CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 612

_id caadria2019_626
id caadria2019_626
authors Hahm, Soomeen, Maciel, Abel, Sumitiomo, Eri and Lopez Rodriguez, Alvaro
year 2019
title FlowMorph - Exploring the human-material interaction in digitally augmented craftsmanship
doi https://doi.org/10.52842/conf.caadria.2019.1.553
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 553-562
summary It has been proposed that, after the internet age, we are now entering a new era of the '/Augmented Age/' (King, 2016). Physician Michio Kaku imagined the future of architects will be relying heavily on Augmented Reality technology (Kaku, 2015). Augmented reality technology is not a new technology and has been evolving rapidly. In the last three years, the technology has been applied in mainstream consumer devices (Coppens, 2017). This opened up possibilities in every aspect of our daily lives and it is expected that this will have a great impact on every field of consumer's technology in near future, including design and fabrication. What is the future of design and making? What kind of new digital fabrication paradigm will emerge from inevitable technological development? What kind of impact will this have on the built environment and industry? FlowMorph is a research project developed in the Bartlett School of Architecture, B-Pro AD with the collaboration of the authors and students as a 12 month MArch programme, we developed a unique design project trying to answer these questions which will be introduced in this paper.
keywords Augmented Reality, Mixed Reality, Virtual Reality, Design Augmentation, Digital Fabrication, Cognition models, Conceptual Designing, Design Process, Design by Making, Generative Design, Computational Design, Human-Machine Collaboration, Human-Computer Collaboration, Human intuition in digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:51

_id ascaad2016_001
id ascaad2016_001
authors Al-Attili, Aghlab; Anastasia Karandinou and Ben Daley
year 2016
title Parametricism vs Materialism - Evolution of digital technologies for development
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, 597 p.
summary We build on previous technological developments in CAAD by looking into parametric design exploration and the development of the concept of parametricism. We use the phenomenological backdrop to account for our physical experiences and encounters as well as our mental ones; both evident in the link between parametric design as a process and an outcome. In specific, we previously examined two particular metaphors. The first metaphor addressed aspects of virtual environments that resemble our physical world; In other words, computer model as physical model and digital world as material world. In this volume, we extend the exploration into aspects of virtual environments and their resemblance to physical environments by looking at ‘performance’ aspects: the way in which environments are sensed, measured, tracked and visualised. Moreover, we reflect on matters and materiality in both virtual and physical space philosophically, theoretically, practically and reflectively. The second metaphor looked into the modes and means of interaction between our bodies and such virtual environment. Here we extend the investigation to look at the ways in which measures of environmental performance influence human interaction in real environments. The exploration takes us further to look into the area of design fabrication of the built environment, and methods in which developed processes meet environmental performance requirements, and the innovative outcomes that lead to disruptive technologies getting introduced into design and we revisit parametric design under this focus area.
series ASCAAD
type normal paper
email
last changed 2024/02/13 14:28

_id ecaade2016_037
id ecaade2016_037
authors Khabazi, Zubin and Budig, Michael
year 2016
title Adaptive Fabrication - Cellular Concrete Casting Using Digital Moulds
doi https://doi.org/10.52842/conf.ecaade.2016.1.083
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 83-92
summary Computational design and digital fabrication have expanded the use of digital manufacturing machineries for the realization of architecture, yet they have their own limitations of material use. These limitations caused some materials like cement, plaster and clay become marginal in this new digital context, despite their vast use in the building industry. In this context, this paper will present a research, focusing on the use of concrete through the development of a custom-designed device, which is an adjustable digital mould. This digital mould has been designed specifically for a project called Procrystalline Wall and has been 'adapted' to the conditions of its agenda in terms of size, shape, typology, and even technical matters. However, this adaptability means that the device is not aimed to work for any other project and remain exclusive to this particular design only. This paper will further discuss the validity and obstacles of the presented method in a more global context.
wos WOS:000402063700010
keywords Concrete Fabrication; Digital Casting; Digital Adjustable Mould; Cellular Concrete Casting; Cellular Solid Morphologies
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2017_134
id ecaade2017_134
authors Del Signore, Marcella
year 2017
title pneuSENSE - Transcoding social ecologies
doi https://doi.org/10.52842/conf.ecaade.2017.2.537
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 537-544
summary Cities are continuously produced through entropic processes that mediate between complex networked systems and the immediacy urban life. Emergent media technologies inform new relationships between information and matter, code and space to redefine new urban ecosystems. Modes of perceiving, experiencing and inhabiting cities are radically changing along with a radical transformation of the tools that we use to design. Cities as complex and systemic organisms require approaches that engage new multi-scalar strategies to connect the physical layer with the system of networked ecologies. This paper aims at investigating emerging and novel forms of reading and producing urban spaces reimagining the physical city through intelligent and mediated processes. Through data agency and responsive urban processes, the design methodology explored the materialization of a temporary pneumatic structure and membrane that tested material performance through fabrication and sensing practices through the pneuSENSE project developed in July 2016 in New York at the Brooklyn Navy Yard during the 'HyperCities' IaaC- Institute for Advanced Architecture of Catalonia - Global Summer School.
keywords responsive urban processes; data agency ; reciprocity between micro (body) and macro (environment); dynamics of social ecologies; mapped-environment
series eCAADe
email
last changed 2022/06/07 07:55

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia16_352
id acadia16_352
authors Farahi, Behnaz
year 2016
title Caress of the Gaze: A Gaze Actuated 3D Printed Body Architecture
doi https://doi.org/10.52842/conf.acadia.2016.352
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 352-361
summary This paper describes the design process behind Caress of the Gaze, a project that represents a new approach to the design of a gaze-actuated, 3D printed body architecture—as a form of proto-architectural study—providing a framework for an interactive dynamic design. The design process engages with three main issues. Firstly, it aims to look at form or geometry as a means of controlling material behavior by exploring the tectonic properties of multi-material 3D printing technologies. Secondly, it addresses novel actuation systems by using Shape Memory Alloy (SMA) in order to achieve life-like behavior. Thirdly, it explores the possibility of engaging with interactive systems by investigating how our clothing could interact with other people as a primary interface, using vision-based eye-gaze tracking technologies. In so doing, this paper describes a radically alternative approach not only to the production of garments but also to the ways we interact with the world around us. Therefore, the paper addresses the emerging field of shape-changing 3D printed structures and interactive systems that bridge the worlds of robotics, architecture, technology, and design.
keywords eye-gaze tracking, interactive design, 3d printing, smart material, programmable matter, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id caadria2016_589
id caadria2016_589
authors Grigoriadis, Kostas
year 2016
title Translating Digital to Physical Gradients
doi https://doi.org/10.52842/conf.caadria.2016.589
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 589-598
summary As the practice of using notations to translate from two to three-dimensions is becoming superseded by the direct relaying of building information digitally, the separation between designing and building is diminishing. A key aspect in lessening further this divi- sion, is heterogeneous materiality that supersedes component thinking and effectively tectonics. Being an embodiment of the redundancies of tectonic assembly, a curtain wall detail has been redesigned with a heterogeneous and continuous multi-material using CFD. The main research problem following this redesign has been the conversion of material data from the CFD program into a 3D-printable format and in order to achieve a closer linkage between design and building. This has been pursued by initially converting the fused material parameters into fluid weight data and eventually into RGB colour values. The re- sulting configuration was output initially as a multi-colour print and effectively fabricated in a multi-material.
keywords Multi-materials; CFD; 3D-printing; autography
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia16_318
id acadia16_318
authors Huang, Alvin
year 2016
title From Bones to Bricks: Design the 3D Printed Durotaxis Chair and La Burbuja Lamp
doi https://doi.org/10.52842/conf.acadia.2016.318
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 318-325
summary Drawing inspiration from the variable density structures of bones and the self-supported cantilvers of corbelled brick arches, the Durotaxis Chair and the La Burbuja lamp explore a material-based design process by responding to the challenge of designing a 3D print, rather than 3D printing a design. As such, the fabrication method and materiality of 3D printing define the generative design constraints that inform the geometry of each. Both projects are seen as experiments in the design of 3D printed three-dimensional space packing structures that have been designed specifically for the machines by which they are manufactured. The geometry of each project has been carefully calibrated to capitalize on a selection of specific design opportunities enabled by the capabilities and constraints of additive manufacturing. The Durotaxis Chair is a half-scale prototype of a fully 3D printed multi-material rocking chair that is defined by a densely packed, variable density three-dimensional wire mesh that gradates in size, scale, density, color, and rigidity. Inspired by the variable density structure of bones, the design utilizes principal stress analysis, asymptotic stability, and ergonomics to drive the logics of the various gradient conditions. The La Burbuja Lamp is a full scale prototype for a zero-waste fully 3D printed pendant lamp. The geometric articulation of the project is defined by a cellular 3D space packing structure that is constrained to the angles of repose and back-spans required to produce un-supported 3D printing.
keywords parametic design, digital fabrication, structural analysis, additive manufacturing, 3d printing
series ACADIA
type paper
email
last changed 2022/06/07 07:50

_id ijac201614403
id ijac201614403
authors Kontovourkis, Odysseas and George Tryfonos
year 2016
title Design optimization and robotic fabrication of tensile mesh structures: The development and simulation of a custom-made end-effector tool
source International Journal of Architectural Computing vol. 14 - no. 4, 333-348
summary This article presents an ongoing research, aiming to introduce a fabrication procedure for the development of tensile mesh systems. The purpose of current methodology is to establish an integrated approach that combines digital form- finding and robotic manufacturing processes by extracting data and information derived through elastic material behavior for physical implementation. This aspires to extend the capacity of robotically driven mechanisms to the fabrication of complex tensile structures and, at the same time, to reduce the defects that might occur due to the deformation of the elastic material. In this article, emphasis is given to the development of a custom-made end-effector tool, which is responsible to add elastic threads and create connections in the form of nodes. Based on additive fabrication logic, this process suggests the development of physical prototypes through a design optimization and tool-path verification.
keywords Robotic fabrication, tensile mesh structures, real-time response, end-effector tool, multi-objective gentic algorithms, structure optimization, form-finding
series journal
email
last changed 2016/12/09 10:52

_id caadria2016_363
id caadria2016_363
authors Lee, Alexander; Suleiman Alhadidi and M. Hank Haeusler
year 2016
title Developing a Workflow for Daylight Simulation
doi https://doi.org/10.52842/conf.caadria.2016.363
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 363-372
summary Daylight simulations are occasionally used as active tools in regards to local governing regulations, which are necessary for providing documentation. Simulation tools have been avoided in the past due to their barriers. Daylight simulation tools are used within documentation design stages as ‘passive tools’, however they do not have a direct impact on the architecture design decisions, as passive tools are used by engineers usually to derive material and glass speci- fications. Recent developments within an online community have pro- vided designers with access to daylight simulation tools within a de- sign platform accessible data can be modified and represented with local governing codes to provide designers with relevant information. The paper aimed to develop an active daylight simulation tool within a design platform. Data is filtered with the Green Star benchmarks to export visual information as well as a voxel matrix instead of 2D lu- minance maps. This paper outlines a workflow of the simulation tool used to evaluate daylight performance of a selected building as a case study in real time. The paper also details potential problems and justi- fied suggestions derived from the analysis for the building to reach the requirements within the Green Star Multi Unit Residential.
keywords Data-driven design; computation environmental design; daylight simulation; Green Star
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2016_203
id ecaade2016_203
authors Michalatos, Panagiotis and Payne, Andrew
year 2016
title Monolith: The Biomedical Paradigm and the Inner Complexity of Hierarchical Material Design
doi https://doi.org/10.52842/conf.ecaade.2016.1.445
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 445-454
summary This paper discusses our ongoing research into hierarchical volumetric modeling and the external forces which are motivating a shift from the traditional boundary representation (also known as BREP) that has thus far dominated design software toward a more flexible voxel-based representation capable of describing complex variable material distributions. We present Monolith; a volumetric modelling application which explores hybrid forms of digital representations and new design workflows that extend a designer's ability to describe the material properties of a 3d model at the mesoscopic and even microscopic scales. We discuss the inherent complexities in volumetric modelling and describe the design opportunities which heretofore were unavailable using existing techniques.
wos WOS:000402063700049
keywords hierarchical materials; multi-material 3d printing; voxels
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia16_236
id acadia16_236
authors Pineda, Sergio; Arora, Mallika; Williams, P. Andrew; Kariuki, Benson M.; Harris, Kenneth D. M.
year 2016
title The Grammar of Crystallographic Expression
doi https://doi.org/10.52842/conf.acadia.2016.236
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 236-243
summary This paper stems from a research collaboration which brings together two disciplines at different ends of the scale spectrum: crystallography and architecture. The science of crystallography demonstrates that the properties of crystalline materials are a function of atomic/molecular interactions and arrangements at the atomic level—i.e., functions of the form and structure of the material. Some of these nano-geometries are frameworks with special characteristics, such as uni-directional porosity, multi-directional porosity, and varied combinations of flexibility and strength. This paper posits that the symmetry operations implicit in these materials can be regarded as a spatial grammar in the design of objects, spaces, and environments. The aim is to allow designers and architects to access the wealth of structural information that is now accumulated in crystallographic databases as well as the spatial symmetry logics utilized in crystallography to describe molecular arrangements. To enable this process, a bespoke software application has been developed as a tool-path to allow for interoperability between crystallographic datasets and CAD-based modelling systems. The application embeds the descriptive logic and generative principles of crystallographic symmetry. Using this software, the project, inter alia, produces results related to a class of geometrical surfaces called Triply Periodic Minimal (TPM) surfaces. In addition to digital iterations, a physical prototype of one such surface called the gyroid was constructed to test potential applications in design. The paper describes the development of these results and the conclusions derived from the first stage of user testing.
keywords interdisciplinarity, physical prototyping, triply periodic minimal surfaces, computational workflow, bespoke software, crystallographic space groups, nano-scale symmetry, nano-scale periodicity, molecular geometry, crystallographic expression
series ACADIA
type paper
email
last changed 2022/06/07 08:00

_id sigradi2016_614
id sigradi2016_614
authors Ramos, Fernando da Silva; Linardi, Ana Beatriz de Araújo; Damiani, Vitor; Garotti, Flávio Valverde
year 2016
title Design e Acessibilidade para Educaç?o: Um caso de produç?o de material didático inclusivo, para o ensino de ci?ncias [Design and Accessibility to Education: A case of production of science inclusive teaching material]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.865-871
summary This article describes the methods of an inclusive design project developed by FACAMP’s NIEDA , as demanded by the UNICAMP Science Museum (Brazil). The objective was to create a multi-sensorial interface that would be capable of describing the process of energy generation and distribution in a hydro-power plant. It began with a scheme based on images and a narration was built out of audible and tactile systems so that it would be comprehensible for the blind public as well, without compromising the aesthetic and informative aspects. It also reveals the challenge of combining the use of multiple technological resources, such as 3D printing and laser cutting.
keywords Design; Education; Accessibility; Tecnology; Science
series SIGRADI
email
last changed 2021/03/28 19:59

_id caadria2016_529
id caadria2016_529
authors Rust, Romana; David Jenny, Fabio Gramazio and Matthias Kohler
year 2016
title Spatial Wire Cutting: Cooperative robotic cutting of non-ruled surface geometries for bespoke building components
doi https://doi.org/10.52842/conf.caadria.2016.529
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 529-538
summary The research project Spatial Wire Cutting (SWC) investi- gates a multi-robotic cutting technique that allows for an efficient production of geometrically complex architectural components. Being pursued by the group of Gramazio Kohler Research at ETH Zurich, this approach involves a spatially coordinated movement of two six- axis robotic arms that control the curvature of a hot-wire, which adopts itself against the resistance of the processed material (e.g. pol- ystyrene). In contrast to standard CNC hot-wire cutting processes, in which the cutting medium remains linear, it allows the automated fab- rication of non-ruled, doubly curved surfaces. This pursuit includes the development of a custom digital design and robotic control framework that combines computational simulation and manufactur- ing feedback information. Ultimately, SWC enables a considerably expanded design and fabrication space for complex architectural ge- ometries and their construction through automated robotic technology. This paper addresses the applied workflow and technology 1) such as computational design and simulation, robotic control and adaptive fabrication, 2) results of application within a two-week design and building workshop, and 3) will conclude with further steps of future research.
keywords Computational design and digital fabrication; feedback-based automated manufacturing; multi-robot control; digital simulation; hot-wire cutting
series CAADRIA
email
last changed 2022/06/07 07:56

_id ijac201614104
id ijac201614104
authors Wood, Dylan Marx; David Correa, Oliver David Krieg and Achim Menges
year 2016
title Material computation—4D timber construction: Towards building-scale hygroscopic actuated, self-constructing timber surfaces
source International Journal of Architectural Computing vol. 14 - no. 1, 49-62
summary The implementation of active and responsive materials in architecture and construction allows for the replacement of digitally controlled mechanisms with material-based systems that can be designed and programmed with the capacity to compute and execute a behavioral response. The programming of such systems with increasingly specific response requires a material-driven computational design and fabrication strategy. This research presents techniques and technologies for significantly upscaling hygroscopically actuated timber-based systems for use as self-constructing building surfaces. The timber’s integrated hygroscopic characteristics combined with computational design techniques and existing digital fabrication methods allow for a designed processing and reassembly of discrete wood elements into large-scale multi element bilayer surfaces. This material assembly methodology enables the design and control of the encoded direction and magnitude of humidity-actuated responsive curvature at an expanded scale. Design, simulation, and material assembly tests are presented together with formal and functional configurations that incorporate self-constructing and self-rigidizing surface strategies. The presented research and prototypes initiate a shift toward a large-scale, self-construction methodology.
keywords Hygroscopic, self-forming, computational design, autonomous actuation, wood structures
series journal
last changed 2016/06/13 08:34

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ijac201614207
id ijac201614207
authors Chaszar, Andre and Sam Conrad Joyce
year 2016
title Generating freedom: Questions of flexibility in digital design and architectural computation
source International Journal of Architectural Computing vol. 14 - no. 2, 167-181
summary Generative processes and generative design approaches are topics of continuing interest and debate within the realms of architectural design and related fields. While they are often held up as giving designers the opportunity (the freedom) to explore far greater numbers of options/alternatives than would otherwise be possible, questions also arise regarding the limitations of such approaches on the design spaces explored, in comparison with more conventional, human-centric design processes. This article addresses the controversy with a specific focus on parametric-associative modelling and genetic programming methods of generative design. These represent two established contenders within the pool of procedural design approaches gaining increasingly wide acceptance in architectural computational research, education and practice. The two methods are compared and contrasted to highlight important differences in freedoms and limitations they afford, with respect to each other and to ‘manual’ design. We conclude that these methods may be combined with an appropriate balance of automation and human intervention to obtain ‘optimal’ design freedom, and we suggest steps towards finding that balance.
keywords Design space exploration, parametric-associative modelling, genetic programming, mixed-initiative methods
series journal
last changed 2016/06/13 08:34

_id ecaade2016_096
id ecaade2016_096
authors Chen, Nai Chun, Nagakura, Takehiko and Larson, Kent
year 2016
title Social Media as Complementary Tool to Evaluate Cities - Data Mining Innovation Districts in Boston
doi https://doi.org/10.52842/conf.ecaade.2016.2.447
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 447-456
summary High tech industries are playing an important role in the economic development in the United States. While some cities are shrinking, the "innovation" cities are growing. The attributes that cause some cities to successfully become innovative is a very relevant 21st century topic and will be investigated here.Previous work conduct city analysis through conventional government GIS or census data but such analyses do not answer questions about the perception of citizens inhabiting the city, and the activities they conduct. The novelty of this current project is to make use of large-scale bottom-up data available from social media. Several social media sources-CrunchBase, Twitter, Yelp, and Flickr- were data mined pertaining to four innovation districts in Boston. We found that the success of innovation districts in Boston were correlated with several important variables: the most successful districts tended to occur near research institutions, in very "mixed use" areas, and were unexpectedly not correlated with land and labor prices, unlike technology districts in the past. Based on our study, we make recommendations for the urban design that cities should put in place to increase the potential for "innovation".
wos WOS:000402064400044
keywords Smart Cities; Social Media; Innovation District; Spatial Analysis; Data Mining; Natural Language Processing
series eCAADe
email
last changed 2022/06/07 07:55

_id ijac201614204
id ijac201614204
authors Lima, Fernando T; Jose R Kos and Rodrigo C Paraizo
year 2016
title Algorithmic approach toward Transit-Oriented Development neighborhoods: (Para)metric tools for evaluating and proposing rapid transit-based districts
source International Journal of Architectural Computing vol. 14 - no. 2, 131-146
summary This article focuses on the use of computational tools to provide dynamic assessment and optimized arrangements while planning and discussing interventions in urban areas. The objective is to address the use of algorithmic systems for generating and evaluating urban morphologies guided by Transit-Oriented Development principles. Transit- Oriented Development is an urban development model that considers geometric and measurable parameters for designing sustainable cities. It advocates compact mixed-use neighborhoods within walking distance to a variety of transportation options and amenities, seeking to result in optimized infrastructure provision and energy-efficient low- carbon districts. This article presents algorithmic experiments for the optimization of a rapid transit district, through its urban morphology and services’ location, providing an accurate Transit-Oriented Development modeling. The main findings of this study highlight that the combination of Transit-Oriented Development and algorithmic–parametric tools has the potential to significantly contribute to a process of responsible planning and, ultimately, to mitigate global warming.
keywords Transit Oriented Development, Optimization, Computational design, Urban planning
series journal
last changed 2016/06/13 08:34

_id ecaade2016_032
id ecaade2016_032
authors Lima, Fernando, Montenegro, Nuno, Beir?o, José Nuno and Kos, Jose
year 2016
title Computational Approach for the Assessment of Transit Oriented Development Principles - A multivariate optimization method for urban planning
doi https://doi.org/10.52842/conf.ecaade.2016.2.031
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 31-40
summary This paper presents a computational approach to provide dynamic assessment and optimization of principles derived from Transit Oriented Development (TOD) - an urban development model that advocates compact, walkable, and mixed-use neighborhoods, centered around transport stations. In spite of being increasingly promoted in several cities of the world, TOD lacks an approach that addresses multivariate data for optimization of its principles. In this paper, we propose a methodology backed by an algorithmic-parametric CAD environment, applied to a neighborhood unit in a case study. The objective is the analysis and improvement of TOD relevant and measurable features (transit accessibility, walkability and diversity) in order to optimize neighborhoods' features. The ultimate goal is to facilitate the management of solutions in TOD planning processes, supported by a principle-index-tool approach triad.
wos WOS:000402064400002
keywords Transit Oriented Development; Multi-objective optimization; Computational urban planning;
series eCAADe
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_777213 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002