CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 616

_id ecaade2017_144
id ecaade2017_144
authors Lange, Christian J.
year 2017
title Elements | robotic interventions II
doi https://doi.org/10.52842/conf.ecaade.2017.1.671
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 671-678
summary Reviewing the current research trends in robotic fabrication around the world, the trajectory promises new opportunities for innovation in Architecture and the possible redefinition of the role of the Architect in the industry itself. New entrepreneurial, innovative start-ups are popping up everywhere challenging the traditional model of the architect. However, it also poses new questions and challenges in the education of the architect today. What are the appropriate pedagogical methods to instill enthusiasm for new technologies, materials, and craft? How do we avoid the pure application of pre-set tools, such as the use of the laser cutter has become, which in many schools around the world has caused problems rather than solving problems? How do we teach students to invent their tools especially in a society that doesn't have a strong background in the making? The primary focus of this paper is on how architectural CAAD/ CAM education through the use of robotic fabrication can enhance student's understanding, passion and knowledge of materiality, technology, and craftsmanship. The paper is based on the pedagogical set-up and method of an M. Arch I studio that was taught by the author in fall 2016 with the focus on robotic fabrication, materiality, traditional timber construction systems, tool design and digital and physical craftsmanship.
keywords CAAD Education, Digital Technology, Craftsmanship, Material Studies, Tool Design, Parametric Modeling, Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia16_280
id acadia16_280
authors Thomsen, Mette Ramsgaard; Tamke, Martin; Karmon, Ayelet; Underwood, Jenny; Gengnagel, Christoph; Stranghoner, Natalie; Uhlemann, Jorg
year 2016
title Knit as bespoke material practice for architecture
doi https://doi.org/10.52842/conf.acadia.2016.280
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 280-289
summary This paper presents an inquiry into how to inform material systems that allow for a high degree of variation and gradation of their material composition. Presenting knit as a particular system of material fabrication, we discuss how new practices that integrate material design into the architectural design chain present new opportunities and challenges for how we understand and create cycles of design, analysis, specification and fabrication. By tracing current interdisciplinary efforts to establish simulation methods for knitted textiles, our aim is to question how these efforts can be understood and extended in the context of knitted architectural textiles. The paper draws on a number of projects that prototype methods for using simulation and sensing as grounds for informing the design of complex, heterogeneous and performative materials. It asks how these methods can allow feedback in the design chain and be interfaced with highly craft-based methods of fabrication.
keywords cross disciplinary collaboration, knitting, light weight simulation, idesign integrated fe simulation, interfacing, sensing, bespoke material fabrication
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2016_073
id ecaade2016_073
authors Borhani, Alireza and Kalantar, Negar
year 2016
title Material Active Geometry - Constituting Programmable Materials for Responsive Building Skins
doi https://doi.org/10.52842/conf.ecaade.2016.1.639
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 639-648
summary This paper is part of a body of research developing an exploratory dialogue between the built form and the environment, via experimentation with performative geometry and material. Here, geometry is considered a design material with the specific capacity to contribute to the performative aspects and kinetic capabilities of building skins.This work opens with a review of emerging opportunities for architects to design materials. It then discusses the concept of Material Active Geometry (MAG) as a means of designing new properties for existing materials. This is followed by a discussion of MAG principles that inform the concepts of flexibility and rigidity in a 3D-printed textile called Flexible Textile Structure (FTS). This research characterizes two FTS types and discusses their potential to be employed in building skins; it also considers combinatory approaches to computational models and physical prototyping. The work concludes with a discussion of the advantages of using FTS, and provides a trajectory for future research in the field of responsive materials and systems.
wos WOS:000402063700069
keywords Programmable Material; Material Active Geometry; Flexible Textile Structures; Responsive Building Skins; Flexible yet Rigid
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ascaad2016_016
id ascaad2016_016
authors Hadia, Hatem A.; Soofia T. E. Ozkan
year 2016
title Modelling in Architecture - physical or virtual?
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 135-144
summary The use of models is one of the oldest media for creating, communicating and representing ideas throughout the ages. An investigation into the nature and characteristics of two modelling techniques in architectural design, i.e. physical and digital modeling, was conducted in the educational and professional domains in two countries. The aim of this study was to establish: (a) the degree of tangibility in model making as opposed to conventional and computational design approach; and (b) the iconic limitation of both types of modelling in design. To this end a survey was carried out among practising architects and students of architecture to establish their preferences and practices with respect to physical and virtual modelling. Some face-to-face interviews were conducted and an online questionnaire was distributed to both the aspiring and established architects. Data gathered through the questionnaire survey, interviews and photographs of the modelling process was analysed to come to tangible conclusions. Hence, this paper presents an insight into the merits and demerits of both the physical and virtual modeling techniques as seen through the eyes of professional and training architects.
series ASCAAD
email
last changed 2017/05/25 13:31

_id ecaade2016_242
id ecaade2016_242
authors Kovács, Ádám Tamás and Szoboszlai, Mihály
year 2016
title Experience in CAAD Education Using a MOOC System
doi https://doi.org/10.52842/conf.ecaade.2016.1.269
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 269-274
summary This paper describes some of the challenges of using a Massive Open Online Course (MOOC) framework system with a variety of digital content. Situated in the 'efficiency' paradigm of digital design methods and Computer Aided Architectural Design (CAAD) education, we allow participants to set their own schedules, meet demands that are appropriate for their abilities, and determine their own path. The content within this framework motivates students through life-like tasks and examples. This paper shares our experiences in CAAD education through a course curriculum developed by applying a variety of digital content. We have focused on resolving the problem of inefficient teaching of CAAD systems by developing a blended learning curriculum.
wos WOS:000402063700030
keywords CAAD; education; b-learning; MOOC; curriculum analytics; mind-map
series eCAADe
email
last changed 2022/06/07 07:51

_id sigradi2016_360
id sigradi2016_360
authors Leonard, Francisca Rodríguez
year 2016
title Evaluación de las condiciones de orientación temporal en programas de modelación lumínica [Evaluation of temporal orientation conditions in lighting simulation software]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.446-452
summary The study analyzes three basic visual aspects of light (Spatial distribution of brightness, shadows and color of light) in their ability to communicate temporal information by modeling two specific scenarios using different lighting simulation software (DIALux and Relux). The results confirm the potentiality of natural light to assess temporal disorientation in indoor environments. At the same time, the study proposes new opportunities for improving natural light representation in the simulation field.
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2016_714
id sigradi2016_714
authors Mussi, Andréa Quadrado; Romanini, Anicoli; Lantelme, Elvira; Martins, Marcele Salles
year 2016
title Arquitetura inclusiva: a planta tátil como instrumento de projeto colaborativo com portadores de defici?ncia visual [Inclusive architecture: the tactile model as collaborative design tool with the blind and visually impaired people]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.387-393
summary This work aims to analyze the use of tactile model as a way to provide a collaborative medium between the blind and visually impaired people and architects in order to enable the development of the architectural project of a center for training and rehabilitation in the city of Passo Fundo, RS, Brazil. Therefore, two tactile models have been built with different materials and technologies and tested by blind and visually impaired people. This paper describes the process of building the models, their strengths and weaknesses and discusses their applicability to the development of the rehabilitation center design project.
keywords Blind and visually impaired people, Design process, Tactile model, Cutter laser
series SIGRADI
email
last changed 2021/03/28 19:59

_id sigradi2016_414
id sigradi2016_414
authors Pe?a, María Magdalena
year 2016
title La importancia del Trabajo Colaborativo en la ense?anza de la Metodología de Dise?o de Proyectos [The importance of collaborative work in teaching Project Design Methodology]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.175-179
summary Nowadays organizations require their employees to develop transferable skills to take advantage in multidisciplinary teamworks. In this context, it is important to implement within the teaching of Project Design Methodology at postgraduate level, some strategies that promote this type of competition through the creation of opportunities for collaborative work. ICTs are presented as ideal tools for the implementation of teaching methods involving e-learning, and developing a suitable design of the interface with the student. The advisor is the key and must act in every moment as a guide.
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia16_244
id acadia16_244
authors Ramirez-Figueroa, Carolina; Hernan, Luis; Guyet, Aurelie; Dade-Robertson, Martyn
year 2016
title Bacterial Hygromorphs: Experiments into the Integration of Soft Technologies into Building Skins
doi https://doi.org/10.52842/conf.acadia.2016.244
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 244-253
summary The last few years have seen an increase in the interest to bring living systems into the process of design. Work with living systems, nonetheless, presents several challenges. Aspects such as access to specialists’ labs, samples of living systems, and knowledge to conduct experiments in controlled settings become barriers which prevent designers from developing a direct, material engagement with the material. In this paper, we propose a design methodology which combines development of experiments in laboratory settings with the use of what we call material proxies, which refer to materials that operate in analogue to some of the behaviors observed in the target organism. We will propose that combining material proxies with basic scientific experimentation constitutes a form of direct material engagement, which encourages richer exploration of the design domain. We will develop this argument by reporting on our experience in designing and delivering the primer component of a themed design studio, structured around bacterial spores as hygroscopic components of building facades. The six-week design project asked students to consider the behavior of bacterial spores, and to imagine a number of systems in which they could be employed as actuators of a membrane system that responded to fluctuations in humidity. The module is interesting in that it negotiates some of the challenges often faced by designers who want to develop a material engagement with living systems, and to produce informed speculations about their potential in architectural design.
keywords actuators, architecture, building skins, artifical muscles, hygromorphs, bacterial spores
series ACADIA
type paper
email
last changed 2022/06/07 08:00

_id ascaad2022_033
id ascaad2022_033
authors Rohani, Nima; Kim, Ikhwan
year 2022
title Urban Design Analysis of New York City's Virtual Model: The Case of Tom Clancy's The Division
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 188-201
summary People have started spending time with digital tools and virtual worlds to escape reality's horrors. However, designed spaces are more than the players' needs, especially those digital games that their stories involve urban environments. This inefficiency causes spending futile efforts both in time and cost for the digital games' productions; The urban environments in these digital games are replicas of real-world cities. Some companies use some techniques for downgrading replicas. Therefore, this study aims to uncover the used techniques for designing Tom Clancy's The Division (2016). By using reverse engineering methodology and qualitative comparative analysis, the in-game map compared with the real-world map. Based on the results, the used techniques allowed the designers to scale down the game environment to be 2.5 times smaller than the actual city. Rather, verisimilitude is achieved by combining sufficiently accurate elements to give the impression of complete accuracy. By implementing the results of this research, designers can develop smaller replicas to be perceived as more extensive.
series ASCAAD
email
last changed 2024/02/16 13:24

_id acadia16_98
id acadia16_98
authors Smith, Shane Ida; Lasch, Chris
year 2016
title Machine Learning Integration for Adaptive Building Envelopes: An Experimental Framework for Intelligent Adaptive Control
doi https://doi.org/10.52842/conf.acadia.2016.098
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 98-105
summary This paper describes the development of an Intelligent Adaptive Control (IAC) framework that uses machine learning to integrate responsive passive conditioning at the envelope into a building’s comprehensive conventional environmental control system. Initial results show that by leveraging adaptive computational control to orchestrate the building’s mechanical and passive systems together, there exists a demonstrably greater potential to maximize energy efficiency than can be gained by focusing on either system individually, while the addition of more passive conditioning strategies significantly increase human comfort, health and wellness building-wide. Implicitly, this project suggests that, given the development and ever increasing adoption of building automation systems, a significant new site for computational design in architecture is expanding within the post-occupancy operation of a building, in contrast to architects’ traditional focus on the building’s initial design. Through the development of an experimental framework that includes physical material testing linked to computational simulation, this project begins to describe a set of tools and procedures by which architects might better conceptualize, visualize, and experiment with the design of adaptive building envelopes. This process allows designers to ultimately engage in the opportunities presented by active systems that govern the daily interactions between a building, its inhabitants, and their environment long after construction is completed. Adaptive material assemblies at the envelope are given special attention since it is here that a building’s performance and urban expression are most closely intertwined.
keywords model predictive control, reinforcement learning, energy performance, adaptive envelope, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2016_104
id ecaade2016_104
authors Spaeth, A. Benjamin, Dounas, Theodoros and Kieferle, Joachim
year 2016
title Complexity and Simplicity - Tensions in teaching computation to large numbers of architecture students
doi https://doi.org/10.52842/conf.ecaade.2016.1.229
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 229-236
summary This paper describes the challenges and approaches to introduce computational thinking to a large and diverse group of architecture students during an international workshop with 300 students from different cultural backgrounds and educational levels, also integrating a diverse group of tutors whose computational expertise varied extremely. The approach suggested articulating a design task which enforced computational thinking but enabled different levels of engagement with the computer as a tool. Hypothetically this would allow all participants to engage with the computational thinking agenda regardless their computational affinity even whilst applying analogue methods. Besides the intercultural experience the workshop was successful in exposing a large group of students and tutors to the concepts of computational design whilst accommodating different learning preferences and engagement with the computer as a device.
wos WOS:000402063700026
keywords Computation Education; CAAD; Large Cohorts; Computational Strategies
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia19_392
id acadia19_392
authors Steinfeld, Kyle
year 2019
title GAN Loci
doi https://doi.org/10.52842/conf.acadia.2019.392
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 392-403
summary This project applies techniques in machine learning, specifically generative adversarial networks (or GANs), to produce synthetic images intended to capture the predominant visual properties of urban places. We propose that imaging cities in this manner represents the first computational approach to documenting the Genius Loci of a city (Norberg-Schulz, 1980), which is understood to include those forms, textures, colors, and qualities of light that exemplify a particular urban location and that set it apart from similar places. Presented here are methods for the collection of urban image data, for the necessary processing and formatting of this data, and for the training of two known computational statistical models (StyleGAN (Karras et al., 2018) and Pix2Pix (Isola et al., 2016)) that identify visual patterns distinct to a given site and that reproduce these patterns to generate new images. These methods have been applied to image nine distinct urban contexts across six cities in the US and Europe, the results of which are presented here. While the product of this work is not a tool for the design of cities or building forms, but rather a method for the synthetic imaging of existing places, we nevertheless seek to situate the work in terms of computer-assisted design (CAD). In this regard, the project is demonstrative of a new approach to CAD tools. In contrast with existing tools that seek to capture the explicit intention of their user (Aish, Glynn, Sheil 2017), in applying computational statistical methods to the production of images that speak to the implicit qualities that constitute a place, this project demonstrates the unique advantages offered by such methods in capturing and expressing the tacit.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ascaad2016_037
id ascaad2016_037
authors Wannan, Samer R.
year 2016
title Teaching Parametric Design in Architecture - A Case Study
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 357-366
summary The increasing technological advancements nowadays make the integration of digital tools and techniques in architecture pedagogy a must. A course in the department of architecture at Birzeit University in Palestine was proposed as a summer course in order to introduce students to the possibilities of using digital parametric tools and techniques in architecture design and manufacturing. In reflection of the experiment of the course, in which students were asked to design and construct a temporary pavilion, the paper will examine the potentials and challenges of using parametric digital tools in architecture design, and the way students imagine and conceive the performance of their design ideas virtually and practically. Furthermore, the project proposes that form is not constrained to the form-making process, but form must be a response to a material system and its properties, and thus material should be engaged in the design process. Initial design ideas are explored by building a parametric 3D digital model using a visual scripting platform. This virtual model allows for the evaluation of the performance of the design and the assembly method before realization and, moreover, experiments with design alternatives and forms. The final full-detailed digital model will be used in the fabrication phase to construct a one-to-one scale physical model in the real world, which gives students the chance to get sense and interact with the implemented environment and to experience their designs in real world.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ecaade2016_047
id ecaade2016_047
authors Webb, Nicholas, Buchanan, Alexandrina and Peterson, John Robert
year 2016
title Modelling Medieval Vaults: Comparing Digital Surveying Techniques to Enhance our Understanding of Gothic Architecture
doi https://doi.org/10.52842/conf.ecaade.2016.2.493
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 493-502
summary Surveying tools such as laser scanning and photogrammetry are increasingly accessible, providing opportunities as digital mediators to enhance our understanding of architectural heritage. Here we discuss and compare the use of both techniques as starting points to analyse medieval vaults at two sites in England: Chester Cathedral and Exeter Cathedral. The project is inspired by the work of Robert Willis, a Victorian scholar who hypothesised how medieval vaults were designed and constructed; however, he did not have sufficient survey data to fully prove his theories. We will discuss the accuracy of each digital survey method in relation to our research that occurred at two distinct scales: the overall geometry of vault rib arcs where vault bays were several metres in length and width, as well as more detailed investigations of individual rib profiles where millimetre accuracy is required. We will compare laser scanning with photogrammetry in terms of their methodological and practical applications to architectural heritage in the particular context of medieval vault design, in order to assess the relative merits of each and aid decision-making as to which method should be used in specific circumstances.
wos WOS:000402064400049
keywords Photogrammetry; laser scanning; point cloud modelling; medieval vaults; digital heritage
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia20_238
id acadia20_238
authors Zhang, Hang
year 2020
title Text-to-Form
doi https://doi.org/10.52842/conf.acadia.2020.1.238
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 238-247.
summary Traditionally, architects express their thoughts on the design of 3D architectural forms via perspective renderings and standardized 2D drawings. However, as architectural design is always multidimensional and intricate, it is difficult to make others understand the design intention, concrete form, and even spatial layout through simple language descriptions. Benefiting from the fast development of machine learning, especially natural language processing and convolutional neural networks, this paper proposes a Linguistics-based Architectural Form Generative Model (LAFGM) that could be trained to make 3D architectural form predictions based simply on language input. Several related works exist that focus on learning text-to-image generation, while others have taken a further step by generating simple shapes from the descriptions. However, the text parsing and output of these works still remain either at the 2D stage or confined to a single geometry. On the basis of these works, this paper used both Stanford Scene Graph Parser (Sebastian et al. 2015) and graph convolutional networks (Kipf and Welling 2016) to compile the analytic semantic structure for the input texts, then generated the 3D architectural form expressed by the language descriptions, which is also aided by several optimization algorithms. To a certain extent, the training results approached the 3D form intended in the textual description, not only indicating the tremendous potential of LAFGM from linguistic input to 3D architectural form, but also innovating design expression and communication regarding 3D spatial information.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ascaad2016_049
id ascaad2016_049
authors Abdelsabour, Inas; Heba Farouk
year 2016
title Impact of Using Structural Models on Form Finding - Incorporating Practical Structural Knowledge into Design Studio
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 483-492
summary Physical Models as an architectural design tool, had major effect on architecture learning process. In structural form finding, it helped in improving visual design thinking to track form creation processes during form finding design stage. The aim is to study the impact of using physical models for second year architecture students in design studios learning. By analyzing and comparing students’ performance and progress; to clarify the effect of using physical models as a tool for designing progression, followed by analytical study on the students' structural models, in order to investigate the influence of models on their design educational progress. Research achieved that there were three basic phases the students pass through during form finding process when used manual physical models that improve the students' design capability.
series ASCAAD
email
last changed 2017/05/25 13:33

_id sigradi2016_448
id sigradi2016_448
authors Afsari, Kereshmeh; Eastman, Charles M.; Shelden, Dennis R.
year 2016
title Data Transmission Opportunities for Collaborative Cloud-Based Building Information Modeling
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.907-913
summary Collaboration within Building Information Modeling process is mainly based on file transfer while BIM data being exchanged in either vendor specific file formats or neutral format using Industry Foundation Classes (IFC). However, since the Web enables Cloud-based BIM services, it provides an opportunity to exchange data via Web transfer services. Therefore, the main objective of this paper is to investigate what features of Cloud interoperability can assist a network-based BIM data transmission for a collaborative work flow in the Architecture, Construction, and Engineering (AEC) industry. This study indicates that Cloud-BIM interoperability needs to deploy major components such as APIs, data transfer protocols, data formats, and standardization to redefine BIM data flow in the Cloud and to reshape the collaboration process.
keywords BIM; Cloud Computing; Data Transmission; Interoperability; IFC
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_744164 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002