CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 617

_id ascaad2022_033
id ascaad2022_033
authors Rohani, Nima; Kim, Ikhwan
year 2022
title Urban Design Analysis of New York City's Virtual Model: The Case of Tom Clancy's The Division
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 188-201
summary People have started spending time with digital tools and virtual worlds to escape reality's horrors. However, designed spaces are more than the players' needs, especially those digital games that their stories involve urban environments. This inefficiency causes spending futile efforts both in time and cost for the digital games' productions; The urban environments in these digital games are replicas of real-world cities. Some companies use some techniques for downgrading replicas. Therefore, this study aims to uncover the used techniques for designing Tom Clancy's The Division (2016). By using reverse engineering methodology and qualitative comparative analysis, the in-game map compared with the real-world map. Based on the results, the used techniques allowed the designers to scale down the game environment to be 2.5 times smaller than the actual city. Rather, verisimilitude is achieved by combining sufficiently accurate elements to give the impression of complete accuracy. By implementing the results of this research, designers can develop smaller replicas to be perceived as more extensive.
series ASCAAD
email
last changed 2024/02/16 13:24

_id ecaade2016_033
id ecaade2016_033
authors Dokonal, Wolfgang, Knight, Michael and Dengg, Ernst
year 2016
title VR or Not VR - No Longer a Question?
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 573-579
doi https://doi.org/10.52842/conf.ecaade.2016.2.573
wos WOS:000402064400058
summary Virtual Reality (VR) software has developed to the point where, for the architect who is averagely technically adept, it can be incorporated into the design process with reasonable effort and costs. For VR to be an effective design tool, it must add value to the design process and should give insights and opportunities not available by other methods.Previous research by the authors reported on the results of an international student workshop which focused both on the workflow (to prepare the architectural models for the new VR systems) and the spatial perception that users experienced. In this paper, we continue to explore the question: "Can low cost VR be an effective addition to the architects' design toolbox, or does it still remain a "far-fetched, high-tech expensive folly?"To do this we are working with a larger group of students, a more developed workflow and we are also expanding this to architects in practice. We will be assessing both the practicality of integrating VR into the design workflow and the spatial perception of the designer when interacting with the model. We are experimenting with additional interface tools.
keywords Virtual Reality; Google Cardboard; Low Cost Interfaces
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2016_777
id sigradi2016_777
authors Dokonal, Wolfgang; Knight, Mike; Dengg, Ernst
year 2016
title VR or not VR – an eeZee question?
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.831-837
summary Virtual Reality (VR) software has developed to the point where, for the architect who is averagely technically adept, it can be incorporated into the design process with reasonable effort and costs. For VR to be an effective design tool, it must add value to the design process and should give insights and opportunities not available by other methods. Previous research by the authors reported on the results of an international student workshop, which focused on both the workflow, and the spatial perception that users experienced. In this paper, we continue to explore the question: “Can low cost VR be an effective addition to the architects’ design toolbox, or does it still remain a “far-fetched, high-tech expensive folly?” We will be assessing both the practicality of integrating VR into the design workflow and the spatial perception of the designer when interacting with the model. We are experimenting with additional interface tools for the new low cost Head Mounted Displays.
keywords Virtual reality; Google Cardboard; Low cost interface; Oculus Rift
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_239
id caadria2016_239
authors Prohasky, Daniel J.; Rafael Moya Castro, Simon Watkins and Jane Burry
year 2016
title Design Driven Physical Experimentation: A flexible wind sensing platform for architects
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 239-248
doi https://doi.org/10.52842/conf.caadria.2016.239
summary Architectural design in this ‘digital age’ is becoming more embedded within virtual computer aided design environments. This study expands this virtual design environment back into physical realms through the use of microelectronic wind sensing technology. An interactive and flexible wind sensing system (open source minia- ture portable wind tunnel and wind sensors) was evaluated for its abil- ity to simulate and measure the effects of wind. Physical models of four high-rise buildings were constructed to evaluate ground level pe- destrian comfort resulting from the degree of torsional twist in the building form. The model investigation formed a case study for evalu- ating of the low-cost miniature portable wind tunnel and microelec- tronic wind sensing system for comparison with an industrial aeronau- tical wind tunnel and high precision wind sensors.
keywords Architectural wind tunnel; microelectronic wind sensing; twisted building; wind visualisation
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia16_214
id acadia16_214
authors Schwartz, Mathew
year 2016
title Use of a Low-Cost Humanoid for Tiling as a Study in On-Site Fabrication: Techniques and Methods
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 214-223
doi https://doi.org/10.52842/conf.acadia.2016.214
summary Since the time architecture and construction began embracing robotics, the pre-fab movement has grown rapidly. As the possibilities for new design and fabrication emerge from creativity and need, the application and use of new robotic technologies becomes vital. This movement has been largely focused on the deployment of industrial-type robots used in the (automobile) manufacturing industry for decades, as well as trying to apply these technologies into off-site building construction. Beyond the pre-fab (off-site) conditions, on-site fabrication offers a valuable next step to implement new construction methods and reduce human work-related injuries. The main challenge in introducing on-site robotic fabrication/construction is the difficulty in calibrating robot navigation (localization) in an unstructured and constantly changing environment. Additionally, advances in robotic technology, similar to the revolution of at-home 3D printing, shift the ownership of modes of production from large industrial entities to individuals, allowing for greater levels of design and construction customization. This paper demonstrates a low-cost humanoid robot as highly customizable technology for floor tiling. A novel end-effector design to pick up tiles was developed, along with a localization system that can be applied to a wide variety of robots.
keywords humanoid robot, digital fabricaiton, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id sigradi2016_724
id sigradi2016_724
authors Bomfim, Carlos Alberto Andrade; Lisboa, Bruno Teixeira Wildberger; Matos, Pedro Cesar Correia de
year 2016
title Gest?o de Obras com BIM – Uma nova era para o setor da Construç?o Civil [Construction Management with BIM – A new era for the Construction sector]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.556-560
summary The update in the design process associated with a constant search for efficient construction methods, budgets and actual schedules, passes through common terms the planning engineering and constructability, rationalization and integration. This article is based on literature review on the topic and interview with the experience of BIM core of a company in Brazil. BIM involves more than just 3D modeling and is also commonly defined into more dimensions, such as 4D (time), 5D (cost), 6D (the built - operation) and 7D (sustainability). The use of BIM can now be considered a reality that will promote changes to Construction.
keywords Project Management; Construction Management; Digital Modeling; Design Process; Simulation
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia16_206
id acadia16_206
authors Devadass, Pradeep; Dailami, Farid; Mollica, Zachary; Self, Martin
year 2016
title Robotic Fabrication of Non-Standard Material
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp
doi https://doi.org/10.52842/conf.acadia.2016.x.g4f
summary This paper illustrates a fabrication methodology through which the inherent form of large non-linear timber components was exploited in the Wood Chip Barn project by the students of Design + Make at the Architectural Association’s Hooke Park campus. Twenty distinct Y-shaped forks are employed with minimal machining in the construction of a structural truss for the building. Through this workflow, low-value branched sections of trees are transformed into complex and valuable building components using non-standard technologies. Computational techniques, including parametric algorithms and robotic fabrication methods, were used for execution of the project. The paper addresses the various challenges encountered while processing irregular material, as well as limitations of the robotic tools. Custom algorithms, codes, and post-processors were developed and integrated with existing software packages to compensate for drawbacks of industrial and parametric platforms. The project demonstrates and proves a new methodology for working with complex, large geometries which still results in a low cost, time- and quality-efficient process.
keywords parametric design, craft in digital communication, digital fabrication, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:49

_id ascaad2016_007
id ascaad2016_007
authors Elsayed, Mohamed; Osama Tolba and Ahmed Elantably
year 2016
title Architectural Space Planning Using Parametric Modeling - Egyptian National Housing Project
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 45-54
summary The Egyptian government resorts to prototype housing for low-income citizens to meet the growing demand of the housing market. The problem with the prototype is that it does not meet specific needs. Consequently, users make modifications to the prototype without professional intervention because of the high cost. This paper discusses an automatic multi-stories space planning tool that helps low-income citizens to modify their prototype housing provided by the government. Social, spatial and functional design aspects were set in the original design prototype by an architect. The proposed tool simulates spaces spatial locations in the original design by simulating the analogy of mechanical springs through an interactive simulation of a parametric model. The authors developed the used algorithm in the generative design tool Grasshopper and the live physics engine Kangaroo, both working within the Rhino 3D environment. The algorithm has two versions, one-floor level version and two floors version targeting the wealthier users. Results indicate that this tool integrates with the exploratory nature of the design process even for non-professional users. The authors designed a tool that will help the users to study the effect of the desired modifications against the originally provided prototype, it also makes it easier for users to express their requirements to a professional designer, conserving time and financial cost.
series ASCAAD
email
last changed 2017/05/25 13:13

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia23_v1_34
id acadia23_v1_34
authors Gascon Alvarez, Eduardo; Curth, Alexander (Sandy); Feickert, Kiley; Martinez Schulte, Dinorah; Mueller, Caitlin; Ismail, Mohamed
year 2023
title Algorithmic Design for Low-Carbon, Low-Cost Housing Construction in Mexico
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 34-38.
summary Mexico is one of the most urbanized countries in the Global South, and simultaneously faces a rapidly increasing population and a deluge of inadequate housing (URBANET 2019). In 2016, it was estimated that 40 percent of all private residences in Mexico were considered inadequate by UN-Habitat (UN-Habitat 2018). As informal housing constitutes over half of all Mexican housing construction, the most vulnerable groups of the population are particularly impacted. Therefore, there is a serious need to innovate in the area of low-cost building construction for housing in Mexico. This research explores how shape-optimized concrete and earth construction could help provide adequate housing without jeopardizing the country’s commitment to sustainability.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2016_154
id ecaade2016_154
authors Ozer, Derya Gulec and Nagakura, Takehiko
year 2016
title Simplifying Architectural Heritage Visualization - AUGMENTEDparion
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 521-528
doi https://doi.org/10.52842/conf.ecaade.2016.2.521
wos WOS:000402064400052
summary Among other historical artifacts, architectural heritage is the most difficult to present in museums. There is a need for a high-tech visualization of cultural heritage since it is important to visualize, share and analyze data for stakeholders such as historians, archaeologists, architects and tourists. This study aims to represent architectural heritage in terms of photogrammetry and AR methods for the Parion Theater, Biga, Turkey, dates back to 1st-2nd century A.D. and has been under excavation since 2005. The study uses MULTIRAMA, a method previously developed by ARC Team (MIT) in 2013, which aims to represent the "unseen" to such users by visualising and documenting via an app. The method supports architectural heritage representation via the processes of, i) documentation, ii) data process and modeling, and iii) presentation. This holistic and low cost approach will focus on the problem of visualizing the digital architectural heritage, and led light to future projects of a historical visualization database throughout Turkey.
keywords Augmented Reality (AR); Cultural Heritage; Photogrammetry; Parion
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2016_023
id caadria2016_023
authors Park, Hyoung-June and Bewketu Kassa
year 2016
title A Tale of Two Cities: A Cost-driven Design Optimisation in Addis Ababa & Honolulu
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 23-32
doi https://doi.org/10.52842/conf.caadria.2016.023
summary A cost-driven design optimisation is introduced through two case studies: 1) a design prototype of a large scale housing com- munity for social mix of its tenants in Addis Ababa, Ethiopia, and 2) the one of a luxurious high-rise condominium with maintaining a de- cent level of its maintenance fee in Honolulu, Hawaii, USA. For both cases, the computation of the optimisation was performed with re- gards to targeted financial concerns which are as following: 1) mar- keting value, construction cost, and government subsidy (incentives) for the case in Addis Ababa and 2) maintenance fee and construction cost for the case in Honolulu. Design factors are employed as a guide for computational outcomes in the optimisation of both architectural problems. The computational outcomes become the basis for project- ing three-dimensional forms as design alternatives. Its application process is delineated within the integrated environment of parametric modelling applications.
keywords Optimisation; financial model; social mix; design feasibility; parametric modelling
series CAADRIA
email
last changed 2022/06/07 08:00

_id ascaad2016_031
id ascaad2016_031
authors Amireh, Omar; Manal Ryalat and Tasbeeh Alaqtum
year 2016
title Narrative Architectural Fiction in Mentally Built Environments
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 283-294
summary A thin line lies between reality and fiction; what is mentally imagined and what is visualized. It all depends on how ideas and images are perceived or what neurological activity is triggered in the user’s brain. Architects and designers spare no effort or tools in presenting buildings, architecture or designs in all forms or ways that would augment users’ experience whether on the perceptual or the cognitive level and in both the digital or the physical environments. In a progressive tendency they, the designers, tend to rely more and more on digitizing their vision and mission, which subsequently give them, impressive and expressive superiority, that would influence the users conscious on the one hand and manipulate their subconscious on the other. Within that process designers work hard to break any mental firewall that would prevent their ideas from pervading the space of any mental environment the user, build or visualize. In that context, to what extent such ways of mental entertainments used by architects, legitimize deception in design? What distinguishes employing the rhythmic simulation of the narrative fictional inceptions (virtual reality) from deploying the adaptive stimulation of the experience modeling conceptions. The difference between planting an idea and constructing an idea. It is not the intention of the paper to prove the failure of the computer aided design neither to stand against the digital architectural design media and applications development. It is rather to present a different way of understanding of how architectural design whether virtual, digital, or real can stimulates and induces codes and messages that is correlated to the brainwave cognitive attributes and can generate a narrative brain environment where the brain can construct and simulate its own fictional design. Doing so, the paper will review certain experimental architectural events and activities which integrate sound and sight elements and effects within some electronic, technical and digital environments.
series ASCAAD
email
last changed 2017/05/25 13:33

_id sigradi2016_805
id sigradi2016_805
authors Cormack, Jordan; Sweet, Kevin S.
year 2016
title Parametrically Fabricated Joints: Creating a Digital Workflow
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.412-417
summary Timber joinery for furniture and architectural purpose has always been identified as a skill or craft. The craft is the demonstration of hand machined skill and precision which is passed down or developed through the iteration of creation and refined reflection. Using digital fabrication techniques provides new, typically unexplored ways of creating and designing joints. It is as if these limitations which bind the ratio of complexity and use are stretched. This means that these joints, from a technical standpoint, can be more advanced than historically hand-made joints as digital machines are not bound by the limitations of the human. The research investigated in this paper explores the ability to create sets of joints in a parametric environment that will be produced with CNC machines, thus redefining the idea of the joint through contemporary tools of creation and fabrication. The research also aims to provide a seamless, digital workflow from the flexible, parametric creation of the joint to the final physical fabrication of it. Traditional joints, more simple in shape and assembly, were first digitally created to ease the educational challenges of learning a computational workflow that entailed the creation and fabrication of geometrically programmed joints. Following the programming and manufacturing of these traditional joints, more advanced and complex joints were created as the understanding of the capabilities of the software and CNC machines developed. The more complex and varied joints were taken from a CAD virtual environment and tested on a 3-axis CNC machine and 3D printer. The transformation from the virtual environment to the physical highlighted areas that required further research and testing. The programmed joint was then refined using the feedback from the digital to physical process creating a more robust joint that was informed by reality.
keywords Joinery; digital fabrication; parametric; scripting; machining
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_693
id caadria2016_693
authors Fernando, Ruwan; Karine Dupre and Henry Skates
year 2016
title Tangible User Interfaces for Teaching Building Physics: Towards continuous designing in education
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 693-702
doi https://doi.org/10.52842/conf.caadria.2016.693
summary This paper follows our evaluation and research into designing tangible physical media for the purposes of teaching building physics to undergraduate architecture students. These media interfaces make use of a virtual environment to promote an understanding of the cycles, which govern architectural and urban projects (for example solar studies, the flow of heat, air and water). This project aims to create an ecology of devices which can be used by students to self-direct themselves and harbour critical making in their research methods (with the explicit intent of dissolving the barrier between design and research). The basic premise of this research, is that in light of growing student numbers, more students lacking confidence in numeracy skills as well as the desire to have self-directed or group-directed learning, tangible media has a promising role to play. There are several reasons for this optimism. The first is that a better sense of intuition is gained from an interactive model over reading notes from a lecture or textbook. The second is that tangible media engages in other modes of learning, being valuable to students who have an aptitude for kinesthetic and spatial learning over text-dominant learning.
keywords Pedagogy; tangible user interfaces; augmented reality; internet of things; designing for teaching
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2016_663
id caadria2016_663
authors Hosokawa, Masahiro; Tomohiro Fukuda, Nobuyoshi Yabuki, Takashi Michikawa and Ali Motamedi
year 2016
title Integrating CFD and VR for indoor thermal environment design feedback
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 663-672
doi https://doi.org/10.52842/conf.caadria.2016.663
summary In the context of environmental consideration and im- provement of living standards, design of high performance buildings that are both comfortable and energy saving is important. Simulation tools (such as CFD) enables analysing and visualizing environmental factors (such as temperature and airflow) based on the design proper- ties and can be used to improve the building design for better perfor- mance. However, these tools have limitations in providing interactivi- ty with users for creating multiple CFD visualization results to be used for analysing design options. This research presents an integrated de- sign tool which consists of CFD and VR technologies. The proposed system visualizes CFD results in a VR environment together with ar- chitectural design. Additionally, it enables configuring CFD parame- ters within the VR environment and allows repeatedly executing simu- lation and visualizing updated results. The proposed system enables visualizing information in relationship with the actual architectural design, space configuration and thermal environment, and provides ef- ficient design feedbacks.
keywords Interdisciplinary computational design; design feedback; indoor thermal environment; Computational Fluid Dynamics (CFD); Virtual Reality (VR)
series CAADRIA
email
last changed 2022/06/07 07:50

_id ijac201614407
id ijac201614407
authors Miltiadis, Constantinos
year 2016
title Project anywhere: An interface for virtual architecture
source International Journal of Architectural Computing vol. 14 - no. 4, 386-397
summary Virtual and augmented realities open a new world of great potential for spatial research and experimentation by allowing new forms of unbuilt sensible architectural space. This article starts with a sketch of the current context in virtual reality and continues by outlining the development and structure of the research ‘project Anywhere’. The project is an easily deployable, wireless, multi-user, augmented reality app system that offers full body immersion through body, head and hands tracking. It can host multiple concurrent users, able to move freely in the virtual space, by moving in the real and also perform actions through a gesture interface to affect their shared environment. In conclusion, we describe the inherent properties of such a space, which we propose as a novel spatio-temporal medium for architecture that suggests an enriched notion of space for exploration and experimentation, through an example of a potential application.
keywords Virtual reality, augmented reality, interactive environments, virtual space
series journal
email
last changed 2016/12/09 10:52

_id caadria2016_713
id caadria2016_713
authors Sato, Yusuke; Tomohiro Fukuda, Nobuyoshi Yabuki, Takashi Michikawa and Ali Motamedi
year 2016
title A Marker-less Augmented Reality System using Image Processing Techniques for Architecture and Urban Environment
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 713-722
doi https://doi.org/10.52842/conf.caadria.2016.713
summary In this study, Augmented Reality (AR) system is proposed to be used for outdoor renovation and maintenance projects of build- ings. The research proposes an outdoor marker-less AR system that considers the mobility of users and their long relative distance to tar- get buildings where 3D virtual objects should be augmented on. The proposed system uses local feature-based image registration technolo- gy and Structure from Motion (SfM) which reconstructs 3DCG mod- els using photographs from multiple viewpoints. A case study has been performed for a research building renovation scenario at Osaka University. The case study verified the performance of image registra- tion and tracking, and confirmed the applicability of the method.
keywords Architecture and urban environment; Augmented Reality (AR); image registration; Speeded-up Robust Features (SURF); Structure from Motion (SfM)
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2016_128
id ecaade2016_128
authors Woessner, Uwe and Kieferle, Joachim B.
year 2016
title BIM Collaboration in Virtual Environments - Supporting collaboration in co-located and distributed settings
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 565-572
doi https://doi.org/10.52842/conf.ecaade.2016.2.565
wos WOS:000402064400057
summary Combining BIM and Virtual Reality improves one of the core concepts of BIM: to foster the collaboration between different disciplines. In this paper we present two new approaches. One is the collaboration with BIM/VR in co-located as well as distributed Virtual Environments. Different aspects of collaboration are discussed and shown. The other new approach is the documentation of BIM/VR meetings. The documentation can be generated semi-automatically from within the Virtual Reality environment first for traditional office documents and second for the documentation directly in the BIM model. Initial tests with projects from practice as well as numerous interviews with practitioners have proven the relevance and benefit for practice.
keywords BIM; Virtual Reality; Remote and co-located collaboration; CSCW
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2016_787
id caadria2016_787
authors Knapp, Chris; Jonathan Nelson, Andrew Kudless and Sascha Bohnenberger
year 2016
title Lightweight material prototypes using dense bundled systems to emulate an ambient environment
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 787-796
doi https://doi.org/10.52842/conf.caadria.2016.787
summary This paper describes and reflects upon a computational de- sign and digital fabrication research project that was developed and implemented over 2014-2015, with subsequent development continu- ing for applications at present. The aim of the research was to develop methods of modelling, analysis, and fabrication that facilitate integra- tive approaches to architectural design and construction. In this con- text, the development of material prototypes, digital simulations, and parametric frameworks were pursued in parallel in order to inform and reform successive iterations throughout the process, leading to a re- fined workflow for engineering, production, and speculation upon fu- ture directions of the work.
keywords Digital fabrication; biomimicry; ambient environments; grasshopper; computational design
series CAADRIA
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_81750 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002