CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 622

_id caadria2016_549
id caadria2016_549
authors Fischer, Thomas and Christiane M. Herr
year 2016
title Parametric Customisation of A 3D Concrete Printed Pavilion
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 549-558
doi https://doi.org/10.52842/conf.caadria.2016.549
summary Advances in 3D printing technology have reached architectural scales with 3D concrete printing, a digitally controlled fabrication process in which fibre-reinforced concrete is deposited layer-by-layer to fabricate building elements. In this paper we present a brief overview of key concrete 3D printing related research development efforts, followed by a report on a research project into the parametric online customisation and fabrication of small 3D concrete printed pavilions. The research project is set in, and addresses possibilities and constraints of, the developing local Chinese construction context.
keywords 3D concrete printing; parametric design; digital fabrication; online customisation; China
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2016_735
id caadria2016_735
authors Sousa, Jose Pedro; Pedro Martins and Pedro De Azambuja Varela
year 2016
title The CorkCrete Arch Project: The digital design and robotic fabrication of a novel building system made out of cork and glass-fibre reinforced concrete
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 735-744
doi https://doi.org/10.52842/conf.caadria.2016.735
summary The CorkCrete arch is a 1:1 scale construction aiming at testing the use of robotic fabrication technologies in the production of a novel building system made out of two different materials – cork and concrete (GRC). The combination of these materials is promising since it merges the sustainable and performative properties of first with the structural efficiency of the second one. The result is a materi- al system suited for customized prefabrication and easy on-site instal- lation. The current paper describes the design and fabrication process of the arch, which employed a single parametric design environment to bridge design and fabrication, and an innovative sequence of differ- ent robotic processes. The success of this experience invites the team to continue this research into the future construction of larger scale applications.
keywords Cork; concrete; computational design; digital fabrication; robotics
series CAADRIA
email
last changed 2022/06/07 07:56

_id ascaad2016_014
id ascaad2016_014
authors Ahmed, Zeeshan Y.; Freek P. Bos, Rob J.M. Wolfs and Theo A.M. Salet
year 2016
title Design Considerations Due to Scale Effects in 3D Concrete Printing
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 115-124
summary The effect of scale on different parameters of the 3D printing of concrete is explored through the design and fabrication of a 3D concrete printed pavilion. This study shows a significant gap exists between what can be generated through computer aided design (CAD) and subsequent computer aided manufacturing (generally based on CNC technology). In reality, the 3D concrete printing on the one hand poses manufacturing constraints (e.g. minimum curvature radii) due to material behaviour that is not included in current CAD/CAM software. On the other hand, the process also takes advantage of material behaviour and thus allows the creation of shapes and geometries that, too, can’t be modelled and predicted by CAD/CAM software. Particularly in the 3D printing of concrete, there is not a 1:1 relation between toolpath and printed product, as is the case with CNC milling. Material deposition is dependent on system pressure, robot speed, nozzle section, layer stacking, curvature and more – all of which are scale dependent. This paper will discuss the design and manufacturing decisions based on the effects of scale on the structural design, printed and layered geometry, robot kinematics, material behaviour, assembly joints and logistical problems. Finally, by analysing a case study pavilion, it will be explore how 3D concrete printing structures can be extended and multiplied across scales and functional domains ranging from structural to architectural elements, so that we can understand how to address questions of scale in their design.
series ASCAAD
email
last changed 2017/05/25 13:31

_id ecaade2016_151
id ecaade2016_151
authors Blonder, Arielle and Grobman, Yasha Jacob
year 2016
title Natural Complexity - Embedded Fabric Materiality in Fibre-Reinforced Polymer Fabrication
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 581-589
doi https://doi.org/10.52842/conf.ecaade.2016.1.581
wos WOS:000402063700063
summary Fibre composites are synthetic in their composition, but structured similarly to biological materials, as fibre and matrix. While the fibre constituent in Fibre-Reinforced Polymer (FRP) is mostly used under the form of fabrics, its standard fabrication processes do not rely on its inherent textile attributes. Embedding the fabric qualities in the fabrication of architectural FRP can potentially introduce concepts and properties of biological materials into engineered fibre composites; it can promote and enable the generation of an architectural complexity of a biological nature. The paper presents Fabric Materiality as a framework for a new design and fabrication process and demonstrates through a case study its integration in the fabrication of architectural FRP elements to achieve a complex structure with bio-inspired properties.
keywords Textile; Materiality; Self-organisation; Resilience; Composites; FRP
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2016_234
id ecaade2016_234
authors Sousa, José Pedro and Martins, Pedro Filipe
year 2016
title The Robotic Production of the GRC Panels in the CorkCrete Arch Project - A stratified strategy for the fabrication of customized molds
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 153-160
doi https://doi.org/10.52842/conf.ecaade.2016.1.153
wos WOS:000402063700017
summary The CorkCrete Arch was an experimental prototype built in the scope of a research project concerning the use of robotic fabrication technologies for non-standard solutions in architecture. It combined 2 materials, cork and GRC into a self-supporting lightweight building system, designed to explore the integration of different robotic fabrication technologies in one constructive solution. This paper is focused in providing a detailed description and analysis of the robotic fabrication process used in the production of the GRC components. The presented solution integrated robotic milling and hot-wire cutting technologies with a stratified mold design strategy that allowed for overcoming the limitations of each and enabled a time and cost efficient production process.
keywords Robotic Hot-Wire Cutting; Digital Fabrication; Glass Fiber Reinforced Concrete; Computational Design; Corkcrete
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2016_210
id ecaade2016_210
authors Abdelmohsen, Sherif, Massoud, Passaint and Elshafei, Ahmed
year 2016
title Using Tensegrity and Folding to Generate Soft Responsive Architectural Skins
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 529-536
doi https://doi.org/10.52842/conf.ecaade.2016.1.529
wos WOS:000402063700058
summary This paper describes the process of designing a prototype for a soft responsive system for a kinetic building facade. The prototype uses lightweight materials and mechanisms to generate a building facade skin that is both soft (less dependent on hard mechanical systems) and responsive (dynamically and simultaneously adapting to spatial and environmental conditions). By combining concepts stemming from both tensegrity structures and folding mechanisms, we develop a prototype that changes dynamically to produce varying facade patterns and perforations based on sensor-network data and feedback. We use radiation sensors and shape memory alloys to control the prototype mechanism and allow for the required parametric adaptation. Based on the data from the radiation sensors, the lengths of the shape memory alloys are altered using electric wires and are parametrically linked to the input data. The transformation in the resulting overall surface is directly linked to the desired levels of daylighting and solar exposure. We conclude with directions for future research, including full scale testing, advanced simulation, and multi-objective optimization.
keywords Soft responsive systems; tensegrity; folding; kinetic facades
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia16_54
id acadia16_54
authors Andreen, David; Jenning, Petra; Napp, Nils; Petersen, Kirstin
year 2016
title Emergent Structures Assembled by Large Swarms of Simple Robots
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 54-61
doi https://doi.org/10.52842/conf.acadia.2016.054
summary Traditional architecture relies on construction processes that require careful planning and strictly defined outcomes at every stage; yet in nature, millions of relatively simple social insects collectively build large complex nests without any global coordination or blueprint. Here, we present a testbed designed to explore how emergent structures can be assembled using swarms of active robots manipulating passive building blocks in two dimensions. The robot swarm is based on the toy “bristlebot”; a simple vibrating motor mounted on top of bristles to propel the body forward. Since shape largely determines the details of physical interactions, the robot behavior is altered by carefully designing its geometry instead of uploading a digital program. Through this mechanical programming, we plan to investigate how to tune emergent structural properties such as the size and temporal stability of assemblies. Alongside a physical testbed with 200 robots, this work involves comprehensive simulation and analysis tools. This simple, reliable platform will help provide better insight on how to coordinate large swarms of robots to construct functional structures.
keywords emergent structures, mechanical intelligence, swarm robotics
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia16_488
id acadia16_488
authors Derme, Tiziano; Mitterberger, Daniela; Di Tanna, Umberto
year 2016
title Growth Based Fabrication Techniques for Bacterial Cellulose: Three-Dimensional Grown Membranes and Scaffolding Design for Biological Polymers
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 488-495
doi https://doi.org/10.52842/conf.acadia.2016.488
summary Self-assembling manufacturing for natural polymers is still in its infancy, despite the urgent need for alternatives to fuel-based products. Non-fuel based products, specifically bio-polymers, possess exceptional mechanical properties and biodegradability. Bacterial cellulose has proven to be a remarkably versatile bio-polymer, gaining attention in a wide variety of applied scientific applications such as electronics, biomedical devices, and tissue-engineering. In order to introduce bacterial cellulose as a building material, it is important to develop bio-fabrication methodologies linked to material-informed computational modeling and material science. This paper emphasizes the development of three-dimensionally grown bacterial cellulose (BC) membranes for large-scale applications, and introduces new manufacturing technologies that combine the fields of bio-materials science, digital fabrication, and material-informed computational modeling. This paper demonstrates a novel method for bacterial cellulose bio-synthesis as well as in-situ self-assembly fabrication and scaffolding techniques that are able to control three-dimensional shapes and material behavior of BC. Furthermore, it clarifies the factors affecting the bio-synthetic pathway of bacterial cellulose—such as bacteria, environmental conditions, nutrients, and growth medium—by altering the mechanical properties, tensile strength, and thickness of bacterial cellulose. The transformation of the bio-synthesis of bacterial cellulose into BC-based bio-composite leads to the creation of new materials with additional functionality and properties. Potential applications range from small architectural components to large structures, thus linking formation and materialization, and achieving a material with specified ranges and gradient conditions, such as hydrophobic or hydrophilic capacity, graded mechanical properties over time, material responsiveness, and biodegradability.
keywords programmable materials, material agency, biomimetics and biological design
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id ascaad2016_007
id ascaad2016_007
authors Elsayed, Mohamed; Osama Tolba and Ahmed Elantably
year 2016
title Architectural Space Planning Using Parametric Modeling - Egyptian National Housing Project
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 45-54
summary The Egyptian government resorts to prototype housing for low-income citizens to meet the growing demand of the housing market. The problem with the prototype is that it does not meet specific needs. Consequently, users make modifications to the prototype without professional intervention because of the high cost. This paper discusses an automatic multi-stories space planning tool that helps low-income citizens to modify their prototype housing provided by the government. Social, spatial and functional design aspects were set in the original design prototype by an architect. The proposed tool simulates spaces spatial locations in the original design by simulating the analogy of mechanical springs through an interactive simulation of a parametric model. The authors developed the used algorithm in the generative design tool Grasshopper and the live physics engine Kangaroo, both working within the Rhino 3D environment. The algorithm has two versions, one-floor level version and two floors version targeting the wealthier users. Results indicate that this tool integrates with the exploratory nature of the design process even for non-professional users. The authors designed a tool that will help the users to study the effect of the desired modifications against the originally provided prototype, it also makes it easier for users to express their requirements to a professional designer, conserving time and financial cost.
series ASCAAD
email
last changed 2017/05/25 13:13

_id ijac201614303
id ijac201614303
authors Matsubayashi, Michio and Shun Watanabe
year 2016
title Generating two-dimensional schematic diagrams of mechanical, electrical, and plumbing systems from three-dimensional building information models
source International Journal of Architectural Computing vol. 14 - no. 3, 219-232
summary In this article, we propose a method of generating two-dimensional schematic diagrams from three-dimensional models of mechanical, electrical, and plumbing systems on computer-aided design software to represent this information in a more traditional, user-friendly format. It can be difficult to grasp the relationships between various mechanical, electrical, and plumbing elements in building information models because they are represented in a visually complex, three-dimensional manner. On the other hand, the relationships between building elements can be easily understood when using traditional schematic diagrams. First, the network of mechanical, electrical, and plumbing systems and a section view are extracted separately from three-dimensional models. Next, these extracted files are displayed as schematic diagrams on computer-aided design software. The expressions of traditional drawings were referenced to generate new diagrams. After schematic diagrams were created, they were evaluated by staff members in the facilities department of a university in Japan.
keywords Building information model, schematic diagram, existing buildings, attribute information, two-dimensional drawings
series journal
last changed 2016/10/05 08:21

_id sigradi2016_771
id sigradi2016_771
authors Raspall, Felix; Ba?ón, Carlos
year 2016
title vMESH : How to print Architecture?
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.394-398
summary The use of 3D printing in architectural research, education and practice has been almost exclusively destined to produce physical representations – models— of designed building. Recent advances in Additive Manufacturing (AM) have exponentially increased the mechanical properties of 3D printed parts, opening new opportunities for this technology to be directly applied to functional architectural components at an increasingly larger scale. Thus, this paper examines the design, structural and aesthetic implications, as well as the feasibility of advanced 3D printing technologies in the production of functional architectural components through the design and prototyping of a customized, non-regular spatial frame system.
keywords Metal 3D Printing, Volumetric Mesh, Digital Fabrication, Parametric Design, Spatial Frames
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia16_62
id acadia16_62
authors Rusenova, Gergana; Dierichs, Karola; Baharlou, Ehsan; Menges, Achim
year 2016
title Feedback- and Data-driven Design for Aggregate Architectures: Analyses of Data Collections for Physical and Numerical Prototypes of Designed Granular Materials
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp.62-72
doi https://doi.org/10.52842/conf.acadia.2016.062
summary This project contributes to the investigations in the field of aggregate architectures by linking two research areas: the numerical simulation of aggregate formations, and a concept for an online-controlled pneumatic formwork system. This paper introduces a novel approach for constructing with designed particles based on a feedback process. The overall aim was to investigate the capacity of aggregates as an architectural material system, which create emergent spatial formations. Initially the particles´ micro-mechanical behavior and the fragile stability of the formations were analyzed using numerical simulations. Based on this, an online-controlled inflatable formwork system was developed. The formwork was designed to react to the actual stability state of an aggregate formation; for this, a statistical set of simulation data was gathered, which directly informed the physical system. This overall concept was proven and verified in a one-to-one scaled physical model. The methods developed within this research provide a first set of baselines for comparison between the behavior of simulated and physical designed granular materials.
keywords simulations, designed particles, feedback-driven design, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id acadia16_98
id acadia16_98
authors Smith, Shane Ida; Lasch, Chris
year 2016
title Machine Learning Integration for Adaptive Building Envelopes: An Experimental Framework for Intelligent Adaptive Control
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 98-105
doi https://doi.org/10.52842/conf.acadia.2016.098
summary This paper describes the development of an Intelligent Adaptive Control (IAC) framework that uses machine learning to integrate responsive passive conditioning at the envelope into a building’s comprehensive conventional environmental control system. Initial results show that by leveraging adaptive computational control to orchestrate the building’s mechanical and passive systems together, there exists a demonstrably greater potential to maximize energy efficiency than can be gained by focusing on either system individually, while the addition of more passive conditioning strategies significantly increase human comfort, health and wellness building-wide. Implicitly, this project suggests that, given the development and ever increasing adoption of building automation systems, a significant new site for computational design in architecture is expanding within the post-occupancy operation of a building, in contrast to architects’ traditional focus on the building’s initial design. Through the development of an experimental framework that includes physical material testing linked to computational simulation, this project begins to describe a set of tools and procedures by which architects might better conceptualize, visualize, and experiment with the design of adaptive building envelopes. This process allows designers to ultimately engage in the opportunities presented by active systems that govern the daily interactions between a building, its inhabitants, and their environment long after construction is completed. Adaptive material assemblies at the envelope are given special attention since it is here that a building’s performance and urban expression are most closely intertwined.
keywords model predictive control, reinforcement learning, energy performance, adaptive envelope, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id acadia16_298
id acadia16_298
authors Yu, Lei; Huang, Yijiang; Zhongyuan, Liu; Xiao, Sai; Liu, Ligang; Song, Guoxian; Wang, Yanxin
year 2016
title Highly Informed Robotic 3D Printed Polygon Mesh: A Nobel Strategy of 3D Spatial Printing
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 298-307
doi https://doi.org/10.52842/conf.acadia.2016.298
summary Though robotic 3D printing technology is currently undergoing rapid development, most of the research and experiments are still based on a bottom up layering process. This paper addresses long term research into a robotic 3D printed polygon mesh whose struts are directly built up and joined together as rapidly generated physical wireframes. This paper presents a novel “multi-threaded” robotic extruder, as well as a technical strategy to create a “printable” polygon mesh that is collision-free during robotic operation. Compared to standard 3D printing, architectural applications demand much larger dimensions at human scale, geometrically lower resolution and faster production speed. Taking these features into consideration, 3D printed frameworks have huge potential in the building industry by combining robot arm technology together with FDM 3D printing technology. Currently, this methodology of rapid prototyping could potentially be applied on pre-fabricated building components, especially ones with uniform parabolic features. Owing to the mechanical features of the robot arm, the most crucial challenge of this research is the consistency of non-stop automated control. Here, an algorithm is employed not only to predict and solve problems, but also to optimize for a highly efficient construction process in coordination of the robotic 3D printing system. Since every stroke of the wireframe contains many parameters and calculations in order to reflect its native organization and structure, this robotic 3D printing process requires processing an intensive amount of data in the back stage.
keywords interdisciplinary design, craft in design computation, digital fabrication
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id ascaad2016_003
id ascaad2016_003
authors Al-Jokhadar, Amer; Wassim Jabi
year 2016
title Humanising the Computational Design Process - Integrating Parametric Models with Qualitative Dimensions
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 9-18
summary Parametric design is a computational-based approach used for understanding the logic and the language embedded in the design process algorithmically and mathematically. Currently, the main focus of computational models, such as shape grammar and space syntax, is primarily limited to formal and spatial requirements of the design problem. Yet, qualitative factors, such as social, cultural and contextual aspects, are also important dimensions in solving architectural design problems. In this paper, an overview of the advantages and implications of the current methods is presented. It also puts forward a ‘structured analytical system’ that combines the formal and geometric properties of the design, with descriptions that reflect the spatial, social and environmental patterns. This syntactic-discursive model is applied for encoding vernacular courtyard houses in the hot-arid regions of the Middle East and North Africa, and utilising the potentials of these cases in reflecting the lifestyle and the cultural values of the society, such as privacy, human-spatial behaviour, the social life inside the house, the hierarchy of spaces, the segregation and seclusion of family members from visitors and the orientation of spaces. The output of this analytical phase prepares the groundwork for the development of socio-spatial grammar for contemporary tall residential buildings that gives the designer the ability to reveal logical spatial topologies based on socio-environmental restrictions, and to produce alternatives that have an identity while also respecting the context, place and needs of users.
series ASCAAD
email
last changed 2017/05/25 13:13

_id caadria2016_641
id caadria2016_641
authors Baerlecken, D.; K. Wright, J. Reitz, N. Mueller and B. Heiermann
year 2016
title Performative Agency of Materials: Matter agency of vernacular African pattern systems
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 641-650
doi https://doi.org/10.52842/conf.caadria.2016.641
summary This paper investigates an agency of materials through a design methodology that follows Martin Heidegger’s process of “Entbergen” or “unconcealing” as a non-instrumentalist understanding of tools and materials. This investigation takes place through the de- sign of a children’s theatre in South Africa where material innovation for architectural components is needed. The research studies vernacu- lar African patterns and their inherent behaviour when transferred to materials. The transference of pattern systems to architectural proto- types is discussed alongside the discussion of their technical and ar- chitectural performance criteria. Following Heidegger’s theory of “Entbergen” (“unconcealing”) the paper will demonstrate how making in this methodology becomes an “unconcealing”, which includes both digital and analogue means, linking the four causalities - causa mate- rialis, causa formalis, causa finalis, and causa efficiens – through the agency of material within an integrated process between all four caus- es. Making becomes a process in which form is generated through in- terventions within fields of forces and currents of materials, taking cause and agency into account, and standing in opposition to methods that are defined by a premeditated notion of an ideal outcome.
keywords African patterns, making, design build, design methodology
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia16_362
id acadia16_362
authors Beesley, Philip; Ilgun, Zeliha, Asya; Bouron, Giselle; Kadish, David; Prosser, Jordan; Gorbet, Rob; Kulic, Dana; Nicholas, Paul; Zwierzycki, Mateusz
year 2016
title Hybrid Sentient Canopy: An implementation and visualization of proprioreceptive curiosity-based machine learning
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 362-371
doi https://doi.org/10.52842/conf.acadia.2016.362
summary This paper describes the development of a sentient canopy that interacts with human visitors by using its own internal motivation. Modular curiosity-based machine learning behaviour is supported by a highly distributed system of microprocessor hardware integrated within interlinked cellular arrays of sound, light, kinetic actuators and proprioreceptive sensors in a resilient physical scaffolding system. The curiosity-based system involves exploration by employing an expert system composed of archives of information from preceding behaviours, calculating potential behaviours together with locations and applications, executing behaviour and comparing result to prediction. Prototype architectural structures entitled Sentient Canopy and Sentient Chamber developed during 2015 and 2016 were developed to support this interactive behaviour, integrating new communications protocols and firmware, and a hybrid proprioreceptive system that configured new electronics with sound, light, and motion sensing capable of internal machine sensing and externally- oriented sensing for human interaction. Proprioreception was implemented by producing custom electronics serving photoresistors, pitch-sensing microphones, and accelerometers for motion and position, coupled to sound, light and motion-based actuators and additional infrared sensors designed for sensing of human gestures. This configuration provided the machine system with the ability to calculate and detect real-time behaviour and to compare this to models of behaviour predicted within scripted routines. Testbeds located at the Living Architecture Systems Group/Philip Beesley Architect Inc. (LASG/PBAI, Waterloo/Toronto), Centre for Information Technology (CITA, Copenhagen) National Academy of Sciences (NAS) in Washington DC are illustrated.
keywords intedisciplinary/collaborative design, intelligent environments, artificial intelligence, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2016_095
id ecaade2016_095
authors Doumpioti, Christina
year 2016
title Material Agency and Physical Boundaries
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 521-528
doi https://doi.org/10.52842/conf.ecaade.2016.1.521
wos WOS:000402063700057
summary The research builds on the relationship between matter and energy and the idea of boundaries as sentient interfaces capable of affecting our bodily experience and perception of space due to their inherent physical attributes. Two key issues addressed are firstly, the revisiting of the architectural boundary as a thermodynamic zone and secondly, the identification of material behaviour in relation to energy stimuli. It is argued that the transient behaviour of materials can offer an instrumental reconsideration on how architecture establishes spatial articulation through boundaries and this is demonstrated through a design-led project.
keywords thermal field; responsive materials; passively active materials; heat transfer; thermodynamic; matter and energy
series eCAADe
email
last changed 2022/06/07 07:55

_id ascaad2016_009
id ascaad2016_009
authors Elbasdi, Gulay; Sema Alaçam
year 2016
title An Investigation on Growth Behaviour of Mycelium in a Fabric Formwork
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 65-74
summary Most progress in designing mycelium-based material to date has been made by using petri dish and 3d printed geometries. In this study, reshaping capabilities of mycelium-based materials using fabric formwork is being discussed. This ongoing study is the result of a series of experiments about mycelium-based material that aims to investigate its potentials as free- form geometry. In this paper, we aim to make a comparison between initial and end shapes by implementing digital and analogue tools based on mycelium-based fabric formwork experiment. The physical experiment setup consists of different initial geometry alternatives and the deformation will be observed and measured numerically by time-based recording on top and section views. With the help of digital tools, experiments will be documented as a process of formation. We aim to discuss the potential of the usage of mycelium as a binding agent in free form geometry since mycelium acts as natural self-assembling glue. By doing so, structural potentials of the material, which is strengthened by mycelium hyphae, were examined. This study aims to contribute to the design research studies and scientific knowledge together to integrate living systems into the material design as encouraging collaborative interdisciplinary research, thereby positioning designer as a decision-maker from the very beginning of material design process.
series ASCAAD
email
last changed 2017/05/25 13:13

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_176744 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002