CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 613

_id ecaade2016_026
id ecaade2016_026
authors Agkathidis, Asterios
year 2016
title Implementing Biomorphic Design - Design Methods in Undergraduate Architectural Education
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 291-298
doi https://doi.org/10.52842/conf.ecaade.2016.1.291
wos WOS:000402063700033
summary In continuation to Generative Design Methods, this paper investigates the implementation of Biomorphic Design, supported by computational techniques in undergraduate, architectural studio education. After reviewing the main definitions of biomorphism, organicism and biomimicry synoptically, we will assess the application of a modified biomorphic method on a final year, undergraduate design studio, in order to evaluate its potential and its suitability within the framework of a research led design studio, leading to an RIBA accredited Part I degree. Our research findings based on analysis of design outputs, student performance as well as moderators and external examiners reports initiate a constructive debate about accomplishments and failures of a design methodology which still remains alien to many undergraduate curricula.
keywords CAAD Education; Strategies, Shape Form and Geometry; Generative Design; Design Concepts
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_693
id caadria2016_693
authors Fernando, Ruwan; Karine Dupre and Henry Skates
year 2016
title Tangible User Interfaces for Teaching Building Physics: Towards continuous designing in education
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 693-702
doi https://doi.org/10.52842/conf.caadria.2016.693
summary This paper follows our evaluation and research into designing tangible physical media for the purposes of teaching building physics to undergraduate architecture students. These media interfaces make use of a virtual environment to promote an understanding of the cycles, which govern architectural and urban projects (for example solar studies, the flow of heat, air and water). This project aims to create an ecology of devices which can be used by students to self-direct themselves and harbour critical making in their research methods (with the explicit intent of dissolving the barrier between design and research). The basic premise of this research, is that in light of growing student numbers, more students lacking confidence in numeracy skills as well as the desire to have self-directed or group-directed learning, tangible media has a promising role to play. There are several reasons for this optimism. The first is that a better sense of intuition is gained from an interactive model over reading notes from a lecture or textbook. The second is that tangible media engages in other modes of learning, being valuable to students who have an aptitude for kinesthetic and spatial learning over text-dominant learning.
keywords Pedagogy; tangible user interfaces; augmented reality; internet of things; designing for teaching
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2016_036
id ecaade2016_036
authors Varinlioglu, Guzden, Halici, Suheyla Muge and Alacam, Sema
year 2016
title Computational Thinking and the Architectural Curriculum - Simple to Complex or Complex to Simple?
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 253-259
doi https://doi.org/10.52842/conf.ecaade.2016.1.253
wos WOS:000402063700028
summary Recent trends in architectural education and practice have encouraged the use of computational tools and methods for solving complex design problems. Newer technology can augment the design process by applying progressively more-advanced computational tools. However, the complex nature of these tools can lead to students getting lost at the skill-building stage, they can become trapped in computational design terminology, leading to designs of limited spatial quality. This paper introduces a pilot study from Izmir University of Economics (IUE) for the integration of computational design technology in the undergraduate architectural curricula, based on a workshop series using a top-down teaching strategy.
keywords Basic design; learning outcomes; keyword analysis; visual scripting environment (VSE)
series eCAADe
email
last changed 2022/06/07 07:58

_id ascaad2016_034
id ascaad2016_034
authors Brothers, David; Augustus Wendell
year 2016
title Design Films - Implementing video creation techniques into undergraduate design education
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 321-330
summary NJIT has been introducing video production projects into undergraduate design classes over the last two years. Linear motion projects open paths to understanding the built and virtual environments in ways that augment traditional design pedagogy.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ascaad2016_035
id ascaad2016_035
authors Al-Matarneh, Rana; Ihsan Fethi
year 2016
title Assessing the Impact of CAD Tools on Architectural Design Quality - A case study of graduation projects in Jordan
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 331-350
summary The current concept of architectural design education in most schools of architecture in Jordan is a blend between manual pen drafting and digital approaches. However, the disconnection between these two methods has resulted in the students' failure to transfer skills learnt through traditional methods to the digital method of CAD. The objective of this study is twofold: to first compare students’ attitudes toward using both methods and to then assess the impact of CAD use on the quality of architectural design. An open-ended questionnaire was designed to measure variables related to students’ preferences toward CAD and traditional methods. The quality of sixty graduation projects at three Jordanian universities was investigated. The results appear to support the assumption that CAD tools are used largely as visual means and thereby cause a marked decline in design quality. These findings call for a reconsideration of the status quo and a rethinking of perhaps the entire architectural educational model.
series ASCAAD
email
last changed 2017/05/25 13:33

_id caadria2016_383
id caadria2016_383
authors Beorkrem, C.; J. Ellinger, P. Bernstein and A. Hauck
year 2016
title Multivariate Schematic Design Tooling
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 383-394
doi https://doi.org/10.52842/conf.caadria.2016.383
summary This paper will examine the results from a research collaboration between (BIM Software Manufacturer) and (School), whose problem statement focused on supporting robust interoperability by defining goals focused on multivariate conceptual design tools. The collaboration included design faculty, students and software professionals, the latter providing access to a broad range of design simulation tools either commercially available or currently in development. The tools were developed first through case studies and background research, followed by the design and implementation of novel computational methods advancing the architectural design workflow by seeking to create comparative tools which allow a designer to connect multiple data typologies in a single model. With advanced computational tools employed both as standalone resources and embedded in parametric loops, we sought to provide immediate feedback on design goals.
keywords Building information modelling; simulation and prediction; education; optimization; scripting
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201614207
id ijac201614207
authors Chaszar, Andre and Sam Conrad Joyce
year 2016
title Generating freedom: Questions of flexibility in digital design and architectural computation
source International Journal of Architectural Computing vol. 14 - no. 2, 167-181
summary Generative processes and generative design approaches are topics of continuing interest and debate within the realms of architectural design and related fields. While they are often held up as giving designers the opportunity (the freedom) to explore far greater numbers of options/alternatives than would otherwise be possible, questions also arise regarding the limitations of such approaches on the design spaces explored, in comparison with more conventional, human-centric design processes. This article addresses the controversy with a specific focus on parametric-associative modelling and genetic programming methods of generative design. These represent two established contenders within the pool of procedural design approaches gaining increasingly wide acceptance in architectural computational research, education and practice. The two methods are compared and contrasted to highlight important differences in freedoms and limitations they afford, with respect to each other and to ‘manual’ design. We conclude that these methods may be combined with an appropriate balance of automation and human intervention to obtain ‘optimal’ design freedom, and we suggest steps towards finding that balance.
keywords Design space exploration, parametric-associative modelling, genetic programming, mixed-initiative methods
series journal
last changed 2016/06/13 08:34

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2016_083
id ecaade2016_083
authors Hansen, Ellen Kathrine, Mullins, Michael Finbarr and Triantafyllidis, Georgios
year 2016
title Dynamic Light as a Transformational Tool in Computer-aided Design
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 275-282
doi https://doi.org/10.52842/conf.ecaade.2016.1.275
wos WOS:000402063700031
summary New lighting technologies may fulfill a need for holistic design methods by offering opportunities for both architects and engineers to apply methods and knowledge from media technology that combine daylight and interactive light, in order to complement and deepen an understanding of context. The framework combines daylight and interactive light and includes human needs analysis, spatial understanding, qualitative analysis, qualitative tests and visual assessments. A transdisciplinary model termed the "Architectural Experiment" is applied in a specific case by combining serial, parallel and iterative processes which include contextual analysis, architectural design, simulation, C++ programming, implementation of the dynamic smart-film diffuser, programming of voltage ranges on Arduino boards, rapid prototype construction and lighting technology.
keywords Design Tools, CAAD Education, Design Concepts ; Lighting Design
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2016_001
id ecaade2016_001
authors Herneoja, Aulikki; Toni O?sterlund and Piia Markkanen (eds.)
year 2016
title Complexity & Simplicity, Volume 2
source Proceedings of the 34th International Conference on Education and Research in Computer Aided Architectural Design in Europe, Oulu, Finland, 24.-26. August 2016, 688 p.
doi https://doi.org/10.52842/conf.ecaade.2016.2
summary The second volume of the conference proceedings of the 34rd eCAADe conference, 24.-26. August 2016, at Oulu School of Architecture, University of Oulu, Oulu, Finland contains 76 papers grouped under 13 sub-themes. Both volumes contain altogether 157 accepted papers. The theme of the 34th eCAADe Conference is Complexity & Simplicity. We invited the eCAADe community to address the multifaceted notions of complexity and simplicity, which are encountered in architectural design processes. Approaches discussing the theme from the perspective of computer aided design education; design processes and methods; design tool developments; and novel design applications, as well as real world experiments and case studies were welcomed. What is the role of complexity or simplicity as part of the design process? Does the use of complex design methods offer simplicity to the design process itself? Is it possible to design complexity with simple methods? Does the use of computation in design necessitate complexity or offer means to control it? Recent development in digital technologies and digital design tools enable us to address complex situations in architectural environments, ranging in scale from structures and buildings to urban contexts. We often expect technology to better help us manage the complexity of life, to simplify our daily lives and tasks. However, these developments also raise the question of whether design technologies encourage complexity at the expense of simplicity in both the design process and lived environments. Does computation cause complexity? Or does it enable simplicity? In addition to the accepted papers, the first volume contains Keynote Papers, including keynote speakers contribution concerning the themes of their keynote lectures and the Workshop Contributions, including the papers summarizing the contents of workshops given.
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2016_000
id ecaade2016_000
authors Herneoja, Aulikki; Toni O?sterlund and Piia Markkanen (eds.)
year 2016
title Complexity & Simplicity, Volume 1
source Proceedings of the 34th International Conference on Education and Research in Computer Aided Architectural Design in Europe, Oulu, Finland, 24.-26. August 2016, 706 p.
doi https://doi.org/10.52842/conf.ecaade.2016.1
summary The first volume of the conference proceedings of the 34th eCAADe conference, 24.-26. August 2016, at Oulu School of Architecture, University of Oulu, Oulu, Finland contains 81 papers grouped under 14 sub-themes. Both volumes contain altogether 157 accepted papers. The theme of the 34th eCAADe Conference is Complexity & Simplicity. We invited the eCAADe community to address the multifaceted notions of complexity and simplicity, which are encountered in architectural design processes. Approaches discussing the theme from the perspective of computer aided design education; design processes and methods; design tool developments; and novel design applications, as well as real world experiments and case studies were welcomed. What is the role of complexity or simplicity as part of the design process? Does the use of complex design methods offer simplicity to the design process itself? Is it possible to design complexity with simple methods? Does the use of computation in design necessitate complexity or offer means to control it? Recent development in digital technologies and digital design tools enable us to address complex situations in architectural environments, ranging in scale from structures and buildings to urban contexts. We often expect technology to better help us manage the complexity of life, to simplify our daily lives and tasks. However, these developments also raise the question of whether design technologies encourage complexity at the expense of simplicity in both the design process and lived environments. Does computation cause complexity? Or does it enable simplicity? In addition to the accepted papers, the first volume contains Keynote Papers, including keynote speakers contribution concerning the themes of their keynote lectures and the Workshop Contributions, including the papers summarizing the contents of workshops given.
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2016_242
id ecaade2016_242
authors Kovács, Ádám Tamás and Szoboszlai, Mihály
year 2016
title Experience in CAAD Education Using a MOOC System
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 269-274
doi https://doi.org/10.52842/conf.ecaade.2016.1.269
wos WOS:000402063700030
summary This paper describes some of the challenges of using a Massive Open Online Course (MOOC) framework system with a variety of digital content. Situated in the 'efficiency' paradigm of digital design methods and Computer Aided Architectural Design (CAAD) education, we allow participants to set their own schedules, meet demands that are appropriate for their abilities, and determine their own path. The content within this framework motivates students through life-like tasks and examples. This paper shares our experiences in CAAD education through a course curriculum developed by applying a variety of digital content. We have focused on resolving the problem of inefficient teaching of CAAD systems by developing a blended learning curriculum.
keywords CAAD; education; b-learning; MOOC; curriculum analytics; mind-map
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2017_144
id ecaade2017_144
authors Lange, Christian J.
year 2017
title Elements | robotic interventions II
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 671-678
doi https://doi.org/10.52842/conf.ecaade.2017.1.671
summary Reviewing the current research trends in robotic fabrication around the world, the trajectory promises new opportunities for innovation in Architecture and the possible redefinition of the role of the Architect in the industry itself. New entrepreneurial, innovative start-ups are popping up everywhere challenging the traditional model of the architect. However, it also poses new questions and challenges in the education of the architect today. What are the appropriate pedagogical methods to instill enthusiasm for new technologies, materials, and craft? How do we avoid the pure application of pre-set tools, such as the use of the laser cutter has become, which in many schools around the world has caused problems rather than solving problems? How do we teach students to invent their tools especially in a society that doesn't have a strong background in the making? The primary focus of this paper is on how architectural CAAD/ CAM education through the use of robotic fabrication can enhance student's understanding, passion and knowledge of materiality, technology, and craftsmanship. The paper is based on the pedagogical set-up and method of an M. Arch I studio that was taught by the author in fall 2016 with the focus on robotic fabrication, materiality, traditional timber construction systems, tool design and digital and physical craftsmanship.
keywords CAAD Education, Digital Technology, Craftsmanship, Material Studies, Tool Design, Parametric Modeling, Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2016_161
id ecaade2016_161
authors Nan, Cristina, Patterson, Charlie and Pedreschi, Remo
year 2016
title Digital Materialization: Additive and Robotical Manufacturing with Clay and Silicone
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 345-354
doi https://doi.org/10.52842/conf.ecaade.2016.1.345
wos WOS:000402063700039
summary Through the use of algorithmic design methods and an ever growing variety of digital fabrication tools the complexity of process in the architectural discipline seems to be increasing. As this statement might apply to a variety of different areas of computational design and process management, this perceived growing complexity does not have to be viewed as unnecessary complication of design processes, if palpable and justifiable benefits occur. This paper intends to analyse and investigate the potential arising from digital tools of fabrication, specifically robots and 3D printers, and from open source platforms on exploring and managing complexity while enabling both simplicity of process and simplicity of implementation through emerging open source cultures. Building on this assumptions, this paper explores the professional possibilities generated the implementation of robotics as part of the academic curriculum. The theoretical concept of Machinecraft will be introduced and showcased on two research project, both focussing on advanced digital tools, additive manufacturing and machine engineering. Please write your abstract here by clicking this paragraph.
keywords Additive Manufacturing; 3D Printing; Robotics; Digital Fabrication; Open Source; Architectural Education
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2016_209
id caadria2016_209
authors Wang, Likai; Zilong Tan and Guohua Ji
year 2016
title Toward the wind-related building performative design
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 109-218
doi https://doi.org/10.52842/conf.caadria.2016.109
summary The integration of optimization algorithms and building performance simulation tools make it possible to carry out performa- tive design or performance-driven design, which aims to guide the de- sign synthesis process of the simulation results to continuously im- prove the design. However, the associated research work of wind- related building performance is still deficient, resulting from lack of applicable interface and the time consumption. Meanwhile, in the in- dustrial design realm, the aero-dynamics or fluid-dynamics behaviour of the production under development has been vastly analysed and op- timized based on the multi-discipline optimization (MDO) techniques. Owing to offering numerous built-in interface and integrated optimi- zation algorithm, MDO application software has begun to be used in building optimization design with the complex relationship between various objectives. With the advantage of MDO tools and aimed to provide an efficient optimization approach from the perspective of ar- chitect, this paper proposes a wind-related building performance op- timization design system integrating Rhinoceros and Fluent based on iSIGHT - a MDO application software. In addition, the lighting per- formance is considered in this research as well for implementing the multi-objective optimization. Two case studies of tall building optimi- zation design based on varied generative approaches are introduced to investigate the effect and efficiency of this system.
keywords Performative design; wind-related building performance; MDO; parametric generating design
series CAADRIA
email
last changed 2022/06/07 07:58

_id lasg_whitepapers_2016_fulltext
id lasg_whitepapers_2016_fulltext
year 2016
title Living Architecture Systems Group White Papers 2016
source Living Architecture Systems Group White Papers 2016 [ISBN 978-1-988366-10-4 (EPUB)] Riverside Architectural Press 2016: Toronto, Canada
summary Living Architecture Systems Group "White Papers 2016" is a dossier produced for the occasion of the Living Architecture Systems Group launch event and symposium hosted on November 4 and 5 at the Sterling Road Studio in Toronto and the University of Waterloo School of Architecture at Cambridge. The "White Papers 2016" presents research contributions from the LASG partners, forming an overview of the partnership and highlighting oppportunities for future collaborations.
keywords design, dissipative methods, design methods, synthetic cognition, neuroscience, metabolism, STEAM, organicism, field work, responsive systems, space, visualizations, sensors, actuators, signal flows, art and technology, new media art, digital art, emerging technologies, citizen building, bioinspiration, performance, paradigms, artificial nature, virtual design, regenerative design, 4DSOUND, spatial sound, biomanufacturing, eskin, delueze, bees, robotics
last changed 2019/07/29 14:02

_id caadria2016_797
id caadria2016_797
authors Agusti?-Juan, Isolda and Guillaume Habert
year 2016
title An environmental perspective on digital fabrication in architecture and construction
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 797-806
doi https://doi.org/10.52842/conf.caadria.2016.797
summary Digital fabrication processes and technologies are becom- ing an essential part of the modern product manufacturing. As the use of 3D printing grows, potential applications into large scale processes are emerging. The combined methods of computational design and robotic fabrication have demonstrated potential to expand architectur- al design. However, factors such as material use, energy demands, du- rability, GHG emissions and waste production must be recognized as the priorities over the entire life of any architectural project. Given the recent developments at architecture scale, this study aims to investi- gate the environmental consequences and opportunities of digital fab- rication in construction. This paper presents two case studies of classic building elements digitally fabricated. In each case study, the projects were assessed according to the Life Cycle Assessment (LCA) frame- work and compared with conventional construction with similar func- tion. The analysis highlighted the importance of material-efficient de- sign to achieve high environmental benefits in digitally fabricated architecture. The knowledge established in this research should be di- rected to the development of guidelines that help designers to make more sustainable choices in the implementation of digital fabrication in architecture and construction.
keywords Digital fabrication; LCA; sustainability; environment
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2016_048
id ascaad2016_048
authors Al Shiekh, Bassam
year 2016
title Arabic Calligraphy and Parametric Architecture - Translation from a calligraphic force to an architectural form
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 469-482
summary This paper describes an on-going research that unites two distinct and seemingly unrelated interests. One is Arabic calligraphy and the other is parametric architecture. The effort is to integrate these interests and, in doing so, balance cultural issues with technological ones, traditional with contemporary and spiritual with material. Moreover, this paper is inspired by Arabic calligraphy and its influence on Zaha Hadid’s designs; it is invigorated by parametric systems and their capacity as a source of architectural forms. This paper will observe the rising importance of computation technologies to architecture, which has always been a form of negotiation between ‘function and fiction’ and ‘force and form’. The paper proposes a Parametric Calligraphic Machine that simultaneously produces, connects and separates calligraphic surfaces, calligraphic images and calligraphic reality. Therefore, the goal is to examine this hypothesis in order to produce a set of techniques, tools and methods that inform the three-dimensional design process of Arabic calligraphy’s contemporary possibilities by addressing a process description rather than a state description of creating calligraphic images and calligraphic surfaces. The theoretical approach highlights issues pertaining to calligraphy, spatiality, translation, generative systems, parametric design, visual structure, force and form.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ascaad2016_003
id ascaad2016_003
authors Al-Jokhadar, Amer; Wassim Jabi
year 2016
title Humanising the Computational Design Process - Integrating Parametric Models with Qualitative Dimensions
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 9-18
summary Parametric design is a computational-based approach used for understanding the logic and the language embedded in the design process algorithmically and mathematically. Currently, the main focus of computational models, such as shape grammar and space syntax, is primarily limited to formal and spatial requirements of the design problem. Yet, qualitative factors, such as social, cultural and contextual aspects, are also important dimensions in solving architectural design problems. In this paper, an overview of the advantages and implications of the current methods is presented. It also puts forward a ‘structured analytical system’ that combines the formal and geometric properties of the design, with descriptions that reflect the spatial, social and environmental patterns. This syntactic-discursive model is applied for encoding vernacular courtyard houses in the hot-arid regions of the Middle East and North Africa, and utilising the potentials of these cases in reflecting the lifestyle and the cultural values of the society, such as privacy, human-spatial behaviour, the social life inside the house, the hierarchy of spaces, the segregation and seclusion of family members from visitors and the orientation of spaces. The output of this analytical phase prepares the groundwork for the development of socio-spatial grammar for contemporary tall residential buildings that gives the designer the ability to reveal logical spatial topologies based on socio-environmental restrictions, and to produce alternatives that have an identity while also respecting the context, place and needs of users.
series ASCAAD
email
last changed 2017/05/25 13:13

_id ecaade2016_063
id ecaade2016_063
authors Al-Qattan, Emad, Galanter, Philip and Yan, Wei
year 2016
title Developing a Tangible User Interface for Parametric and BIM Applications Using Physical Computing Systems.
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 621-630
doi https://doi.org/10.52842/conf.ecaade.2016.2.621
wos WOS:000402064400063
summary This paper discusses the development of an interactive and a responsive Tangible User-Interface (TUI) for parametric and Building Information Modeling (BIM) applications. The prototypes presented in this paper utilizes physical computing systems to establish a flexible and intuitive method to engage digital design processes.The prototypes are hybrid UIs that consist of a digital modeling tool and an artifact. The artifact consists of a control system (sensors, actuators, and microcontrollers) and physical objects (architectural elements). The link between both environments associates physical objects with their digital design information to assist users in the digital design process. The integration of physical computing systems will enable the objects to physically respond to analog input and provide real-time feedback to users. The research aims to foster tangible computing methods to extend the capabilities of digital design tools. The prototypes demonstrate a method that allows architects to simultaneously interact with complex architectural systems digitally and physically.
keywords Physical Computing; Parametric Design; BIM; Tangible UI
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_97126 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002