CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id ascaad2016_048
id ascaad2016_048
authors Al Shiekh, Bassam
year 2016
title Arabic Calligraphy and Parametric Architecture - Translation from a calligraphic force to an architectural form
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 469-482
summary This paper describes an on-going research that unites two distinct and seemingly unrelated interests. One is Arabic calligraphy and the other is parametric architecture. The effort is to integrate these interests and, in doing so, balance cultural issues with technological ones, traditional with contemporary and spiritual with material. Moreover, this paper is inspired by Arabic calligraphy and its influence on Zaha Hadid’s designs; it is invigorated by parametric systems and their capacity as a source of architectural forms. This paper will observe the rising importance of computation technologies to architecture, which has always been a form of negotiation between ‘function and fiction’ and ‘force and form’. The paper proposes a Parametric Calligraphic Machine that simultaneously produces, connects and separates calligraphic surfaces, calligraphic images and calligraphic reality. Therefore, the goal is to examine this hypothesis in order to produce a set of techniques, tools and methods that inform the three-dimensional design process of Arabic calligraphy’s contemporary possibilities by addressing a process description rather than a state description of creating calligraphic images and calligraphic surfaces. The theoretical approach highlights issues pertaining to calligraphy, spatiality, translation, generative systems, parametric design, visual structure, force and form.
series ASCAAD
email
last changed 2017/05/25 13:33

_id acadia16_450
id acadia16_450
authors Estevez, Alberto T.
year 2016
title Towards Genetic Posthuman Frontiers in Architecture & Design
doi https://doi.org/10.52842/conf.acadia.2016.450
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 450-459
summary This paper includes a brief history about the beginning of the practical application of real genetics to architecture and design. Genetics introduces a privileged point-of-view for both biology and the digital realm, and these two are the main characters (the protagonists) in our posthuman society. With all of its positive and negative aspects, the study of genetics is becoming the cornerstone of our posthuman future precisely because it is at the intersection of both fields, nature and computation, and because it is a science that can command both of them from within—one practically and the other one theoretically. Meanwhile, through genetics and biodigital architecture and design, we are searching at the frontiers of knowledge for planetary benefit. In order to enlighten us about these issues, the hero image (Figure 1) has been created within the framework of scanning electron microscope (SEM) research on the genesic level, where masses of cells organize themselves into primigenic structures. Microscope study was carried out at the same time as the aforementioned genetic research in order to find structures and to learn typologies that could be of interest for architecture, here illustrated as an alternative landscape of the future. Behind this hero image is the laboratory’s first effort to begin the real application of genetics to architecture, thereby fighti hti ng for the sustainability of our entire planet and a better world
keywords performance in design, material agency, biomimetics and biological design, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id caadria2016_125
id caadria2016_125
authors Chen, I-Chih and June-Hao Hou
year 2016
title Design with bamboo bend: Bridging natural material and computational design
doi https://doi.org/10.52842/conf.caadria.2016.125
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 125-133
summary Bamboo is a high potential alternative solution for substi- tuting industrial material with its natural characteristics, economical and environmental aspects. However, one of the biggest challenges for natural materials to be used in computational designed is the control- lability due to its unevenness nature. The other gap is the lack of ma- terial parameters that might be bridged by analysing data acquired from conventional tests. This research studied the raw bamboo strip and its natural forming from bending, by using sampling points and curvature reconstruction. The parametric models of bamboo strips were then constructed to represent its material behaviours for form prediction, material selection, and simulation in parametric design. It also serves as an assistive method for material selection when crafting with bamboo bend.
keywords Bamboo; bending; material computation; digital crafting
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2016_000
id ecaade2016_000
authors Herneoja, Aulikki; Toni O?sterlund and Piia Markkanen (eds.)
year 2016
title Complexity & Simplicity, Volume 1
doi https://doi.org/10.52842/conf.ecaade.2016.1
source Proceedings of the 34th International Conference on Education and Research in Computer Aided Architectural Design in Europe, Oulu, Finland, 24.-26. August 2016, 706 p.
summary The first volume of the conference proceedings of the 34th eCAADe conference, 24.-26. August 2016, at Oulu School of Architecture, University of Oulu, Oulu, Finland contains 81 papers grouped under 14 sub-themes. Both volumes contain altogether 157 accepted papers. The theme of the 34th eCAADe Conference is Complexity & Simplicity. We invited the eCAADe community to address the multifaceted notions of complexity and simplicity, which are encountered in architectural design processes. Approaches discussing the theme from the perspective of computer aided design education; design processes and methods; design tool developments; and novel design applications, as well as real world experiments and case studies were welcomed. What is the role of complexity or simplicity as part of the design process? Does the use of complex design methods offer simplicity to the design process itself? Is it possible to design complexity with simple methods? Does the use of computation in design necessitate complexity or offer means to control it? Recent development in digital technologies and digital design tools enable us to address complex situations in architectural environments, ranging in scale from structures and buildings to urban contexts. We often expect technology to better help us manage the complexity of life, to simplify our daily lives and tasks. However, these developments also raise the question of whether design technologies encourage complexity at the expense of simplicity in both the design process and lived environments. Does computation cause complexity? Or does it enable simplicity? In addition to the accepted papers, the first volume contains Keynote Papers, including keynote speakers contribution concerning the themes of their keynote lectures and the Workshop Contributions, including the papers summarizing the contents of workshops given.
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2016_001
id ecaade2016_001
authors Herneoja, Aulikki; Toni O?sterlund and Piia Markkanen (eds.)
year 2016
title Complexity & Simplicity, Volume 2
doi https://doi.org/10.52842/conf.ecaade.2016.2
source Proceedings of the 34th International Conference on Education and Research in Computer Aided Architectural Design in Europe, Oulu, Finland, 24.-26. August 2016, 688 p.
summary The second volume of the conference proceedings of the 34rd eCAADe conference, 24.-26. August 2016, at Oulu School of Architecture, University of Oulu, Oulu, Finland contains 76 papers grouped under 13 sub-themes. Both volumes contain altogether 157 accepted papers. The theme of the 34th eCAADe Conference is Complexity & Simplicity. We invited the eCAADe community to address the multifaceted notions of complexity and simplicity, which are encountered in architectural design processes. Approaches discussing the theme from the perspective of computer aided design education; design processes and methods; design tool developments; and novel design applications, as well as real world experiments and case studies were welcomed. What is the role of complexity or simplicity as part of the design process? Does the use of complex design methods offer simplicity to the design process itself? Is it possible to design complexity with simple methods? Does the use of computation in design necessitate complexity or offer means to control it? Recent development in digital technologies and digital design tools enable us to address complex situations in architectural environments, ranging in scale from structures and buildings to urban contexts. We often expect technology to better help us manage the complexity of life, to simplify our daily lives and tasks. However, these developments also raise the question of whether design technologies encourage complexity at the expense of simplicity in both the design process and lived environments. Does computation cause complexity? Or does it enable simplicity? In addition to the accepted papers, the first volume contains Keynote Papers, including keynote speakers contribution concerning the themes of their keynote lectures and the Workshop Contributions, including the papers summarizing the contents of workshops given.
series eCAADe
email
last changed 2022/06/07 07:49

_id caadria2016_579
id caadria2016_579
authors Tan, Rachel and Stylianos Dritsas
year 2016
title Clay Robotics: Tool making and sculpting of clay with a six-axis robot
doi https://doi.org/10.52842/conf.caadria.2016.579
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 579-588
summary The objective of the project is to design a reproducible clay sculpting process with an industrial robotic arm using parametric con- trol to directly translate mesh geometry from Computer Aided Design (CAD) environment into a lump of clay. This is accomplished through an algorithmic design process developed in Grasshopper using the C# programming language. The design process is enabled by our robotics modelling and simulation library which provides tools for kinematics modelling, motion planning, visual simulation and networked com- munication with the robotic system. Our process generates robot joint axis angle instructions through inverse kinematics which results into linear tool paths realised in physical space. Unlike common subtrac- tive processes such as Computer Numeric Control (CNC) milling where solid material is often pulverised during machining operations, our process employs a carving technique to remove material by dis- placement and deposition due to the soft and self-adhesive nature of the clay material. Optimisation of self-cleaning paths are implemented and integrated into the sculpting process to increase pathing efficiency and end product quality. This paper documents the process developed, the obstacles faced in motion planning of the robotic system and dis- cusses the potential for creative applications in digital fabrication us- ing advanced machines that in certain terms exceed human capability yet in others are unable to reach the quality of handmade works of art.
keywords Design computation; digital fabrication; architectural robotics
series CAADRIA
email
last changed 2022/06/07 07:56

_id ijac201614104
id ijac201614104
authors Wood, Dylan Marx; David Correa, Oliver David Krieg and Achim Menges
year 2016
title Material computation—4D timber construction: Towards building-scale hygroscopic actuated, self-constructing timber surfaces
source International Journal of Architectural Computing vol. 14 - no. 1, 49-62
summary The implementation of active and responsive materials in architecture and construction allows for the replacement of digitally controlled mechanisms with material-based systems that can be designed and programmed with the capacity to compute and execute a behavioral response. The programming of such systems with increasingly specific response requires a material-driven computational design and fabrication strategy. This research presents techniques and technologies for significantly upscaling hygroscopically actuated timber-based systems for use as self-constructing building surfaces. The timber’s integrated hygroscopic characteristics combined with computational design techniques and existing digital fabrication methods allow for a designed processing and reassembly of discrete wood elements into large-scale multi element bilayer surfaces. This material assembly methodology enables the design and control of the encoded direction and magnitude of humidity-actuated responsive curvature at an expanded scale. Design, simulation, and material assembly tests are presented together with formal and functional configurations that incorporate self-constructing and self-rigidizing surface strategies. The presented research and prototypes initiate a shift toward a large-scale, self-construction methodology.
keywords Hygroscopic, self-forming, computational design, autonomous actuation, wood structures
series journal
last changed 2016/06/13 08:34

_id acadia16_298
id acadia16_298
authors Yu, Lei; Huang, Yijiang; Zhongyuan, Liu; Xiao, Sai; Liu, Ligang; Song, Guoxian; Wang, Yanxin
year 2016
title Highly Informed Robotic 3D Printed Polygon Mesh: A Nobel Strategy of 3D Spatial Printing
doi https://doi.org/10.52842/conf.acadia.2016.298
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 298-307
summary Though robotic 3D printing technology is currently undergoing rapid development, most of the research and experiments are still based on a bottom up layering process. This paper addresses long term research into a robotic 3D printed polygon mesh whose struts are directly built up and joined together as rapidly generated physical wireframes. This paper presents a novel “multi-threaded” robotic extruder, as well as a technical strategy to create a “printable” polygon mesh that is collision-free during robotic operation. Compared to standard 3D printing, architectural applications demand much larger dimensions at human scale, geometrically lower resolution and faster production speed. Taking these features into consideration, 3D printed frameworks have huge potential in the building industry by combining robot arm technology together with FDM 3D printing technology. Currently, this methodology of rapid prototyping could potentially be applied on pre-fabricated building components, especially ones with uniform parabolic features. Owing to the mechanical features of the robot arm, the most crucial challenge of this research is the consistency of non-stop automated control. Here, an algorithm is employed not only to predict and solve problems, but also to optimize for a highly efficient construction process in coordination of the robotic 3D printing system. Since every stroke of the wireframe contains many parameters and calculations in order to reflect its native organization and structure, this robotic 3D printing process requires processing an intensive amount of data in the back stage.
keywords interdisciplinary design, craft in design computation, digital fabrication
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id ascaad2016_045
id ascaad2016_045
authors Dahadreh, Saleem; Rasha Alshami
year 2016
title The Four F's of Architecture - A conceptual framework for understanding architectural works
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 439-450
summary This paper presents a conceptual framework for understanding architectural works. This framework provides an understanding of an architectural building through qualitatively discerning the complexity of issues involved in its design and enabling their systematic integration into a theoretical construct. The premise behind this framework is that in design a better understanding of ‘what’ to design leads to a more informed base to ‘how’ to design. Using a grounded theory method, the paper postulates an ontological framework that recasts the Vitruvian triad of utilitas, venustas, and firmitas into spatial, intellectual, and structural forms respectively, and more importantly expands the triad to include context and architectural thinking as formative ideas, as integral components in any architectural work, thus closing a gap that existed in many frameworks dealing with architecture. The paper concluded that this framework offers a level of robust understanding of architecture that can be used in structuring the generation of architectural form as well as the description and analysis of existing works of architecture. Its value exceeds theory framing and extends towards architectural pedagogy as a theoretical framework in teaching design studio.
series ASCAAD
email
last changed 2017/05/25 13:33

_id acadia16_12
id acadia16_12
authors Gerber, David Jason; Pantazis, Evangelos
year 2016
title A Multi-Agent System for Facade Design: A design methodology for Design Exploration, Analysis and Simulated Robotic Fabrication
doi https://doi.org/10.52842/conf.acadia.2016.012
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 12-23
summary For contemporary design practices, there still remains a disconnect between design tools used for early stage design exploration and performance analysis, and those used for fabrication and construction of complex tectonic architectural systems. The research brings forward downstream fabrication constraints into the up-stream design exploration and design decision making. This paper addresses the issues of developing an integrated digital design work-flow and details a research framework for the incorporation of environmental performance into a robotic fabrication for early stage design exploration and generation of intricate and complex alternative façade designs. The method allows the user to import a design surface, define design parameters, set a number of environmental performance objectives, and then simulate and select a robotic construction strategy. Based on these inputs, design alternatives are generated and evaluated in terms of their performance criteria in consideration of their robotically simulated constructability. In order to validate the proposed framework, an experimental case study of office building façade designs that are generatively created from a multi-agent system for design methodology is design explored and evaluated. Initial results define a heuristic function for improving simulated robotic constructability and illustrate the functionality of our prototype. Project limitations and future research steps are then discussed.
keywords generative design, multi-objective design optimization, robotic fabrication, simulation, design performance, design decision making
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaade2018_p02
id ecaade2018_p02
authors Kepczynska-Walczak, Anetta and Martens, Bob
year 2018
title Digital Heritage - Special Panel Session
doi https://doi.org/10.52842/conf.ecaade.2018.1.039
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 39-44
summary According to eCAADe's mission, the exchange and collaboration within the area of computer aided architectural design education and research, while respecting the pedagogical approaches in the different schools and countries, can be regarded as a core activity. The current session follows up on the first Contextualised Digital Heritage Workshop (CDHW) held on the occasion of eCAADe 2016 in Oulu (D. di Mascio et.al.) This event was thought to represent the first of a series of future contextualized digital heritage workshops and hence, the name Oulu interchangeable with the name of any other city or place. The second CDHW took place in the framework of CAADRIA 2017 in Suzhou (D. di Mascio & M.A. Schnabel) and focussed on sharing and dissemination of heritage information and personal experiences, such as narratives.The primary objective for the 2018 digital heritage session is to engage participants in an active discussion, not the longer format presentation of prepared positions. The round table itself is limited to short opening statements so as to ensure time is allowed for viewpoints to be exchanged and for the conference attendees to join in on the issues discussed. The panel will review past practices with the potential for guiding future direction.
keywords Digital technology; Built heritage; Virtual archeology
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2016_477
id caadria2016_477
authors Ma, Y. P.; M. C. Lin and C. C. Hsu
year 2016
title Enhance Architectural Heritage Conservation Using BIM Technology
doi https://doi.org/10.52842/conf.caadria.2016.477
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 477-486
summary Common problems tend to surface during the restoration and maintenance of wooden structures for architectural heritage: (1) recording and communicating geometric and non-geometric infor- mation, (2) integrating and managing the multiple phases of construc- tion and (3) the structural damage that can be incurred during the dis- mantling process. This leads to less confidence in the quality of restoration and maintenance. This study considers the traditional wooden structures in Taiwan as a basis to discuss the issues faced dur- ing restoration and the gap in communication between designers and builders. Using new techniques, resources and the concept of BIM, a plugin is developed for guiding restoration. It serves as a BIM-based communication platform for designers and builders, enabling the real- time exchange of information to minimise any gaps that may exist be- tween the designers’ information and that of the builders. This allows information related to the restoration to be more accurate and offers the assurance that the traditional architecture retains its original struc- ture and value.
keywords Architectural heritage; conservation; digital achievement; BIM; wooden frameworks
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2016_517
id caadria2016_517
authors Shen, Yang Ting and Pei Wen Lu
year 2016
title Development of Kinetic Facade Units with BIM-Based Active Control System for the Adaptive Building Energy Performance Service
doi https://doi.org/10.52842/conf.caadria.2016.517
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 517-526
summary This paper proposes a novel concept and practice to engage the BIM model as a control system of building energy performance service. This issue can be divided into two sub-issues including the development of more eco-friendly fac?ade which can interact with its local environment, and the related active control system which can process the environmental parameters for eco-friendly actions. This research designs the Parametric Adaptive Skin System (PASS) to en- gage the adaption of natural sunlight use for higher building perfor- mance. PASS consists of kinetic fac?ade components dominated by the BIM-based parametric engine called Dynamo. The PASS prototype demonstrates that the workflows is successful in using a real light sen- sor plus simulated solar terms to drive the interaction of virtual Revit model and physical PASS model.
keywords Building information modelling (BIM); adaptive building; energy consumption; building performance; kinetic fac?ade
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2016_421
id sigradi2016_421
authors Tramontano, Marcelo; Landim, Gabriele; Digiandomenico, Dyego; Souza, Mayara Dias de
year 2016
title Jam, ou sobre pesquisa colaborativa em Arquitetura e Urbanismo [Jam, or about collaborative research in Architecture and Urbanism]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.902-906
summary Within the scope of JAM research project being developed at Nomads.usp (www.nomads.usp.br), in collaboration with research groups from two other Brazilian public universities, this article focuses on the issue of communication between participants of remote collaborative design processes mediated by digital technologies to design buildings with complex shapes. The aim is to contribute towards reflecting on the theme crowdthinking exploring, on the one hand, issues related to the structuring of research projects in Architecture on the subject, and, on the other hand, aspects of remote collaborative design processes.
keywords Parametric design; Digital fabrication; Architectural design; Collaborative processes; BIM
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2016_097
id ecaade2016_097
authors Turunen, Heidi
year 2016
title Additive Manufacturing and Value Creation - in Architectural Design, Design Process and End-products
doi https://doi.org/10.52842/conf.ecaade.2016.1.103
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 103-111
summary The objective of this paper is to clarify how value creation can be a part of architectural design and end-products when using the new emerging technology of additive manufacturing. Different kinds of values that have emerged from the research material have been analysed and summarised using selected case studies of recent building-scale projects. In applying this technique to architecture, the result can be visually and functionally novel, smarter and more sustainable buildings or products. A new individually manufactured or customised architecture can be created to serve different cultural and well-being needs cost effectively and without any waste. This new production method can lead to unique joint structures with the use of traditionally produced new or old building parts to enhance architecture, prevent climate change or aid environmental issues. However, most research projects and applications done by commercial companies are at the early stages.
wos WOS:000402063700012
keywords Large-scale additive manufacturing; 3D printed architecture; Digital design; New materials; New production methods
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2016_063
id ecaade2016_063
authors Al-Qattan, Emad, Galanter, Philip and Yan, Wei
year 2016
title Developing a Tangible User Interface for Parametric and BIM Applications Using Physical Computing Systems.
doi https://doi.org/10.52842/conf.ecaade.2016.2.621
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 621-630
summary This paper discusses the development of an interactive and a responsive Tangible User-Interface (TUI) for parametric and Building Information Modeling (BIM) applications. The prototypes presented in this paper utilizes physical computing systems to establish a flexible and intuitive method to engage digital design processes.The prototypes are hybrid UIs that consist of a digital modeling tool and an artifact. The artifact consists of a control system (sensors, actuators, and microcontrollers) and physical objects (architectural elements). The link between both environments associates physical objects with their digital design information to assist users in the digital design process. The integration of physical computing systems will enable the objects to physically respond to analog input and provide real-time feedback to users. The research aims to foster tangible computing methods to extend the capabilities of digital design tools. The prototypes demonstrate a method that allows architects to simultaneously interact with complex architectural systems digitally and physically.
wos WOS:000402064400063
keywords Physical Computing; Parametric Design; BIM; Tangible UI
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2016_450
id sigradi2016_450
authors Araujo, André L.; Celani, Gabriela
year 2016
title Exploring Weaire-Phelan through Cellular Automata: A proposal for a structural variance-producing engine
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.710-714
summary Complex forms and structures have always been highly valued in architecture, even much before the development of computers. Many architects and engineers have strived to develop structures that look very complex but at the same time are relatively simple to understand, calculate and build. A good example of this approach is the Beijing National Aquatics Centre design for the 2008 Olympic Games, also known as the Water Cube. This paper presents a proposal for a structural variance-producing engine using cellular automata (CA) techniques to produce complex structures based on Weaire-Phelan geometry. In other words, this research evaluates how generative and parametric design can be integrated with structural performance in order to enhance design flexibility and control in different stages of the design process. The method we propose was built in three groups of procedures: 1) we developed a method to generate several fits for the two Weaire-Phelan polyhedrons using CA computation techniques; 2) through the finite elements method, we codify the structural analysis outcomes to use them as inputs for the CA algorithm; 3) evaluation: we propose a framework to compare how the final outcomes deviate for the good solutions in terms of structural performance and rationalization of components. We are interested in knowing how the combination of the procedures could contribute to produce complex structures that are at the same time certain rational. The system developed allows the structural analysis of structured automatically generated by a generative system. However, some efficient solutions from the structural performance point of view do not necessarily represent a rational solution from the feasibility aspects.
keywords Structural design; Complex structures; Bottom-up design approach
series SIGRADI
email
last changed 2021/03/28 19:58

_id ijac201614207
id ijac201614207
authors Chaszar, Andre and Sam Conrad Joyce
year 2016
title Generating freedom: Questions of flexibility in digital design and architectural computation
source International Journal of Architectural Computing vol. 14 - no. 2, 167-181
summary Generative processes and generative design approaches are topics of continuing interest and debate within the realms of architectural design and related fields. While they are often held up as giving designers the opportunity (the freedom) to explore far greater numbers of options/alternatives than would otherwise be possible, questions also arise regarding the limitations of such approaches on the design spaces explored, in comparison with more conventional, human-centric design processes. This article addresses the controversy with a specific focus on parametric-associative modelling and genetic programming methods of generative design. These represent two established contenders within the pool of procedural design approaches gaining increasingly wide acceptance in architectural computational research, education and practice. The two methods are compared and contrasted to highlight important differences in freedoms and limitations they afford, with respect to each other and to ‘manual’ design. We conclude that these methods may be combined with an appropriate balance of automation and human intervention to obtain ‘optimal’ design freedom, and we suggest steps towards finding that balance.
keywords Design space exploration, parametric-associative modelling, genetic programming, mixed-initiative methods
series journal
last changed 2016/06/13 08:34

_id acadia16_440
id acadia16_440
authors Clifford, Brandon
year 2016
title The McKnelly Megalith: A Method of Organic Modeling Feedback
doi https://doi.org/10.52842/conf.acadia.2016.440
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 440-449
summary Megalithic civilizations held tremendous knowledge surrounding the deceivingly simple task of moving heavy objects. Much of this knowledge has been lost to us from the past. This paper mines, extracts, and experiments with this knowledge to test what applications and resonance it holds with contemporary digital practice. As an experiment, a sixteen-foot tall megalith is designed, computed, and constructed to walk horizontally and stand vertically with little effort. Testing this prototype raises many questions about the relationship between form and physics. In addition, it projects practical application of such reciprocity between architectural desires and the computation of an object’s center of mass. This research contributes to ongoing efforts around the integration of physics-based solvers into the design process. It goes beyond the assumption of statics as a solution in order to ask questions about what potentials mass can contribute to the assembly and erecting of architectures to come. It engages a megalithic way of thinking which requires an intimate relationship between designer and center of mass. In doing so, it questions conventional disciplinary notions of stasis and efficiency.
keywords rapid prototyping, design simulation, fabrication, computation, megalith
series ACADIA
type normal paper
email
more admin
last changed 2022/06/07 07:56

_id acadia16_488
id acadia16_488
authors Derme, Tiziano; Mitterberger, Daniela; Di Tanna, Umberto
year 2016
title Growth Based Fabrication Techniques for Bacterial Cellulose: Three-Dimensional Grown Membranes and Scaffolding Design for Biological Polymers
doi https://doi.org/10.52842/conf.acadia.2016.488
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 488-495
summary Self-assembling manufacturing for natural polymers is still in its infancy, despite the urgent need for alternatives to fuel-based products. Non-fuel based products, specifically bio-polymers, possess exceptional mechanical properties and biodegradability. Bacterial cellulose has proven to be a remarkably versatile bio-polymer, gaining attention in a wide variety of applied scientific applications such as electronics, biomedical devices, and tissue-engineering. In order to introduce bacterial cellulose as a building material, it is important to develop bio-fabrication methodologies linked to material-informed computational modeling and material science. This paper emphasizes the development of three-dimensionally grown bacterial cellulose (BC) membranes for large-scale applications, and introduces new manufacturing technologies that combine the fields of bio-materials science, digital fabrication, and material-informed computational modeling. This paper demonstrates a novel method for bacterial cellulose bio-synthesis as well as in-situ self-assembly fabrication and scaffolding techniques that are able to control three-dimensional shapes and material behavior of BC. Furthermore, it clarifies the factors affecting the bio-synthetic pathway of bacterial cellulose—such as bacteria, environmental conditions, nutrients, and growth medium—by altering the mechanical properties, tensile strength, and thickness of bacterial cellulose. The transformation of the bio-synthesis of bacterial cellulose into BC-based bio-composite leads to the creation of new materials with additional functionality and properties. Potential applications range from small architectural components to large structures, thus linking formation and materialization, and achieving a material with specified ranges and gradient conditions, such as hydrophobic or hydrophilic capacity, graded mechanical properties over time, material responsiveness, and biodegradability.
keywords programmable materials, material agency, biomimetics and biological design
series ACADIA
type paper
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_808908 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002