recommending tree planting patterns. We analysed the tree plant- ing patterns in renowned theme parks as an initial research categoriz- ing tree planting patterns, using an agent-based analysis for simula- tion, and comparing the results of the average agent counts in theme park plans without trees and those with trees. We noticed there was a clear distinction between tree planting pattern types and the change in agent counts supporting the qualitative theory in landscape architec- ture. The result of this research can guide theme park designers as well as urban park designers when deciding which tree planting pat- terns to implement for the purpose of controlling pedestrian move- ments.
keywords Tree planting pattern; agent-based analysis; theme parks; pedestrian movement
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2016_106
id ecaade2016_106
authors Pihlajaniemi, Henrika, Juntunen, Eveliina, Luusua, Anna, Tarkka-Salin, Mirva and Juntunen, Johan
year 2016
title SenCity - Piloting Intelligent Lighting and User-Oriented Services in Complex Smart City Environments
doi https://doi.org/10.52842/conf.ecaade.2016.1.669
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 669-680
summary New operation frameworks and user-oriented design methods are needed to make better use of new innovative technologies within smart city contexts. This paper addresses the design and research of intelligent lighting and user-oriented services for smart city environments. It presents the problem setting and research and development methods of the SenCity project. The project will pilot smart lighting solutions in six Finnish cities in different kinds of urban environments. In the pilots, the target is to employ lighting infrastructure as a service platform - an Internet of Things backbone - in the intelligent city. Together, separate pilots in different cities around Finland will create a living lab ecosystem for developing and testing innovative solutions. The specific objective of this paper is to present the concept of a platform as defined and applied in SenCity project. The presented framework forms an operational model for creating intelligent lighting and digital services in smart cities by integrating relevant technologies, users' needs, and business into an interactive system. In the paper, the framework is applied to a selection of pilot cases with specific themes to introduce its usability in real world implementations.
wos WOS:000402063700072
keywords smart city; sensing; intelligent lighting; smart lighting; user-oriented design
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2016_209
id caadria2016_209
authors Wang, Likai; Zilong Tan and Guohua Ji
year 2016
title Toward the wind-related building performative design
doi https://doi.org/10.52842/conf.caadria.2016.109
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 109-218
summary The integration of optimization algorithms and building performance simulation tools make it possible to carry out performa- tive design or performance-driven design, which aims to guide the de- sign synthesis process of the simulation results to continuously im- prove the design. However, the associated research work of wind- related building performance is still deficient, resulting from lack of applicable interface and the time consumption. Meanwhile, in the in- dustrial design realm, the aero-dynamics or fluid-dynamics behaviour of the production under development has been vastly analysed and op- timized based on the multi-discipline optimization (MDO) techniques. Owing to offering numerous built-in interface and integrated optimi- zation algorithm, MDO application software has begun to be used in building optimization design with the complex relationship between various objectives. With the advantage of MDO tools and aimed to provide an efficient optimization approach from the perspective of ar- chitect, this paper proposes a wind-related building performance op- timization design system integrating Rhinoceros and Fluent based on iSIGHT - a MDO application software. In addition, the lighting per- formance is considered in this research as well for implementing the multi-objective optimization. Two case studies of tall building optimi- zation design based on varied generative approaches are introduced to investigate the effect and efficiency of this system.
keywords Performative design; wind-related building performance; MDO; parametric generating design
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2016_777
id caadria2016_777
authors Aditra, Rakhmat F. and Andry Widyowijatnoko
year 2016
title Combination of mass customisation and conventional construction: A case study of geodesic bamboo dome
doi https://doi.org/10.52842/conf.caadria.2016.777
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 777-786
summary With the development of advance fabrication, several digi- tal fabrication approaches have been developed. These approaches en- able better form exploration than the conventional manufacturing pro- cess. But, the built examples mostly rely on advance machinery which was not familiar or available in developed country where construction workers are still abundant. Meanwhile, much knowledge gathers in the field practice. This research is aimed to explore an alternative con- struction workflow and method with the combination of mass custom- ization and conventional construction method and to propose the structure system that emphasized this alternative workflow and meth- od. Lattice structure was proposed. The conventional construction method was used in the struts production and mass customization method, laser cutting, and was used for connection production. The algorithmic process was used mainly for data mining, details design, and component production. The backtracking was needed to be pre- dicted and addressed previously. Considerations that will be needed to be tested by further example are on the transition from the digital pro- cess to the manual process. Next research could be for analysing the other engineering aspect for this prototype and suggesting other struc- tural system with more optimal combination of conventional construc- tion and mass customization.
keywords Mass customisation; algorithmic design; digital fabrication; geodesic dome; lattice structure
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2016_ws-folding
id ecaade2016_ws-folding
authors Akleman, Ergun, Kalantar, Negar and Borhani, Alireza
year 2016
title Folding The Unfoldable - A Method For Constructing Complex-Curved Geometry With Quad Edge Panels
doi https://doi.org/10.52842/conf.ecaade.2016.1.069
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 69-72
summary This paper explains a method will be used during a workshop for constructing complex-curved geometry with quad edge panels. In this workshop, we demonstrate that quad-edge mesh data structure can efficiently be used to construct complex large shapes. With hands-on experiments, we will show a vast variety of shapes can be constructed using square, rectangular, parallelogram and extruded-line shaped panels. In addition, using a system we have recently developed to unfold polygonal mesh, we will demonstrate how desired shapes can be constructed by using laser-cut quadrilateral panels. This approach is particularly suitable to construct complicated sculptural and architectural shapes from anisotropic materials that can only be bended in one direction.
wos WOS:000402063700007
keywords Shape Modeling; Physical Construction; Complex-Curved Geometry; Digital Fabrication
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2016_052
id ascaad2016_052
authors Al-Badry, Sally; Cesar Cheng, Sebastian Lundberg and Georgios Berdos
year 2016
title Living on the Edge - Reinventing the amphibiotic habitat of the Mesopotamian Marshlands
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 513-526
summary The Mesopotamian Marshlands form one of the first landscapes where people started to transform and manipulate the natural environment in order to sustain human habitation. For thousands of years, people have transformed natural ecosystems into agricultural fields, residential clusters and other agglomerated environments to sustain long-term settlement. In this way, the development of human society has been intricately linked to the extraction, processing and consumption of natural resources. The Mesopotamian Marshlands, located in one of the hottest and most arid areas on the planet, formed a unique wetlands ecosystem, which apart from millions of people, sustained a very high number of wildlife and endemic species. Several historical, political, social and climatic changes, which densely occurred during the past century, completely destroyed the unique civilisation of the area, made all the wild flora and fauna disappear and forced hundreds of thousands of people to migrate. During the last decade, many efforts have been made to restore the marshlands. However, these efforts are lacking a comprehensive design strategy, coherent goals and deep understanding of the complex current geopolitical situation, making the restoration process an extremely difficult task. This work aims at providing strategies for recovering the Mesopotamian Marshlands, organising productive functions in order to sustain the local population and design a new inhabitation model, using advanced computational tools while taking into account the extreme climatic conditions and several unique cultural aspects. Part of the aim of this work is to advance the use of computation and explore the opportunities that digital tools afford in helping find solutions to complex design problems where various design variables need to be coordinated to satisfy the design goals. Today, advanced computation enables designers to use population consumption demands, ecological processes and environmental inputs as design parameters to develop more robust and resilient regional planning strategies. This work has the double aim of first, presenting a framework for re-inhabiting the Marshlands of Mesopotamia. Second, the work suggests a design methodology based on computer-aided design for developing and organising productive functions and patterns of human occupation in wetland environments.
series ASCAAD
email
last changed 2017/05/25 13:34

_id sigradi2016_450
id sigradi2016_450
authors Araujo, André L.; Celani, Gabriela
year 2016
title Exploring Weaire-Phelan through Cellular Automata: A proposal for a structural variance-producing engine
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.710-714
summary Complex forms and structures have always been highly valued in architecture, even much before the development of computers. Many architects and engineers have strived to develop structures that look very complex but at the same time are relatively simple to understand, calculate and build. A good example of this approach is the Beijing National Aquatics Centre design for the 2008 Olympic Games, also known as the Water Cube. This paper presents a proposal for a structural variance-producing engine using cellular automata (CA) techniques to produce complex structures based on Weaire-Phelan geometry. In other words, this research evaluates how generative and parametric design can be integrated with structural performance in order to enhance design flexibility and control in different stages of the design process. The method we propose was built in three groups of procedures: 1) we developed a method to generate several fits for the two Weaire-Phelan polyhedrons using CA computation techniques; 2) through the finite elements method, we codify the structural analysis outcomes to use them as inputs for the CA algorithm; 3) evaluation: we propose a framework to compare how the final outcomes deviate for the good solutions in terms of structural performance and rationalization of components. We are interested in knowing how the combination of the procedures could contribute to produce complex structures that are at the same time certain rational. The system developed allows the structural analysis of structured automatically generated by a generative system. However, some efficient solutions from the structural performance point of view do not necessarily represent a rational solution from the feasibility aspects.
keywords Structural design; Complex structures; Bottom-up design approach
series SIGRADI
email
last changed 2021/03/28 19:58

_id ascaad2016_023
id ascaad2016_023
authors Ayoub, Mohammed
year 2016
title Associative Parametric Urbanism - A computational approach to parameterization of conceptual design phase
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 207-216
summary Urban planning projects usually comprise a complex set of objectives that needs to be addressed by developing a number of proposals. This requires a lot of repetitive steps resulting in fewer and slowly-developed design alternatives. To address the limitations of the existing system, this research introduces the merge of associative parametric design tools with the conceptual design phase of urban planning process to propose a Parameterized Conceptual Design Phase. The developed Associative Algorithm within the proposed phase represents a computational approach that translates a site’s settings into local attractors to define urban fabric, and provide the designer with variations for optimal solutions. The Informal Settlement of Ezbet El Matar, Alexandria, is selected as the case study of this approach.
series ASCAAD
email
last changed 2017/05/25 13:31

_id ecaade2016_055
id ecaade2016_055
authors Baranovskaya, Yuliya, Prado, Marshall, Dörstelmann, Moritz and Menges, Achim
year 2016
title Knitflatable Architecture - Pneumatically Activated Preprogrammed Knitted Textiles
doi https://doi.org/10.52842/conf.ecaade.2016.1.571
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 571-580
summary Textiles are widely used in architecture for tensile structures, as they are lightweight and can easily span large distances. These structures typically require an external framework for a support. Inflatable structures are self-supporting but are limited to relatively simple forms or require complex and predetermined cut patterns. The development of an adaptive and programmable textile system with an integrative method for pneumatic activation would create a novel self-supporting structure with high degree of design and architectural potential. This creates a highly integrative hybrid system where the generic pneumatic membranes are constrained by the differentiated knitted textile skin that is stretched in several directions under air pressure. This allows for an innovative, lightweight, easily transportable design, where the preprogrammed knitting pattern defines the structure, geometry and formation, activated under pneumatic pressure.
wos WOS:000402063700062
keywords programming textiles; binary textiles; analogue computing; air inflation; grading textile properties
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia16_362
id acadia16_362
authors Beesley, Philip; Ilgun, Zeliha, Asya; Bouron, Giselle; Kadish, David; Prosser, Jordan; Gorbet, Rob; Kulic, Dana; Nicholas, Paul; Zwierzycki, Mateusz
year 2016
title Hybrid Sentient Canopy: An implementation and visualization of proprioreceptive curiosity-based machine learning
doi https://doi.org/10.52842/conf.acadia.2016.362
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 362-371
summary This paper describes the development of a sentient canopy that interacts with human visitors by using its own internal motivation. Modular curiosity-based machine learning behaviour is supported by a highly distributed system of microprocessor hardware integrated within interlinked cellular arrays of sound, light, kinetic actuators and proprioreceptive sensors in a resilient physical scaffolding system. The curiosity-based system involves exploration by employing an expert system composed of archives of information from preceding behaviours, calculating potential behaviours together with locations and applications, executing behaviour and comparing result to prediction. Prototype architectural structures entitled Sentient Canopy and Sentient Chamber developed during 2015 and 2016 were developed to support this interactive behaviour, integrating new communications protocols and firmware, and a hybrid proprioreceptive system that configured new electronics with sound, light, and motion sensing capable of internal machine sensing and externally- oriented sensing for human interaction. Proprioreception was implemented by producing custom electronics serving photoresistors, pitch-sensing microphones, and accelerometers for motion and position, coupled to sound, light and motion-based actuators and additional infrared sensors designed for sensing of human gestures. This configuration provided the machine system with the ability to calculate and detect real-time behaviour and to compare this to models of behaviour predicted within scripted routines. Testbeds located at the Living Architecture Systems Group/Philip Beesley Architect Inc. (LASG/PBAI, Waterloo/Toronto), Centre for Information Technology (CITA, Copenhagen) National Academy of Sciences (NAS) in Washington DC are illustrated.
keywords intedisciplinary/collaborative design, intelligent environments, artificial intelligence, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia16_164
id acadia16_164
authors Braumann, Johannes; Stumm, Sven; Brell-Cokcan, Sigrid
year 2016
title Towards New Robotic Design Tools: Using Collaborative Robots within the Creative Industry
doi https://doi.org/10.52842/conf.acadia.2016.164
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 164-173
summary This research documents our initial experiences of using a new type of collaborative, industrial robot in the area of architecture, design, and construction. The KUKA LBR-iiwa differs from common robotic configurations in that it uses seven axes with integrated force-torque sensors and can be programmed in the Java programming language. Its force-sensitivity makes it safe to interact with, but also enables entirely new applications that use hand-guiding and utilize the force-sensors to compensate for high tolerances on building sites, similar to how we manually approach assembly tasks. Especially for the creative industry, the Java programming opens up completely new applications that would have previously required complex bus systems or industrial data interfaces. We will present a series of realized projects that showcase some of the potential of this new type of collaborative, safe robot, and discuss the advantages and limitations of the robotic system.
keywords material tolerances, individualized production, iiwa, assembly, visual robot programming, collaborative robots
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id caadria2016_507
id caadria2016_507
authors Choi, Jungsik; Inhan Kim and Jiyong Lee
year 2016
title Development of schematic estimation system through linking QTO with Cost DB
doi https://doi.org/10.52842/conf.caadria.2016.507
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 507-516
summary Cost estimate in architectural projects is an important factor for decision-making and financing the project in both early design phase and detailed design phase. In Korea, estimate work based on 2D drawing has generated problems of difference form QTO according to worker’s mistake and know-how. In addition, 2D-based estimation are obtained uncertainty factors of estimation depending on lack of infor- mation due to becoming larger and more complex than any other pro- ject of the architectural project. In order to solve limitations, this study is to suggest an open BIM-based schematic estimation process and a prototype system within the building frame through linking QTO and cost information. This study consists of the following steps: 1) Ana- lysing Level of Detail (LoD) to apply to the process and system, 2) BIM modelling for open BIM-based QTO, 3) Verifying the quality of the BIM model, 4) Developing a schematic estimation prototype sys- tem. This study is expected to improve work efficiency as well as reli- ability of construction cost.
keywords Cost DB; Industry Foundation Classes (IFC); Open Building Information Modelling (BIM); schematic estimation; Quantity Take-Off (QTO)
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2017_134
id ecaade2017_134
authors Del Signore, Marcella
year 2017
title pneuSENSE - Transcoding social ecologies
doi https://doi.org/10.52842/conf.ecaade.2017.2.537
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 537-544
summary Cities are continuously produced through entropic processes that mediate between complex networked systems and the immediacy urban life. Emergent media technologies inform new relationships between information and matter, code and space to redefine new urban ecosystems. Modes of perceiving, experiencing and inhabiting cities are radically changing along with a radical transformation of the tools that we use to design. Cities as complex and systemic organisms require approaches that engage new multi-scalar strategies to connect the physical layer with the system of networked ecologies. This paper aims at investigating emerging and novel forms of reading and producing urban spaces reimagining the physical city through intelligent and mediated processes. Through data agency and responsive urban processes, the design methodology explored the materialization of a temporary pneumatic structure and membrane that tested material performance through fabrication and sensing practices through the pneuSENSE project developed in July 2016 in New York at the Brooklyn Navy Yard during the 'HyperCities' IaaC- Institute for Advanced Architecture of Catalonia - Global Summer School.
keywords responsive urban processes; data agency ; reciprocity between micro (body) and macro (environment); dynamics of social ecologies; mapped-environment
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2016_611
id caadria2016_611
authors Dritsas, Stylianos
year 2016
title An Advanced Parametric Modelling Library for Architectural and Engineering Design
doi https://doi.org/10.52842/conf.caadria.2016.611
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 611-620
summary This paper presents a design computation system support- ing scientific computing methods relevant to architectural and engi- neering design under the paradigm of visual programming. The objec- tive of this research work is to expand and advance the palette of methods employed in academic and professional design environments. The tools contain methods for linear algebra, non-linear solvers, net- work analysis and algorithms for classical operational research prob- lems such as cutting and packing, clustering and routing. A few dec- ades ago the idea that computing would become so pervasive in the realm of architecture and engineering as it is today was confronted with deep scepticism. The thesis of this paper is that while it may be equally implausible that such methods are relevant today it may be the next natural evolution in the direction of design computation. The cur- rent state of the presented software package is still in early alpha ver- sion and it is available online for evaluation.
keywords Design computation; parametric modelling; visual programming
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2016_114
id ecaade2016_114
authors Erdine, Elif and Kallegias, Alexandros
year 2016
title Calculated Matter - Algorithmic Form-Finding and Robotic Mold-Making
doi https://doi.org/10.52842/conf.ecaade.2016.1.163
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 163-168
summary The paper addresses a specific method for the production of custom-made, differentiated moulds for the realization of a complex, doubly-curved wall element during an international three-week architectural programme, Architectural Association (AA) Summer DLAB. The research objectives focus on linking geometry, structure, and robotic fabrication within the material agency of concrete. Computational workflow comprises the integration of structural analysis tools and real-time form-finding methods in order to inform global geometry and structural performance simultaneously. The ability to exchange information between various simulation, modelling, analysis, and fabrication software in a seamless fashion is one of the key areas where the creation of complex form meets with the simplicity of exchanging information throughout various platforms. The paper links the notions of complexity and simplicity throughout the design and fabrication processes. The aim to create a complex geometrical configuration within the simplicity of a single material system, concrete, presents itself as an opportunity for further discussion and development.
wos WOS:000402063700018
keywords robotic fabrication; custom form-work; generative design; structural analysis; concrete
series eCAADe
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_673477 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002