CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 453

_id acadia16_174
id acadia16_174
authors Moorman, Andrew; Liu, Jingyang; Sabin, Jenny E.
year 2016
title RoboSense: Context-Dependent Robotic Design Protocols and Tools
doi https://doi.org/10.52842/conf.acadia.2016.174
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 174-183
summary While nonlinear concepts are widely applied in analysis and generative design in architecture, they have not yet convincingly translated into the material realm of fabrication and construction. As the gap between digital design model, shop drawing, and fabricated result continues to diminish, we seek to learn from fabrication models and natural systems that do not separate code, geometry, pattern, material compliance, communication, and form, but rather operate within dynamic loops of feedback, reciprocity, and generative fabrication. Three distinct, but connected problems: 1) Robotic ink drawing; 2) Robotic wine pouring and object detection; and 3) Dynamically Adjusted Extrusion; were addressed to develop a toolkit including software, custom digital design tools, and hardware for robotic fabrication and user interaction in cyber-physical contexts. Our primary aim is to simplify and consolidate the multiple platforms necessary to construct feedback networks for robotic fabrication into a central and intuitive programming environment for both the advanced to novice user. Our experimentation in prototyping feedback networks for use with robotics in design practice suggests that the application of this knowledge often follows a remarkably consistent profile. By exploiting these redundancies, we developed a support toolkit of data structures and routines that provide simple integrated software for the user-friendly programming of commonly used roles and functionalities in dynamic robotic fabrication, thus promoting a methodology of feedback-oriented design processes.
keywords online programming, cyber-physical systems, computational design, robotic fabrication, human-robot interaction
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id acadia16_344
id acadia16_344
authors Leach, Neil
year 2016
title Digital Tool Thinking: Object-Oriented Ontology versus New Materialism
doi https://doi.org/10.52842/conf.acadia.2016.344
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 344-351
summary Within contemporary philosophy, two apparently similar movements have gained attention recently, New Materialism and Object Oriented Ontology. Although these movements have quite distinct genealogies, they overlap on one key issue: they are both realist movements that focus on the object. In contrast to much twentieth-century thinking centered on the subject, these two movements address the seemingly overlooked question of the object. In shifting attention away from the anthropocentrism of Humanism, both movements can be seen to subscribe to the broad principles of Posthumanism. Are these two movements, however, as similar as they first appear? And how might they be seen to differ in their approach to digital design? This paper is an attempt to evaluate and critique the recent strain of Object Oriented Ontology and question its validity. It does so by tracing the differences between OOO and New Materialism, specifically through the work of the neo-Heideggerian philosopher Graham Harman and the post-Deleuzian philosopher Manuel DeLanda, and by focusing on the question of the ‘tool’ in particular. The paper opens up towards the question of the digital tool, questioning the connection between Object Oriented Ontology and Object Oriented Programming, and introducing the theory of affordances as an alternative to the stylistic logic of ‘parametricism’ as a way of understanding the impact of digital tools on architectural production. The paper concludes that we need to recognize the crucial differences between the work of DeLanda and Harman, and that—if nothing else—within progressive digital design circles, we should be cautious of Harman’s brand of Object Oriented Ontology, not least because of its heavy reliance on the work of the German philosopher, Martin Heidegger.
keywords digital tools, obect-oriented ontology, new materialism, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id acadia16_424
id acadia16_424
authors Twose, Simon; du Chatenier, Rosa
year 2016
title Experimental Material Research - Digital Chocolate
doi https://doi.org/10.52842/conf.acadia.2016.424
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 424-431
summary This research investigates the aesthetics of a shared agency between humans, computation and physical material. ‘Chocolate’ is manipulated in physical and virtual space simultaneously to extract aesthetic conditions that are a sum of human and non-human relations. This is an attempt to further the knowledge of designing, giving physical and digital materials force in determining their own aesthetics. The research springs from work in speculative aesthetics, particularly N. Katherine Hayles’s OOI (object-oriented inquiry) and Graham Harman’s OOO (object-oriented ontology) and explores how these ideas impact contemporary computational architectural design. To study this, a simple material has been chosen, chocolate, and used as a vehicle to investigate the dynamics of physical and digital materials and their shared/differing ‘resistances to human manipulation’ (Pickering 1995). Digital chocolate is ‘melted’ through virtual heat, and the results printed and cast in real chocolate, to be further manipulated in real space. The resistances and feedback of physical and digital chocolate to human ‘prodding’ (Hayles 2014) are analyzed in terms of a material’s qualities and tendencies in digital space versus those in physical space. Observations from this process are used to speculate on an aesthetics where humans, computation and physical material are mutually agential. This research is a pilot for a larger study taking on more complex conditions, such as building and cities, with a view to broadening how aesthetics is understood in architectural design. The contribution of this research to the field of architectural computation is thus in areas of aesthetic speculation and human/non-human architectural authorship.
keywords object-oriented inquiry, speculative aesthetics, mutual agency, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia16_362
id acadia16_362
authors Beesley, Philip; Ilgun, Zeliha, Asya; Bouron, Giselle; Kadish, David; Prosser, Jordan; Gorbet, Rob; Kulic, Dana; Nicholas, Paul; Zwierzycki, Mateusz
year 2016
title Hybrid Sentient Canopy: An implementation and visualization of proprioreceptive curiosity-based machine learning
doi https://doi.org/10.52842/conf.acadia.2016.362
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 362-371
summary This paper describes the development of a sentient canopy that interacts with human visitors by using its own internal motivation. Modular curiosity-based machine learning behaviour is supported by a highly distributed system of microprocessor hardware integrated within interlinked cellular arrays of sound, light, kinetic actuators and proprioreceptive sensors in a resilient physical scaffolding system. The curiosity-based system involves exploration by employing an expert system composed of archives of information from preceding behaviours, calculating potential behaviours together with locations and applications, executing behaviour and comparing result to prediction. Prototype architectural structures entitled Sentient Canopy and Sentient Chamber developed during 2015 and 2016 were developed to support this interactive behaviour, integrating new communications protocols and firmware, and a hybrid proprioreceptive system that configured new electronics with sound, light, and motion sensing capable of internal machine sensing and externally- oriented sensing for human interaction. Proprioreception was implemented by producing custom electronics serving photoresistors, pitch-sensing microphones, and accelerometers for motion and position, coupled to sound, light and motion-based actuators and additional infrared sensors designed for sensing of human gestures. This configuration provided the machine system with the ability to calculate and detect real-time behaviour and to compare this to models of behaviour predicted within scripted routines. Testbeds located at the Living Architecture Systems Group/Philip Beesley Architect Inc. (LASG/PBAI, Waterloo/Toronto), Centre for Information Technology (CITA, Copenhagen) National Academy of Sciences (NAS) in Washington DC are illustrated.
keywords intedisciplinary/collaborative design, intelligent environments, artificial intelligence, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia16_332
id acadia16_332
authors Retsin, Gilles; Garcia, Manuel Jimenez
year 2016
title Discrete Computational Methods for Robotic Additive Manufacturing: Combinatorial Toolpaths
doi https://doi.org/10.52842/conf.acadia.2016.332
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 332-341
summary The research presented in this paper is part of a larger, emerging body of research into large-scale 3D printing. The research attempts to develop a computational design method specifically for large-scale 3D printing of architecture. Influenced by the concept of Digital Materials, this research is situated within a critical discussion of what fundamentally constitutes a digital object and process. This requires a holistic understanding, taking into account both computational design and fabrication. The intrinsic constraints of the fabrication process are used as opportunities and generative drivers in the design process. The paper argues that a design method specifically for 3D printing should revolve around the question of how to organize toolpaths for the continuous addition or layering of material. Two case-study projects advance discrete methods as efficient ways to compute a continuous printing process. In contrast to continuous models, discrete models allow users to serialize problems and errors in toolpaths. This allows a local optimization of the structure, avoiding the use of global, computationally expensive, problem-solving algorithms. Both projects make use of a voxel-based approach, where a design is generated directly from the combination of thousands of serialized toolpath fragments. The understanding that serially repeated elements can be assembled into highly complex and heterogeneous structures has implications stretching beyond 3D printing. This combinatorial approach for example also becomes highly valuable for construction systems based on modularity and prefabrication.
keywords prgrammable materials, simulation and design optimization, digital fabrication, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2016_158
id ecaade2016_158
authors Humppi, Harri and Österlund, Toni
year 2016
title Algorithm-Aided BIM
doi https://doi.org/10.52842/conf.ecaade.2016.2.601
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 601-609
wos WOS:000402064400061
summary This paper investigates the relationship of Building Information Modeling (BIM), Algorithm-Aided Design (AAD) and general Computer-Aided Design (CAD). As a result of the developments in CAD, new tools have recently emerged that enable designers to utilize some of the main aspects of BIM and AAD. With this new modeling approach, called Algorithm-Aided Building Information Modeling (AAB), designers can use algorithms to generate parametric object models. The geometric objects contain embedded metadata that can be further utilized in the design and construction processes. This paper investigates how the new approach to modeling positions itself in the field CAD. The main result of the investigation is that the new modeling approach can be seen as a part of larger assembly that connects two design approaches of Object-Oriented Design and Algorithm-Aided Design.
keywords Algorithm-Aided Design; Building Information Modeling; Digital Design methodologies
series eCAADe
email
last changed 2022/06/07 07:50

_id sigradi2016_585
id sigradi2016_585
authors Cruz, Luciana Eller; Maynardes, Ana Claudia
year 2016
title Tipografia tátil [Tactile typography]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.360-365
summary This paper reports an academic experimental research conducted at the University of Brasilia. The goal of this study is to develop a product that allows to mitigate the restricted access to visual content such as the study of typography for vision impaired people. Plaques were constructed with input letters in different typefaces making a two-dimensional shape into a three-dimensional object that can be perceived haptically. The modules were presented to visually impaired people who identified the specific characteristics presented.
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia16_106
id acadia16_106
authors Das, Subhajit; Day, Colin; Hauck, John; Haymaker, John; Davis, Diana
year 2016
title Space Plan Generator: Rapid Generationn & Evaluation of Floor Plan Design Options to Inform Decision Making
doi https://doi.org/10.52842/conf.acadia.2016.106
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 106-115
summary Design exploration in architectural space planning is often constrained by tight deadlines and a need to apply necessary expertise at the right time. We hypothesize that a system that can computationally generate vast numbers of design options, respect project constraints, and analyze for client goals, can assist the design team and client to make better decisions. This paper explains a research venture built from insights into space planning from senior planners, architects, and experts in the field, coupled with algorithms for evolutionary systems and computational geometry, to develop an automated computational framework that enables rapid generation and analysis of space plan layouts. The system described below automatically generates hundreds of design options from inputs typically provided by an architect, including a site outline and program document with desired spaces, areas, quantities, and adjacencies to be satisfied. We envision that this workflow can clarify project goals early in the design process, save time, enable better resource allocation, and assist key stakeholders to make informed decisions and deliver better designs. Further, the system is tested on a case study healthcare design project with set goals and objectives.
keywords healthcare spaces, facility layout design, design optimization, decision making, binary data tree structure, generative design, automated space plans
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id ecaade2016_023
id ecaade2016_023
authors Olascoaga, Carlos Sandoval, Xu, Wenfei and Flores, Hector
year 2016
title Crowd-Sourced Neighborhoods - User-Contextualized Neighborhood Ranking
doi https://doi.org/10.52842/conf.ecaade.2016.2.019
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 19-30
wos WOS:000402064400001
summary Finding an attractive or best-fit neighborhood for a new resident of any city is not only important from the perspective of the resident him or herself, but has larger implications for developers and city planners. The environment or mood of the right neighborhood is not simply created through traditional characteristics such as income, crime, or zoning regulations - more ephemeral traits related to user-perception also have significant weight. Using datasets and tools previously unassociated with real-estate decision-making and neighborhood planning, such as social media and machine learning, we create a non-deterministic and customized way of discovering and understanding neighborhoods. Our project creates a customizable ranking system for the 195 neighborhoods in New York City that helps users find the one that best matches their preferences. Our team has developed a composite weighted score with urban spatial data and social media data to rank all NYC neighborhoods based on a series of questions asked to the user. The project's contribution is to provide a scientific and calibrated understanding of the impact that socially oriented activities and preferences have towards the uses of space.
keywords Textual Semantic analysis; machine learning; participatory planning; community detection; neighborhood definition
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2016_111
id ecaade2016_111
authors Passaro, Andrés Martin, Henriques, Gonçalo Castro and Paraizo, Rodrigo Cury
year 2016
title Sensitive Shelters: Poetics of Interaction
doi https://doi.org/10.52842/conf.ecaade.2016.1.537
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 537-548
wos WOS:000402063700059
summary This paper describes and reflects about a workshop activity in the field of Digital Manufacturing technologies to build responsive shelters that interact with their users and the environment. It addresses a teaching strategy intended to overcome tooling or the simple use of instruments and proposes instead to frame the production of objects using a new language, or a new operative strategy, directly linked to the production of the objects. It addresses a teaching strategy behind the workshop two main levels: first, by the development of technical skills by means of an operative action directly linked to the production of the object, and not apart from the action of making it (as in learning first and applying later). And second - and no less important -, it helped foster the maturation of critical thinking arising from the creation of a dynamic object of architecture - with moving parts and programmed to respond to its users.
keywords Digital Fabrication; Parametric Design; Responsive Architecture; Sensitive Shelters
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2016_353
id caadria2016_353
authors Yuan, Feng; Shuyi Huang and Tong Xiao
year 2016
title Physical and numerical simulation as a generative design tool
doi https://doi.org/10.52842/conf.caadria.2016.353
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 353-362
summary Environmentally sound and high-performance buildings are contributing towards a sustainable future. With increased density of contemporary urban space and the urgent desire to promote building performance, a better understanding of wind behaviour will positively influence future design explorations. In the traditional sequential ar- chitectural practice, there is a gap between design and performance simulation. This paper presents an experimental and systematic study of the performance-oriented design tools, strategies and workflows utilized in the concept prototyping of a high-rise building. It describes a new approach to incorporate wind tunnel testing, computational flu- id dynamics simulation as well as parametric software, sensors and open-source electronics platform into an accessible, interactive and low-cost form generation kit, rapidly evaluating the performance of potential design options in the early design stage. As indicated in this research, environmental simulation can be a decision-making tool, in- tegrating the concept of continuity into the design process.
keywords Environmental performance; building aerodynamics; wind tunnel testing; computational fluid dynamics
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia16_72
id acadia16_72
authors Harrison, Paul
year 2016
title What Bricks Want: Machine Learning and Iterative Ruin
doi https://doi.org/10.52842/conf.acadia.2016.072
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 72-77
summary Ruin has a bad name. Despite the obvious complications, failure provides a rich opportunity—how better to understand a building’s physicality than to watch it collapse? This paper offers a novel method to exploit failure through physical simulation and iterative machine learning. Using technology traditionally relegated to special effects, we can now understand collapse on a granular level: since modern-day physics engines track object-object collisions, they enable a close reading of the spatial preferences that underpin ruin. In the case of bricks, that preference is relatively simple—to fall. By idealizing bricks as rigid bodies, one can understand the effects of gravitational force on each individual brick in a masonry structure. These structures are sometimes able to ‘settle,’ resulting in a stable equilibrium state; in many cases, it means that they will simply collapse. Analyzing ruin in this way is informative, to be sure, but it proves most useful when applied in series. The evolutionary solver described in this paper closely monitors the performance of constituent bricks and ensures that the most successful structures are emulated by later generations. The tool consists of two parts: a user interface for design and the solver itself. Once the architect produces a potential design, the solver performs an evolutionary optimization; after a few hundred iterations, the end result is a structurally sound version of the unstable original. It is hoped that this hybrid of top-down and bottom-up design strategies offers an architecture that is ultimately strengthened by its contingencies.
keywords rigid body analysis, machine learning, multi-agent structural optimization, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:49

_id acadia16_184
id acadia16_184
authors Vasey; Lauren; Long Nguyen; Tovi Grossman; Heather Kerrick; Danil Nagy; Evan Atherton; David Thomasson; Nick Cote; David Benjamin; George Fitzmaurice; Achim Menges
year 2016
title Collaborative Construction: Human and Robotic Collaboration Enabling the Fabrication and Assembly of a Filament-Wound Structure
doi https://doi.org/10.52842/conf.acadia.2016.184
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 184-195
summary In this paper, we describe an interdisciplinary project and live-exhibit that investigated whether untrained humans and robots could work together collaboratively towards the common goal of building a large-scale structure composed out of robotically fabricated modules using a filament winding process. We describe the fabrication system and exhibition setup, including a custom end effector and tension control mechanism, as well as a collaborative fabrication process in which instructions delivered via wearable devices enable the trade-off of production and assembly tasks between human and robot. We describe the necessary robotic developments that facilitated a live fabrication process, including a generic robot inverse kinematic solver engine for non-spherical wrist robots, and wireless network communication connecting hardware and software. In addition, we discuss computational strategies for the fiber syntax generation and robotic motion planning which mitigated constraints such as reachability, axis limitations, and collisions, and ensured predictable and therefore safe motion in a live exhibition setting. We discuss the larger implications of this project as a case study for handling deviations due to non-standardized materials or human error, as well as a means to reconsider the fundamental separation of human and robotic tasks in a production workflow. Most significantly, the project exemplifies a hybrid domain of human and robot collaboration in which coordination and communication between robots, people, and devices can enhance the integration of robotic processes and computational control into the characteristic processes of construction.
keywords machin vision, cyber-physical systems, internet of things, robotic fabrication, human robot collaboration, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id caadria2016_559
id caadria2016_559
authors Cokcan, Baris; Johannes Braumann, W. Winter and Martin Trautz
year 2016
title Robotic Production of Individualised Wood Joints
doi https://doi.org/10.52842/conf.caadria.2016.559
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 559-568
summary Modern modular constructions can consist of highly indi- vidualised elements that are produced at nearly the same efficiency as serial manufacturing. This paper focuses on the project “WoodWaves” an Info-Point for the conference World Congress of Timber Engineer- ing, which was designed with this new conception of modularity. The process utilises a robotically operated milling cutter to form block- board panels out of spruce, which make up the multifunctional infor- mation point. The entire object is produced with only sliding dovetail joints. Parametric design methods were developed to automatically adjust each joint to fit the individual conditions. New CAD/CAM in- terfaces, linking design directly with fabrication, enabled the serial production of 108 different shaped elements with a 6-axis robotic arm.
keywords Computational design; robotic production; digital fabrication; wood joints; info-point
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia17_102
id acadia17_102
authors Aparicio, German
year 2017
title Data-Insight-Driven Project Delivery: Approach to Accelerated Project Delivery Using Data Analytics, Data Mining and Data Visualization
doi https://doi.org/10.52842/conf.acadia.2017.102
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 102-109
summary Today, 98% of megaprojects face cost overruns or delays. The average cost increase is 80% and the average slippage is 20 months behind schedule (McKinsey 2015). It is becoming increasingly challenging to efficiently support the scale, complexity and ambition of these projects. Simultaneously, project data is being captured at growing rates. We continue to capture more data on a project than ever before. Total data captured back in 2009 in the construction industry reached over 51 petabytes, or 51 million gigabytes (Mckinsey 2016). It is becoming increasingly necessary to develop new ways to leverage our project data to better manage the complexity on our projects and allow the many stakeholders to make better more informed decisions. This paper focuses on utilizing advances in data mining, data analytics and data visualization as means to extract project information from massive datasets in a timely fashion to assist in making key informed decisions for project delivery. As part of this paper, we present an innovative new use of these technologies as applied to a large-scale infrastructural megaproject, to deliver a set of over 4,000 construction documents in a six-month period that has the potential to dramatically transform our industry and the way we deliver projects in the future. This paper describes a framework used to measure production performance as part of any project’s set of project controls for accelerated project delivery.
keywords design methods; information processing; data mining; big data; data visualization
series ACADIA
email
last changed 2022/06/07 07:55

_id acadia23_v1_122
id acadia23_v1_122
authors Crawford, Assia
year 2023
title Mycelium Making: An exploration in Growing Modular Interiors
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 122-127.
summary The project was developed as part of an MArch Architecture design studio that looked at emerging bio-degradable living materials in the form of mycelium bio-composites as a way of manufacturing temporary structures. The project introduced students to laboratory methods for material development and bio-material cultivation. Students were asked to consider the implications of designing with a material that has agency and needs. The studio explored what it means to “make kin” (Haraway 2016) on a planet that has reached a tipping point. It approached the topic from the assumption that the breakdown of existing economic models and resource scarcity offers potent ground for new forms of space making to emerge. The studio looked to nature’s ability to respond to environmental stimuli and design constraints. Students harnessed advances in our scientific understanding to cultivate an architectural language that captures the transient and unstable nature of this new family of biomaterials
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2016_114
id ecaade2016_114
authors Erdine, Elif and Kallegias, Alexandros
year 2016
title Calculated Matter - Algorithmic Form-Finding and Robotic Mold-Making
doi https://doi.org/10.52842/conf.ecaade.2016.1.163
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 163-168
wos WOS:000402063700018
summary The paper addresses a specific method for the production of custom-made, differentiated moulds for the realization of a complex, doubly-curved wall element during an international three-week architectural programme, Architectural Association (AA) Summer DLAB. The research objectives focus on linking geometry, structure, and robotic fabrication within the material agency of concrete. Computational workflow comprises the integration of structural analysis tools and real-time form-finding methods in order to inform global geometry and structural performance simultaneously. The ability to exchange information between various simulation, modelling, analysis, and fabrication software in a seamless fashion is one of the key areas where the creation of complex form meets with the simplicity of exchanging information throughout various platforms. The paper links the notions of complexity and simplicity throughout the design and fabrication processes. The aim to create a complex geometrical configuration within the simplicity of a single material system, concrete, presents itself as an opportunity for further discussion and development.
keywords robotic fabrication; custom form-work; generative design; structural analysis; concrete
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2016_693
id caadria2016_693
authors Fernando, Ruwan; Karine Dupre and Henry Skates
year 2016
title Tangible User Interfaces for Teaching Building Physics: Towards continuous designing in education
doi https://doi.org/10.52842/conf.caadria.2016.693
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 693-702
summary This paper follows our evaluation and research into designing tangible physical media for the purposes of teaching building physics to undergraduate architecture students. These media interfaces make use of a virtual environment to promote an understanding of the cycles, which govern architectural and urban projects (for example solar studies, the flow of heat, air and water). This project aims to create an ecology of devices which can be used by students to self-direct themselves and harbour critical making in their research methods (with the explicit intent of dissolving the barrier between design and research). The basic premise of this research, is that in light of growing student numbers, more students lacking confidence in numeracy skills as well as the desire to have self-directed or group-directed learning, tangible media has a promising role to play. There are several reasons for this optimism. The first is that a better sense of intuition is gained from an interactive model over reading notes from a lecture or textbook. The second is that tangible media engages in other modes of learning, being valuable to students who have an aptitude for kinesthetic and spatial learning over text-dominant learning.
keywords Pedagogy; tangible user interfaces; augmented reality; internet of things; designing for teaching
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia16_124
id acadia16_124
authors Ferrarello, Laura
year 2016
title The Tectonic of the Hybrid Real: Data Manipulation, Oxymoron Materiality, and Human-Machine Creative Collaboration
doi https://doi.org/10.52842/conf.acadia.2016.124
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 124-129
summary This paper describes the latest progress of the design platform Digital Impressionism (DI), created by staff and students in the Information Experience Design programme at the Royal College of Art in London. DI aims to bridge human creative thinking with machine computation, under the theoretical method/concept of oxymoron tectonic. Oxymoron tectonic describes the process under which hybrid materiality, that is the materiality created between the digital and the physical, takes form in human-machine creative interactions. The methodology intends to employ multimaterial 3D printers in combination with data manipulation (a process that gives data physical substance), pointclouds, and the influence of intangible environmental data (like sound and wind) to model physical forms by interfacing digital and physical making. In DI, modeling is a hybrid set of actions that take place at the boundary of the physical and digital. Through this interactive platform, design is experienced as a complex, hybrid process, which we call a digital tectonic; forms are constructed via a creative feedback loop of human engagement with nonhuman agents to form a creative network of sustainable and interactive design and fabrication. By developing a mutual understanding of design, machines and humans work together in the process of design and making.
keywords human-computer interaction and design, craft in design computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_35994 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002