CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 315

_id ecaade2016_055
id ecaade2016_055
authors Baranovskaya, Yuliya, Prado, Marshall, Dörstelmann, Moritz and Menges, Achim
year 2016
title Knitflatable Architecture - Pneumatically Activated Preprogrammed Knitted Textiles
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 571-580
doi https://doi.org/10.52842/conf.ecaade.2016.1.571
wos WOS:000402063700062
summary Textiles are widely used in architecture for tensile structures, as they are lightweight and can easily span large distances. These structures typically require an external framework for a support. Inflatable structures are self-supporting but are limited to relatively simple forms or require complex and predetermined cut patterns. The development of an adaptive and programmable textile system with an integrative method for pneumatic activation would create a novel self-supporting structure with high degree of design and architectural potential. This creates a highly integrative hybrid system where the generic pneumatic membranes are constrained by the differentiated knitted textile skin that is stretched in several directions under air pressure. This allows for an innovative, lightweight, easily transportable design, where the preprogrammed knitting pattern defines the structure, geometry and formation, activated under pneumatic pressure.
keywords programming textiles; binary textiles; analogue computing; air inflation; grading textile properties
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia16_254
id acadia16_254
authors Sharmin, Shahida; Ahlquist, Sean
year 2016
title Knit Architecture: Exploration of Hybrid Textile Composites Through the Activation of Integrated Material Behavior
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 254-259
doi https://doi.org/10.52842/conf.acadia.2016.254
summary The hybrid system in textile composites refers to the structural logic defined by Heino Engel, which describes a system that integrates multiple structural behaviors to achieve an equilibrium state (Engel 2007). This research explores a material system that can demonstrate a hybrid material behavior defined by the differentiated tensile and bending-active forces in a single, seamless knitted composite material. These behaviors were installed during the materialization phase and activated during the composite formation process. Here, the material formation involves two interdependent processes: 1) development of the knitted textile with integrated tensile and reinforced materials and 2) development of the composite by applying pre-stress and vacuuming the localized area with reinforcements in a consistent resin-based matrix. The flat bed industrial weft knitting machine has been utilized to develop the knitted textile component of the system with a controlled knit structure. This enables us to control the material types, densities, and cross sections with integrated multiple layers/ribs and thus, the performance of the textile at the scale of fiber structure. Both of these aspects were researched in parallel, using physical and computational methods informed and shaped by the potentials and constraints of each other. A series of studies has been utilized to develop small-scale prototypes that depict the potential of the hybrid textile composite as the generator of complex form and bending active structures. Ultimately, it indicates the possibilities of hybrid textile composite materials as self-structuring lightweight components that can perform as highly articulated and differentiated seamless architectural elements that are capable of transforming the perception of light, space, and touch.
keywords form-finding, programmable materials, composite forming processes, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2016_425
id caadria2016_425
authors Sjarifudin, Firza Utama
year 2016
title Adaptive Decorative Building Skin
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 425-434
doi https://doi.org/10.52842/conf.caadria.2016.425
summary Traditional decorative ornaments were commonly used on the building skin of traditional architecture. Nowadays in urban areas, those ornaments become less popular for they are considered old- fashioned and due to the lack of technical function that matches with the modern building designs. Based on those issue, this paper pro- posed a type of building skin that aimed to revive a new expression of traditional decorative elements by applying digital design tools and technology as well as having an adaptive function. Traditional decora- tive ornaments merged in an adaptive skin that used traditional pat- terns as a controller of the effect of environmental changes in a build- ing could provide a new expression of the use of traditional ornaments on a building in accordance with the times. Most of the adaptive building skin used kinetic techniques in order to make its formation and pattern transformable. This paper proposed a parametric-cam mechanism to transform the pattern of traditional ornament using pre- programmed analysis data of environmental changes to parametrically drive the number of rotation phase and length of nose that generated the shape of the cams. In conclusion, this paper has developed a proto- typical tool that facilitates the new approach to kinetic decorative or- naments on building skin.
keywords Decorative ornaments; adaptive building skin; camshaft mechanism; kinetic building; building technology
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia16_280
id acadia16_280
authors Thomsen, Mette Ramsgaard; Tamke, Martin; Karmon, Ayelet; Underwood, Jenny; Gengnagel, Christoph; Stranghoner, Natalie; Uhlemann, Jorg
year 2016
title Knit as bespoke material practice for architecture
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 280-289
doi https://doi.org/10.52842/conf.acadia.2016.280
summary This paper presents an inquiry into how to inform material systems that allow for a high degree of variation and gradation of their material composition. Presenting knit as a particular system of material fabrication, we discuss how new practices that integrate material design into the architectural design chain present new opportunities and challenges for how we understand and create cycles of design, analysis, specification and fabrication. By tracing current interdisciplinary efforts to establish simulation methods for knitted textiles, our aim is to question how these efforts can be understood and extended in the context of knitted architectural textiles. The paper draws on a number of projects that prototype methods for using simulation and sensing as grounds for informing the design of complex, heterogeneous and performative materials. It asks how these methods can allow feedback in the design chain and be interfaced with highly craft-based methods of fabrication.
keywords cross disciplinary collaboration, knitting, light weight simulation, idesign integrated fe simulation, interfacing, sensing, bespoke material fabrication
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ijac201614105
id ijac201614105
authors Ahlquist, Sean
year 2016
title Sensory material architectures: Concepts and methodologies for spatial tectonics and tactile responsivity in knitted textile hybrid structures
source International Journal of Architectural Computing vol. 14 - no. 1, 63-82
summary As the knowledge of material computation advances, continuing the seamless integration of design and fabrication, questions beyond materialization can be addressed with a focus on sensing, feedback, and engagement as critical factors of design exploration. This article will discuss a series of prototypes, design methodologies, and technologies that articulate a textile’s micro-architecture, at the scale of fibers and stitches, to instrumentalize simultaneous structural, spatial, and sensory-responsive qualities. The progression of research displays an ever-deepening instrumentalization of fiber structure and its implications to form definition and responsivity, in creating form- and bending-active structures. The research results in a more refined definition of material behavior as the innate phenomena which emerge at the moment of textile fabrication. Ultimately, the architecture, in its materiality and physical, visual, and auditory responsivity, is designed to address specific challenges for children in filtering multiple sensory inputs, an underlying factor of autism spectrum disorder.
keywords CNC Knitting, Form-active, Bending-active, Textile hybrid, Mutli-sensory
series journal
last changed 2016/06/13 08:34

_id ascaad2016_032
id ascaad2016_032
authors Alhadidi, Suleiman; Justin Mclean, Luchlan Sharah, Isabel Chia, Roger Sam
year 2016
title Multiflight - Creating Interactive Stairs through Positive Technology
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 295-308
summary This paper details a pedagogical project which calls for an improved design performance of the existing built environment through the use of smart technology and data-driven design. The project is an investigation into ways in which to improve the performance of a ‘pre-selected university building’ through the use of a media facade that allows for interactive experiences. Existing problems of the selected building have been identified through observation and research using a rich picture and agile approach. An underutilised staircase was selected as the focus site for a series of computational design and interactive design studies. The brief of this mini-research project aims to encourage more people to use the stairs and create a memorable experience with a technological approach through the application of a site specific interactive media installation. The project is an interactive staircase which utilises LED strips and generative sound. The project features a series of light boxes which are connected to the existing staircase balustrade. Arduino, passive infra-red sensors, and other motion detection sensors were used to allow for light and generative sound interaction with users using visual scripting tools and a generative design platform. Sensing technology was used as a real-time data-gathering device during the site analysis phase as well as an input device for the designed prototype to allow the testing of the data-driven design. This paper details the study and resultant interactive prototypes. It also discusses the exploration of performance based design ideas into design workflows and the integration of sensing tools into the design process. It concludes by identifying possible implications on using the Internet of Things concepts to facilitate the design of interactive architecture.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ecaade2017_280
id ecaade2017_280
authors Baldissara, Matteo, Perna, Valerio, Saggio, Antonino and Stancato, Gabriele
year 2017
title Plug-In Design - Reactivating the Cities with responsive Micro-Architectures. The Reciprocal Experience
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 571-580
doi https://doi.org/10.52842/conf.ecaade.2017.2.571
summary Every city has under utilized spaces that create a series of serious negative effects. Waiting for major interventions, those spaces can be reactivated and revitalized with soft temporary projects: micro interventions that light up the attention, give new meaning and add a new reading to abandoned spaces. We can call this kind of operations "plug-in design", inheriting the term from computer architecture: interventions which aim to involve the citizens and activate the environment, engage multiple catalyst processes and civil actions. Plug-in design interventions are by all meanings experimental, they seek for interaction with the users, locally and globally. Information Technology - with its parametric and site-specific capabilities and interactive features - can be instrumental to create such designs and generate a new consciousness of the existing environment. With this paper we will illustrate how two low-budget interventions have re-activated a forgotten public space. Parametric design with a specific script allowing site-specific design, materials and structure optimization and a series of interactive features, will be presented through Reciprocal 1.0 and Reciprocal 2.0 projects which have been built in 2016 in Italy by the nITro group.
keywords reciprocal frame; parametric design; responsive technology; plug-in design; interactivity; re-activate
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_819
id caadria2016_819
authors Foulcher, Nicholas C.; Hedda H. Askland and Ning Gu
year 2016
title Disruptions: Impact of Digital Design Technologies on Continuity in Established Design Process Paradigms
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 819-828
doi https://doi.org/10.52842/conf.caadria.2016.819
summary This paper aims to provide a critical understanding of the discipline of architectural education, exploring how digital technology forms part of two Australian architecture schools. Generally accepted as the unbroken and consistent existence or operation of something over a period of time, continuity represents stability without interrup- tion. In the context of architectural design education, continuity aligns almost symbiotically with the design process; a system that facilitates a continuous loop of input, output and feedback for the designer— from defining the brief, collecting information, synthesising and pre- senting a design proposal. Preliminary findings of a larger research study that investigates the role of technology in architecture educa- tion, suggest that cultural patterns of technology adoption and valua- tion exist, valorising particular tools and establishing a framework for design teaching and practice that might disrupt the continuity of stu- dents’ design process. Moreover, the study shows evidence of a dis- ruption of continuity in design school narratives, emphasising the need to rethink design pedagogy and the place of technology herein. Reflecting on these observations, this paper explores the question: when the tools of digital technology challenge the established design process paradigm of an architectural school, how do educators re- spond to such a disruption in continuity?
keywords Digital design technology: student learning; course delivery; perception; phenomenology
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2019_626
id caadria2019_626
authors Hahm, Soomeen, Maciel, Abel, Sumitiomo, Eri and Lopez Rodriguez, Alvaro
year 2019
title FlowMorph - Exploring the human-material interaction in digitally augmented craftsmanship
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 553-562
doi https://doi.org/10.52842/conf.caadria.2019.1.553
summary It has been proposed that, after the internet age, we are now entering a new era of the '/Augmented Age/' (King, 2016). Physician Michio Kaku imagined the future of architects will be relying heavily on Augmented Reality technology (Kaku, 2015). Augmented reality technology is not a new technology and has been evolving rapidly. In the last three years, the technology has been applied in mainstream consumer devices (Coppens, 2017). This opened up possibilities in every aspect of our daily lives and it is expected that this will have a great impact on every field of consumer's technology in near future, including design and fabrication. What is the future of design and making? What kind of new digital fabrication paradigm will emerge from inevitable technological development? What kind of impact will this have on the built environment and industry? FlowMorph is a research project developed in the Bartlett School of Architecture, B-Pro AD with the collaboration of the authors and students as a 12 month MArch programme, we developed a unique design project trying to answer these questions which will be introduced in this paper.
keywords Augmented Reality, Mixed Reality, Virtual Reality, Design Augmentation, Digital Fabrication, Cognition models, Conceptual Designing, Design Process, Design by Making, Generative Design, Computational Design, Human-Machine Collaboration, Human-Computer Collaboration, Human intuition in digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:51

_id sigradi2016_544
id sigradi2016_544
authors Hernández, Silvia Patricia; Lanzone, Luciana; Landerberg, Raquel; Ruiz, José Manuel; Rezk, Alejandra; Viecens, Martin
year 2016
title Consideración de la interacción de tipologías de microarquitectura inmótica con las preexistencias ambientales y con el espacio [Consideration of the interaction of inmotics microarchitecture tipologies with the environment preexisting conditions and with the space]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.776-781
summary We work in the technics and design advantages that are happening in the world, and in Argentina, around microarchitecture, applying these in concrete useful design proposals for urban spaces called intersticiales. Starting from pre-existings conditions of the place, it relation between the landscape, the sounds, and the climate to answer to them with the design. The proposal will be articulated and organized according to the plans and rules from the city of Córdoba. These typologies are designs of inmotic microarchitecture, in this case a health station , just in the entry of the Sarmiento park, a big gym without ceiling.
keywords Urban micro-architecture; Pre existing environmental; Sustainability
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_144
id ecaade2017_144
authors Lange, Christian J.
year 2017
title Elements | robotic interventions II
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 671-678
doi https://doi.org/10.52842/conf.ecaade.2017.1.671
summary Reviewing the current research trends in robotic fabrication around the world, the trajectory promises new opportunities for innovation in Architecture and the possible redefinition of the role of the Architect in the industry itself. New entrepreneurial, innovative start-ups are popping up everywhere challenging the traditional model of the architect. However, it also poses new questions and challenges in the education of the architect today. What are the appropriate pedagogical methods to instill enthusiasm for new technologies, materials, and craft? How do we avoid the pure application of pre-set tools, such as the use of the laser cutter has become, which in many schools around the world has caused problems rather than solving problems? How do we teach students to invent their tools especially in a society that doesn't have a strong background in the making? The primary focus of this paper is on how architectural CAAD/ CAM education through the use of robotic fabrication can enhance student's understanding, passion and knowledge of materiality, technology, and craftsmanship. The paper is based on the pedagogical set-up and method of an M. Arch I studio that was taught by the author in fall 2016 with the focus on robotic fabrication, materiality, traditional timber construction systems, tool design and digital and physical craftsmanship.
keywords CAAD Education, Digital Technology, Craftsmanship, Material Studies, Tool Design, Parametric Modeling, Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2016_363
id caadria2016_363
authors Lee, Alexander; Suleiman Alhadidi and M. Hank Haeusler
year 2016
title Developing a Workflow for Daylight Simulation
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 363-372
doi https://doi.org/10.52842/conf.caadria.2016.363
summary Daylight simulations are occasionally used as active tools in regards to local governing regulations, which are necessary for providing documentation. Simulation tools have been avoided in the past due to their barriers. Daylight simulation tools are used within documentation design stages as ‘passive tools’, however they do not have a direct impact on the architecture design decisions, as passive tools are used by engineers usually to derive material and glass speci- fications. Recent developments within an online community have pro- vided designers with access to daylight simulation tools within a de- sign platform accessible data can be modified and represented with local governing codes to provide designers with relevant information. The paper aimed to develop an active daylight simulation tool within a design platform. Data is filtered with the Green Star benchmarks to export visual information as well as a voxel matrix instead of 2D lu- minance maps. This paper outlines a workflow of the simulation tool used to evaluate daylight performance of a selected building as a case study in real time. The paper also details potential problems and justi- fied suggestions derived from the analysis for the building to reach the requirements within the Green Star Multi Unit Residential.
keywords Data-driven design; computation environmental design; daylight simulation; Green Star
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2016_333
id caadria2016_333
authors Schubert, Gerhard; Benjamin Strobel and Frank Petzold
year 2016
title Tangible Mixed Realty: Interactive Augmented Visualisation of Digital Simulation in Physical Working Models
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 333-342
doi https://doi.org/10.52842/conf.caadria.2016.333
summary The implications of architectural design decisions are in many cases hard to predict and envisage. As architectural tasks grow more complex and the design of architecture shifts away from the de- sign of end products towards the steering of dynamic processes, new ways of coping with complexity in the design and planning process are needed. Taking this as its starting point, as well as the need for ar- chitects to use familiar, established design tools, the CDP research group is working on new ways of supporting the design decision- making process with objective information so that designers are better able to manage these complexities. The focus of the group lies on di- rectly coupling interactive simulations and analyses with established design tools. This paper discusses a central problem in this context: how to present complex calculation results directly within a physical 3D-model. The approach described, as evidenced by the realized pro- totype, shows clearly that directly coupling real and digital infor- mation using interactive augmented visualization presents immense possibilities for managing the complexity of planning processes.
keywords Design support, simulations, computational design, urban planning, augmented reality
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia16_214
id acadia16_214
authors Schwartz, Mathew
year 2016
title Use of a Low-Cost Humanoid for Tiling as a Study in On-Site Fabrication: Techniques and Methods
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 214-223
doi https://doi.org/10.52842/conf.acadia.2016.214
summary Since the time architecture and construction began embracing robotics, the pre-fab movement has grown rapidly. As the possibilities for new design and fabrication emerge from creativity and need, the application and use of new robotic technologies becomes vital. This movement has been largely focused on the deployment of industrial-type robots used in the (automobile) manufacturing industry for decades, as well as trying to apply these technologies into off-site building construction. Beyond the pre-fab (off-site) conditions, on-site fabrication offers a valuable next step to implement new construction methods and reduce human work-related injuries. The main challenge in introducing on-site robotic fabrication/construction is the difficulty in calibrating robot navigation (localization) in an unstructured and constantly changing environment. Additionally, advances in robotic technology, similar to the revolution of at-home 3D printing, shift the ownership of modes of production from large industrial entities to individuals, allowing for greater levels of design and construction customization. This paper demonstrates a low-cost humanoid robot as highly customizable technology for floor tiling. A novel end-effector design to pick up tiles was developed, along with a localization system that can be applied to a wide variety of robots.
keywords humanoid robot, digital fabricaiton, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2016_445
id caadria2016_445
authors Silvestre, Joaquim; Franc?ois Gue?na and Yasushi Ikeda
year 2016
title Edition-Oriented 3D Model Rebuilt from Photography
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 445-454
doi https://doi.org/10.52842/conf.caadria.2016.445
summary The topic of this paper is about a technique to turn pictures into an intuitively modifiable 3D model. The research employs an analytical method using algorithms to conceptualise and digital- ise architectural spaces in order to highlight parametric shapes. Usual- ly, from one group of digital photos, photogrammetry techniques pro- duce a 3D-model mesh through a high-density 3D point cloud. This discordance between our intuitive partitioning of the mesh and its bare polygonal structure makes it interact poorly compared to the af- fordance of shape and component in our daily experience. Through a capture device, a visualisation of architecture in a digital data form is produced. They are processed by computer vision algorithms and ma- chine learning systems in order to be refined into a parametric model. Parametric elements can be described as a compound of formulas and parameters. By keeping the formula and changing the parameters, the- se elements can be easily modified in a range of likenesses. After be- ing detected during scans, these shapes can be adapted to fit the inten- tion of the designer during the design phase.
keywords Photogrammetry; convolutional neural network; 3D model; design tool
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia16_326
id acadia16_326
authors Wit, Andrew; Ng, Rashida; Zhang, Cheng; Kim Simon
year 2016
title Composite Systems for Lightweight Architectures: Case studies in large-scale CFRP winding
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 326-331
doi https://doi.org/10.52842/conf.acadia.2016.326
summary The introduction of lightweight Carbon Fiber Reinforced Polymer (CFRP) based systems into the discipline of architecture and design has created new opportunities for form, fabrication methodologies and material efficiencies that were previously difficult if not impossible to achieve through the utilization of traditional standardized building materials. No longer constrained by predefined material shapes, nominal dimensions, and conventional construction techniques, individual building components or entire structures can now be fabricated from a single continuous material through a means that best accomplishes the desired formal and structural objectives while creating minimal amounts of construction waste and disposable formwork. This paper investigates the design, fabrication and structural potentials of wound, pre-impregnated CFRP composites in architectural-scale applications through the lens of numeric and craft based composite winding implemented in two unique research projects (rolyPOLY + Cloud Magnet). Fitting into the larger research agenda for the CFRP-based robotic housing prototype currently underway in the “One Day House” initiative, these two projects also function as a proof of concept for CFRP monocoque and gridshell based structural systems. Through a rigorous investigation of these case studies, this paper strives to answer several questions about the integration of pre-impregnated CFRP in future full-scale interventions: What form-finding methodologies lend themselves to working with CFRP? What are the advantages and disadvantages of working with pre-impregnated CFRP tow in large-scale applications? What are efficient methods for the placement of CFRP fiber on-site? As well as how scalable is CFRP?
keywords form finding, winding, cfrp, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id ijac201614206
id ijac201614206
authors Yanagawa, Kane
year 2016
title ReIndustrializing Architecture
source International Journal of Architectural Computing vol. 14 - no. 2, 158-166
summary After decades of improving the efficiency and economy of our existing building ecology, instruments of the Third Industrial Revolution are redefining the practice of architecture, both internally and externally. This article focuses on the employment of the Constrained Design Hysteresis methodology as a mediating strategy, in which computational tools for content creation and fabrication can merge in post-industrial societies to effectively reindustrialize the fields of architectural design manufacturing and building. Such reformation of the accepted norms of architectural building practice do not represent a regression of the profession to a pre-industrial mode of building craftsmanship, but an evolution into one that directly addresses various shortcomings of global industrialization, ranging from restrictions imposed by mass production to the creation of social class disparity. In this context, the application of computational tools and processes can both empower and liberate design individuals through the restructuring of the existing industrial manufacturing ecosystems.
keywords Digital fabrication, design automation, third industrial revolution, constrained design hysteresis, social reform
series journal
last changed 2016/06/13 08:34

_id acadia16_298
id acadia16_298
authors Yu, Lei; Huang, Yijiang; Zhongyuan, Liu; Xiao, Sai; Liu, Ligang; Song, Guoxian; Wang, Yanxin
year 2016
title Highly Informed Robotic 3D Printed Polygon Mesh: A Nobel Strategy of 3D Spatial Printing
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 298-307
doi https://doi.org/10.52842/conf.acadia.2016.298
summary Though robotic 3D printing technology is currently undergoing rapid development, most of the research and experiments are still based on a bottom up layering process. This paper addresses long term research into a robotic 3D printed polygon mesh whose struts are directly built up and joined together as rapidly generated physical wireframes. This paper presents a novel “multi-threaded” robotic extruder, as well as a technical strategy to create a “printable” polygon mesh that is collision-free during robotic operation. Compared to standard 3D printing, architectural applications demand much larger dimensions at human scale, geometrically lower resolution and faster production speed. Taking these features into consideration, 3D printed frameworks have huge potential in the building industry by combining robot arm technology together with FDM 3D printing technology. Currently, this methodology of rapid prototyping could potentially be applied on pre-fabricated building components, especially ones with uniform parabolic features. Owing to the mechanical features of the robot arm, the most crucial challenge of this research is the consistency of non-stop automated control. Here, an algorithm is employed not only to predict and solve problems, but also to optimize for a highly efficient construction process in coordination of the robotic 3D printing system. Since every stroke of the wireframe contains many parameters and calculations in order to reflect its native organization and structure, this robotic 3D printing process requires processing an intensive amount of data in the back stage.
keywords interdisciplinary design, craft in design computation, digital fabrication
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id caadria2016_777
id caadria2016_777
authors Aditra, Rakhmat F. and Andry Widyowijatnoko
year 2016
title Combination of mass customisation and conventional construction: A case study of geodesic bamboo dome
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 777-786
doi https://doi.org/10.52842/conf.caadria.2016.777
summary With the development of advance fabrication, several digi- tal fabrication approaches have been developed. These approaches en- able better form exploration than the conventional manufacturing pro- cess. But, the built examples mostly rely on advance machinery which was not familiar or available in developed country where construction workers are still abundant. Meanwhile, much knowledge gathers in the field practice. This research is aimed to explore an alternative con- struction workflow and method with the combination of mass custom- ization and conventional construction method and to propose the structure system that emphasized this alternative workflow and meth- od. Lattice structure was proposed. The conventional construction method was used in the struts production and mass customization method, laser cutting, and was used for connection production. The algorithmic process was used mainly for data mining, details design, and component production. The backtracking was needed to be pre- dicted and addressed previously. Considerations that will be needed to be tested by further example are on the transition from the digital pro- cess to the manual process. Next research could be for analysing the other engineering aspect for this prototype and suggesting other struc- tural system with more optimal combination of conventional construc- tion and mass customization.
keywords Mass customisation; algorithmic design; digital fabrication; geodesic dome; lattice structure
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2016_745
id caadria2016_745
authors Suzuki E., Seiichi
year 2016
title Extruded Architectures: Grading weight-to-strength ratio of cement based materials through extrusion techniques
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 745-754
doi https://doi.org/10.52842/conf.caadria.2016.745
summary In recent years, a growing research agenda on the subject of additive manufacturing for architectural design has been established on the basis of jetting and extrusion technology. While jetting pro- vides enough flexibility to print multiple digital materials in a single run, extrusion has proven to be the most viable technique for large- scale and on-site manufacturing. Because major contributions of both research lines cannot be combined due to technological differences, special attention has been devoted towards the development of print- ing strategies that could approximate similar material flexibility of jet- ting by means of extrusion techniques. In this context, this paper pre- sents a computational design methodology for architectural components that enables grading weight-strength ratio of cement based materials through extrusion. Built upon the integration of mod- elling, analysis and fabrication, such methodology allows to optimize material distribution and geometric definition on the basis of physical and fabrication constraints. A case study is presented for describing the design processes of a circular column and the fabrication of a sec- tion it.
keywords Additive manufacturing; cement based materials; computational design
series CAADRIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 15HOMELOGIN (you are user _anon_856998 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002