CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 617

_id caadria2016_663
id caadria2016_663
authors Hosokawa, Masahiro; Tomohiro Fukuda, Nobuyoshi Yabuki, Takashi Michikawa and Ali Motamedi
year 2016
title Integrating CFD and VR for indoor thermal environment design feedback
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 663-672
doi https://doi.org/10.52842/conf.caadria.2016.663
summary In the context of environmental consideration and im- provement of living standards, design of high performance buildings that are both comfortable and energy saving is important. Simulation tools (such as CFD) enables analysing and visualizing environmental factors (such as temperature and airflow) based on the design proper- ties and can be used to improve the building design for better perfor- mance. However, these tools have limitations in providing interactivi- ty with users for creating multiple CFD visualization results to be used for analysing design options. This research presents an integrated de- sign tool which consists of CFD and VR technologies. The proposed system visualizes CFD results in a VR environment together with ar- chitectural design. Additionally, it enables configuring CFD parame- ters within the VR environment and allows repeatedly executing simu- lation and visualizing updated results. The proposed system enables visualizing information in relationship with the actual architectural design, space configuration and thermal environment, and provides ef- ficient design feedbacks.
keywords Interdisciplinary computational design; design feedback; indoor thermal environment; Computational Fluid Dynamics (CFD); Virtual Reality (VR)
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2016_803
id sigradi2016_803
authors Almeida, Marcela Alves de
year 2016
title A teoria da ludificação e os ambientes responsivos [The theory of ludification and responsive environments]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.838-843
summary This paper reports the responsive environments and the Theory of Ludification towards the interaction design using the structure of games on feedback process. It presents an interaction classification that can be reactive, responsive and dialogical based on authors related to cybernetics studies. It exposes the need for rationality in environments as an intrinsic and necessary condition for achieving the interaction. It also uses dialogue and game Vilém Flusser’s concepts to support this argument. Thus, it broadens the contemporary architectural discussion that encompassing communication processes that do not recognize the physical boundaries of the buildings.
keywords Resposive Environment; Ludification; Interaction; Play; Game
series other
type normal paper
email
last changed 2017/06/21 14:51

_id ascaad2016_022
id ascaad2016_022
authors Birge, David; Sneha Mandhan and Alan Berger
year 2016
title Dynamic Simulation of Neighborhood Water Use - A case study of Emirati neighborhoods in Abu Dhabi, UAE
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 197-206
summary Being located in a hot, humid and arid bioregion, as well as having a unique religious and social context, the Gulf Cooperation Council cities pose significant challenges to the achievement of sustainable urban development. Using native neighborhoods in Abu Dhabi as a case study, this ongoing research aims to develop a design methodology which utilizes both qualitative and quantitative analysis towards the holistic, feedback driven design of new neighborhood typologies for the native population. This paper focuses on the methodology and application of a water use module which measures neighborhood scale indoor and outdoor water use, an area of simulation critical to developing sustainable neighborhoods for Arab cities, yet underrepresented within the literature. The water module comprises one part of a larger toolkit that aims to measure both environmental sustainability as well as social and cultural factors unique to the context of Abu Dhabi and the gulf region.
series ASCAAD
email
last changed 2017/05/25 13:31

_id ecaade2016_ws-afuture
id ecaade2016_ws-afuture
authors Kim, Jaehwan, Schwartz, Mathew and Zarzycki, Andrzej
year 2016
title The Wave of Autonomous Mobility:Architecture Facilitating Indoor Autonomous Navigation
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 53-58
doi https://doi.org/10.52842/conf.ecaade.2016.1.053
wos WOS:000402063700004
summary When considering architectural and urban responses to autonomous mobility, it becomes evident that the future strategies will have to include a significant transformation to the built environment, particularly the ways it operates and interacts with inhabitants. Designers will not only need to rethink formal and functional arrangements but also, and perhaps primarily, consider the environment--buildings and cities--as active and equal actors with adaptive and autonomous behaviors similarly to those people or self-driving cars manifest. This paper discusses initial planning and design strategies for the integration of autonomous vehicles and other forms of autonomous mobility into the built environment. Specifically, it looks into necessary steps required to develop infrastructure to a level of autonomy that can facilitate a next generation of wayfinding and mobility. A growing research area into smaller personal mobility vehicles that would revolutionize elderly and disabled mobility brings to the light the major technical challenges present in current building infrastructure.
keywords Autonomous Vehicle; Navigation; Localization; Smart Buildings; Smart Infrastructure
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2016_040
id ecaade2016_040
authors Marchal, Théo, Remy, Nicolas, Chelkoff, Grégoire, Bardyn, Jean-Luc, Gamal, Noha and Pirhosseinloo, Hengameh
year 2016
title Esquis'sons ! Sound Sketch : A Parametric Tool to Design Sustainable Soundscapes - How to apprehend environmental complexity in a simple tool for architectural design
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 275-284
doi https://doi.org/10.52842/conf.ecaade.2016.2.275
wos WOS:000402064400027
summary Since the 80s, several researches have developed the theoretical notions of sound effects, sound proxemy, city sound identities, sound comfort, architectural sound prototypes which were meant to help designers consider sound in their projects. Nevertheless, taking care of the inherent sound dimensions in architectural urban projects remains an unresolved challenge. The researches of the last 30 years have shown how the sound environment qualities are forgotten in favour of visual qualities. This article presents a new method dedicated to generating simple sound sketches for architectural conception while preserving the complexity of acoustic simulation. This paper argues that the Esquis'sons! sound sketch tool reconfigures architectural design by considering an innovative view its the temporality, allowed by numeric designing tools able to intervene and offer a continuous feedback regarding sound environment.
keywords sound environment; sound effects; sketch; parametric design; architecture; didactic; grasshopper
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia16_174
id acadia16_174
authors Moorman, Andrew; Liu, Jingyang; Sabin, Jenny E.
year 2016
title RoboSense: Context-Dependent Robotic Design Protocols and Tools
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 174-183
doi https://doi.org/10.52842/conf.acadia.2016.174
summary While nonlinear concepts are widely applied in analysis and generative design in architecture, they have not yet convincingly translated into the material realm of fabrication and construction. As the gap between digital design model, shop drawing, and fabricated result continues to diminish, we seek to learn from fabrication models and natural systems that do not separate code, geometry, pattern, material compliance, communication, and form, but rather operate within dynamic loops of feedback, reciprocity, and generative fabrication. Three distinct, but connected problems: 1) Robotic ink drawing; 2) Robotic wine pouring and object detection; and 3) Dynamically Adjusted Extrusion; were addressed to develop a toolkit including software, custom digital design tools, and hardware for robotic fabrication and user interaction in cyber-physical contexts. Our primary aim is to simplify and consolidate the multiple platforms necessary to construct feedback networks for robotic fabrication into a central and intuitive programming environment for both the advanced to novice user. Our experimentation in prototyping feedback networks for use with robotics in design practice suggests that the application of this knowledge often follows a remarkably consistent profile. By exploiting these redundancies, we developed a support toolkit of data structures and routines that provide simple integrated software for the user-friendly programming of commonly used roles and functionalities in dynamic robotic fabrication, thus promoting a methodology of feedback-oriented design processes.
keywords online programming, cyber-physical systems, computational design, robotic fabrication, human-robot interaction
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id ecaade2016_113
id ecaade2016_113
authors Poinet, Paul, Baharlou, Ehsan, Schwinn, Tobias and Menges, Achim
year 2016
title Adaptive Pneumatic Shell Structures - Feedback-driven robotic stiffening of inflated extensible membranes and further rigidification for architectural applications
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 549-558
doi https://doi.org/10.52842/conf.ecaade.2016.1.549
wos WOS:000402063700060
summary The paper presents the development of a design framework that aims to reduce the complexity of designing and fabricating free-form inflatables structures, which often results in the generation of very complex geometries. In previous research the form-finding potential of actuated and constrained inflatable membranes has already been investigated however without a focus on fabrication (Otto 1979). Consequently, in established design-to-fabrication approaches, complex geometry is typically post-rationalized into smaller parts and are finally fabricated through methods, which need to take into account cutting pattern strategies and material constraints. The design framework developed and presented in this paper aims to transform a complex design process (that always requires further post-rationalization) into a more integrated one that simultaneously unfolds in a physical and digital environment - hence the term cyber-physical (Menges 2015). At a full scale, a flexible material (extensible membrane, e.g. latex) is actuated through inflation and modulated through additive stiffening processes, before being completely rigidified with glass fibers and working as a thin-shell under compression.
keywords pneumatic systems; robotic fabrication; feedback strategy; cyber-physical; scanning processes
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2016_219
id caadria2016_219
authors Latifi, Mehrnoush; Daniel Prohasky, Jane Burry, Rafael Moya, Jesse Mccarty and Simon Watkins
year 2016
title Breathing skins for wind modulation through morphology
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 219-228
doi https://doi.org/10.52842/conf.caadria.2016.219
summary This study aims to investigate the design power to manipu- late the behaviour and characteristics of air through geometrical ma- nipulation of building skins. The simple cubic cells in the global sys- tem of a porous screen were manipulated to investigate the impacts of screen’s morphology on the air movement pattern within and around it. The results we discovered from the evaluation of several screen systems revealed trends in response to the careful manipulation of ef- fective shape parameters within a designed matrix of variations as a Matrix of Possible Effective Typologies (MPET). In this research, the main principles of framing the initial matrix were based on: a) Creat- ing pressure differences across the screens as a result of surface intru- sion and extrusion compositions. b) Changing the nature of the airflow (velocity and turbulence variation) with geometrical manipulations of the inlet and outlet of the screens’ components. Experimental and nu- merical studies were undertaken in parallel including the use of a wind tunnel with very smooth flow with precision wind sensors and the numerical studies by Computational Fluid Dynamics. The aim of this paper is to present part of the empirical investigations to demonstrate the power of geometry in shaping the air patterns, altering pressure and velocity through geometrical modification of porous surfaces for future applications.
keywords Porous screens; microturbulance; facade component; microclimate; parametric CFD
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2016_048
id ecaade2016_048
authors Abramovic, Vasilija and Achten, Henri
year 2016
title From Moving Cube to Urban Interactive Structures - A case study
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 661-668
doi https://doi.org/10.52842/conf.ecaade.2016.1.661
wos WOS:000402063700071
summary When thinking about the future vision of a city, having in mind recent development in digital technologies and digital design tools we are inclined to expect new building structures which incorporate this technology to better help us manage the complexity of life, and to simplify our daily lives and tasks. The idea behind this research paper lies in design of such structures, which could be put inside an urban context and engage in creating a built environment that can add more to the quality of life. For us Interactive architecture is architecture that is responsive, flexible, changing, always moving and adapting to the needs of today. The world is becoming more dynamic, society is constantly changing and the new needs it develops need to be accommodated. As a result architecture has to follow. Spaces have to become more adaptive, responsive and nature concerned, while having the ability for metamorphosis, flexibility and interactivity. Taken as a starting point of this idea is a specific module from graduation project in 2014 "The Unexpected city", where it was possible to test out first ideas about interactive and flexible objects in an urban environment.
keywords Flexible architecture; Interactive architecture; Responsive systems
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201614105
id ijac201614105
authors Ahlquist, Sean
year 2016
title Sensory material architectures: Concepts and methodologies for spatial tectonics and tactile responsivity in knitted textile hybrid structures
source International Journal of Architectural Computing vol. 14 - no. 1, 63-82
summary As the knowledge of material computation advances, continuing the seamless integration of design and fabrication, questions beyond materialization can be addressed with a focus on sensing, feedback, and engagement as critical factors of design exploration. This article will discuss a series of prototypes, design methodologies, and technologies that articulate a textile’s micro-architecture, at the scale of fibers and stitches, to instrumentalize simultaneous structural, spatial, and sensory-responsive qualities. The progression of research displays an ever-deepening instrumentalization of fiber structure and its implications to form definition and responsivity, in creating form- and bending-active structures. The research results in a more refined definition of material behavior as the innate phenomena which emerge at the moment of textile fabrication. Ultimately, the architecture, in its materiality and physical, visual, and auditory responsivity, is designed to address specific challenges for children in filtering multiple sensory inputs, an underlying factor of autism spectrum disorder.
keywords CNC Knitting, Form-active, Bending-active, Textile hybrid, Mutli-sensory
series journal
last changed 2016/06/13 08:34

_id ascaad2016_001
id ascaad2016_001
authors Al-Attili, Aghlab; Anastasia Karandinou and Ben Daley
year 2016
title Parametricism vs Materialism - Evolution of digital technologies for development
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, 597 p.
summary We build on previous technological developments in CAAD by looking into parametric design exploration and the development of the concept of parametricism. We use the phenomenological backdrop to account for our physical experiences and encounters as well as our mental ones; both evident in the link between parametric design as a process and an outcome. In specific, we previously examined two particular metaphors. The first metaphor addressed aspects of virtual environments that resemble our physical world; In other words, computer model as physical model and digital world as material world. In this volume, we extend the exploration into aspects of virtual environments and their resemblance to physical environments by looking at ‘performance’ aspects: the way in which environments are sensed, measured, tracked and visualised. Moreover, we reflect on matters and materiality in both virtual and physical space philosophically, theoretically, practically and reflectively. The second metaphor looked into the modes and means of interaction between our bodies and such virtual environment. Here we extend the investigation to look at the ways in which measures of environmental performance influence human interaction in real environments. The exploration takes us further to look into the area of design fabrication of the built environment, and methods in which developed processes meet environmental performance requirements, and the innovative outcomes that lead to disruptive technologies getting introduced into design and we revisit parametric design under this focus area.
series ASCAAD
type normal paper
email
last changed 2024/02/13 14:28

_id ascaad2016_052
id ascaad2016_052
authors Al-Badry, Sally; Cesar Cheng, Sebastian Lundberg and Georgios Berdos
year 2016
title Living on the Edge - Reinventing the amphibiotic habitat of the Mesopotamian Marshlands
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 513-526
summary The Mesopotamian Marshlands form one of the first landscapes where people started to transform and manipulate the natural environment in order to sustain human habitation. For thousands of years, people have transformed natural ecosystems into agricultural fields, residential clusters and other agglomerated environments to sustain long-term settlement. In this way, the development of human society has been intricately linked to the extraction, processing and consumption of natural resources. The Mesopotamian Marshlands, located in one of the hottest and most arid areas on the planet, formed a unique wetlands ecosystem, which apart from millions of people, sustained a very high number of wildlife and endemic species. Several historical, political, social and climatic changes, which densely occurred during the past century, completely destroyed the unique civilisation of the area, made all the wild flora and fauna disappear and forced hundreds of thousands of people to migrate. During the last decade, many efforts have been made to restore the marshlands. However, these efforts are lacking a comprehensive design strategy, coherent goals and deep understanding of the complex current geopolitical situation, making the restoration process an extremely difficult task. This work aims at providing strategies for recovering the Mesopotamian Marshlands, organising productive functions in order to sustain the local population and design a new inhabitation model, using advanced computational tools while taking into account the extreme climatic conditions and several unique cultural aspects. Part of the aim of this work is to advance the use of computation and explore the opportunities that digital tools afford in helping find solutions to complex design problems where various design variables need to be coordinated to satisfy the design goals. Today, advanced computation enables designers to use population consumption demands, ecological processes and environmental inputs as design parameters to develop more robust and resilient regional planning strategies. This work has the double aim of first, presenting a framework for re-inhabiting the Marshlands of Mesopotamia. Second, the work suggests a design methodology based on computer-aided design for developing and organising productive functions and patterns of human occupation in wetland environments.
series ASCAAD
email
last changed 2017/05/25 13:34

_id ecaade2016_063
id ecaade2016_063
authors Al-Qattan, Emad, Galanter, Philip and Yan, Wei
year 2016
title Developing a Tangible User Interface for Parametric and BIM Applications Using Physical Computing Systems.
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 621-630
doi https://doi.org/10.52842/conf.ecaade.2016.2.621
wos WOS:000402064400063
summary This paper discusses the development of an interactive and a responsive Tangible User-Interface (TUI) for parametric and Building Information Modeling (BIM) applications. The prototypes presented in this paper utilizes physical computing systems to establish a flexible and intuitive method to engage digital design processes.The prototypes are hybrid UIs that consist of a digital modeling tool and an artifact. The artifact consists of a control system (sensors, actuators, and microcontrollers) and physical objects (architectural elements). The link between both environments associates physical objects with their digital design information to assist users in the digital design process. The integration of physical computing systems will enable the objects to physically respond to analog input and provide real-time feedback to users. The research aims to foster tangible computing methods to extend the capabilities of digital design tools. The prototypes demonstrate a method that allows architects to simultaneously interact with complex architectural systems digitally and physically.
keywords Physical Computing; Parametric Design; BIM; Tangible UI
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_631
id caadria2016_631
authors Alambeigi, Pantea; Sipei Zhao, Jane Burry and Xiaojun Qiu
year 2016
title Complex human auditory perception and simulated sound performance prediction
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 631-640
doi https://doi.org/10.52842/conf.caadria.2016.631
summary This paper reports an investigation into the degree of con- sistency between three different methods of sound performance evalu- ation through studying the performance of a built project as a case study. The non-controlled office environment with natural human speech as a source was selected for the subjective experiment and ODEON room acoustics modelling software was applied for digital simulation. The results indicate that although each participant may in- terpret and perceive sound in a particular way, the simulation can pre- dict this complexity to some extent to help architects in designing acoustically better spaces. Also the results imply that architects can make valid comparative evaluations of their designs in an architectur- ally intuitive way, using architectural language. The research acknowledges that complicated engineering approaches to subjective analysis and to controlling the test environment and participants is dif- ficult for architects to comprehend and implement.
keywords Human sound perception; acoustic simulation; experiment and measurement
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2016_032
id ascaad2016_032
authors Alhadidi, Suleiman; Justin Mclean, Luchlan Sharah, Isabel Chia, Roger Sam
year 2016
title Multiflight - Creating Interactive Stairs through Positive Technology
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 295-308
summary This paper details a pedagogical project which calls for an improved design performance of the existing built environment through the use of smart technology and data-driven design. The project is an investigation into ways in which to improve the performance of a ‘pre-selected university building’ through the use of a media facade that allows for interactive experiences. Existing problems of the selected building have been identified through observation and research using a rich picture and agile approach. An underutilised staircase was selected as the focus site for a series of computational design and interactive design studies. The brief of this mini-research project aims to encourage more people to use the stairs and create a memorable experience with a technological approach through the application of a site specific interactive media installation. The project is an interactive staircase which utilises LED strips and generative sound. The project features a series of light boxes which are connected to the existing staircase balustrade. Arduino, passive infra-red sensors, and other motion detection sensors were used to allow for light and generative sound interaction with users using visual scripting tools and a generative design platform. Sensing technology was used as a real-time data-gathering device during the site analysis phase as well as an input device for the designed prototype to allow the testing of the data-driven design. This paper details the study and resultant interactive prototypes. It also discusses the exploration of performance based design ideas into design workflows and the integration of sensing tools into the design process. It concludes by identifying possible implications on using the Internet of Things concepts to facilitate the design of interactive architecture.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ascaad2016_031
id ascaad2016_031
authors Amireh, Omar; Manal Ryalat and Tasbeeh Alaqtum
year 2016
title Narrative Architectural Fiction in Mentally Built Environments
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 283-294
summary A thin line lies between reality and fiction; what is mentally imagined and what is visualized. It all depends on how ideas and images are perceived or what neurological activity is triggered in the user’s brain. Architects and designers spare no effort or tools in presenting buildings, architecture or designs in all forms or ways that would augment users’ experience whether on the perceptual or the cognitive level and in both the digital or the physical environments. In a progressive tendency they, the designers, tend to rely more and more on digitizing their vision and mission, which subsequently give them, impressive and expressive superiority, that would influence the users conscious on the one hand and manipulate their subconscious on the other. Within that process designers work hard to break any mental firewall that would prevent their ideas from pervading the space of any mental environment the user, build or visualize. In that context, to what extent such ways of mental entertainments used by architects, legitimize deception in design? What distinguishes employing the rhythmic simulation of the narrative fictional inceptions (virtual reality) from deploying the adaptive stimulation of the experience modeling conceptions. The difference between planting an idea and constructing an idea. It is not the intention of the paper to prove the failure of the computer aided design neither to stand against the digital architectural design media and applications development. It is rather to present a different way of understanding of how architectural design whether virtual, digital, or real can stimulates and induces codes and messages that is correlated to the brainwave cognitive attributes and can generate a narrative brain environment where the brain can construct and simulate its own fictional design. Doing so, the paper will review certain experimental architectural events and activities which integrate sound and sight elements and effects within some electronic, technical and digital environments.
series ASCAAD
email
last changed 2017/05/25 13:33

_id caadria2016_829
id caadria2016_829
authors Austin, Matthew and Wajdy Qattan
year 2016
title I’m a visual thinker: rethinking algorithmic education for architectural design
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 829-838
doi https://doi.org/10.52842/conf.caadria.2016.829
summary The representational and visual aspects of architectural de- sign education cause certain pedagogical stresses in student’s capaci- ties to learn how to code, and this paper will serve as a critique of the current state of algorithmic pedagogy in architectural education. The paper will suggest that algorithmic curriculum should not frame code as ‘a design tool’, but as something to be designed in its own right; the writing of the code is the ‘design brief’ itself and not something addi- tional to an architectural design brief. The paper will argue for an ar- chitecture-less educational environment that focuses on computational competencies such as logic, loops and lists along with building a strong analytical basis for students’ understanding of programming and digital geometries.
keywords Pedagogy; algorithmic; programming; education
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2017_280
id ecaade2017_280
authors Baldissara, Matteo, Perna, Valerio, Saggio, Antonino and Stancato, Gabriele
year 2017
title Plug-In Design - Reactivating the Cities with responsive Micro-Architectures. The Reciprocal Experience
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 571-580
doi https://doi.org/10.52842/conf.ecaade.2017.2.571
summary Every city has under utilized spaces that create a series of serious negative effects. Waiting for major interventions, those spaces can be reactivated and revitalized with soft temporary projects: micro interventions that light up the attention, give new meaning and add a new reading to abandoned spaces. We can call this kind of operations "plug-in design", inheriting the term from computer architecture: interventions which aim to involve the citizens and activate the environment, engage multiple catalyst processes and civil actions. Plug-in design interventions are by all meanings experimental, they seek for interaction with the users, locally and globally. Information Technology - with its parametric and site-specific capabilities and interactive features - can be instrumental to create such designs and generate a new consciousness of the existing environment. With this paper we will illustrate how two low-budget interventions have re-activated a forgotten public space. Parametric design with a specific script allowing site-specific design, materials and structure optimization and a series of interactive features, will be presented through Reciprocal 1.0 and Reciprocal 2.0 projects which have been built in 2016 in Italy by the nITro group.
keywords reciprocal frame; parametric design; responsive technology; plug-in design; interactivity; re-activate
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201614408
id ijac201614408
authors Bard, Joshua David; David Blackwood, Nidhi Sekhar and Brian Smith
year 2016
title Reality is interface: Two motion capture case studies of human–machine collaboration in high-skill domains
source International Journal of Architectural Computing vol. 14 - no. 4, 398-408
summary This article explores hybrid digital/physical workflows in the building trades, a high-skill domain where human dexterity and craft can be augmented by the precision and repeatability of digital design and fabrication tools. In particular, the article highlights two projects where historic construction techniques were extended through live motion capture of human gesture, information-rich visualization projected in the space of fabrication and custom robotic tooling to generate free-form running moulds. The first case study explores decorative plastering techniques and an augmented workflow where designers and craftspeople can quickly explore patterns through freehand sketch, test ideas with shaded previews and seamlessly produce physical parts using robotic collaborators. The second case study reimagines a roman vaulting technique that used terracotta bottles as part of an interlocking masonry system. Motion capture is used to place building elements precisely in material arrays with real-time visual feedback guiding the hand-held placement of each bottle. These case studies serve to underscore the emerging importance of reality capture in the design and construction of the built environment. Increasingly, the algorithmic power of computational tools and the nuances of human skill can be combined in hybrid design and fabrication workflows.
keywords Reality computing, motion capture, robotic fabrication, haptic interface, hybrid skill, human–machine collaboration, reality capture
series journal
email
last changed 2016/12/09 10:52

_id ecaade2016_073
id ecaade2016_073
authors Borhani, Alireza and Kalantar, Negar
year 2016
title Material Active Geometry - Constituting Programmable Materials for Responsive Building Skins
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 639-648
doi https://doi.org/10.52842/conf.ecaade.2016.1.639
wos WOS:000402063700069
summary This paper is part of a body of research developing an exploratory dialogue between the built form and the environment, via experimentation with performative geometry and material. Here, geometry is considered a design material with the specific capacity to contribute to the performative aspects and kinetic capabilities of building skins.This work opens with a review of emerging opportunities for architects to design materials. It then discusses the concept of Material Active Geometry (MAG) as a means of designing new properties for existing materials. This is followed by a discussion of MAG principles that inform the concepts of flexibility and rigidity in a 3D-printed textile called Flexible Textile Structure (FTS). This research characterizes two FTS types and discusses their potential to be employed in building skins; it also considers combinatory approaches to computational models and physical prototyping. The work concludes with a discussion of the advantages of using FTS, and provides a trajectory for future research in the field of responsive materials and systems.
keywords Programmable Material; Material Active Geometry; Flexible Textile Structures; Responsive Building Skins; Flexible yet Rigid
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_37912 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002