CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 327

_id acadia16_362
id acadia16_362
authors Beesley, Philip; Ilgun, Zeliha, Asya; Bouron, Giselle; Kadish, David; Prosser, Jordan; Gorbet, Rob; Kulic, Dana; Nicholas, Paul; Zwierzycki, Mateusz
year 2016
title Hybrid Sentient Canopy: An implementation and visualization of proprioreceptive curiosity-based machine learning
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 362-371
doi https://doi.org/10.52842/conf.acadia.2016.362
summary This paper describes the development of a sentient canopy that interacts with human visitors by using its own internal motivation. Modular curiosity-based machine learning behaviour is supported by a highly distributed system of microprocessor hardware integrated within interlinked cellular arrays of sound, light, kinetic actuators and proprioreceptive sensors in a resilient physical scaffolding system. The curiosity-based system involves exploration by employing an expert system composed of archives of information from preceding behaviours, calculating potential behaviours together with locations and applications, executing behaviour and comparing result to prediction. Prototype architectural structures entitled Sentient Canopy and Sentient Chamber developed during 2015 and 2016 were developed to support this interactive behaviour, integrating new communications protocols and firmware, and a hybrid proprioreceptive system that configured new electronics with sound, light, and motion sensing capable of internal machine sensing and externally- oriented sensing for human interaction. Proprioreception was implemented by producing custom electronics serving photoresistors, pitch-sensing microphones, and accelerometers for motion and position, coupled to sound, light and motion-based actuators and additional infrared sensors designed for sensing of human gestures. This configuration provided the machine system with the ability to calculate and detect real-time behaviour and to compare this to models of behaviour predicted within scripted routines. Testbeds located at the Living Architecture Systems Group/Philip Beesley Architect Inc. (LASG/PBAI, Waterloo/Toronto), Centre for Information Technology (CITA, Copenhagen) National Academy of Sciences (NAS) in Washington DC are illustrated.
keywords intedisciplinary/collaborative design, intelligent environments, artificial intelligence, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id caadria2016_819
id caadria2016_819
authors Foulcher, Nicholas C.; Hedda H. Askland and Ning Gu
year 2016
title Disruptions: Impact of Digital Design Technologies on Continuity in Established Design Process Paradigms
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 819-828
doi https://doi.org/10.52842/conf.caadria.2016.819
summary This paper aims to provide a critical understanding of the discipline of architectural education, exploring how digital technology forms part of two Australian architecture schools. Generally accepted as the unbroken and consistent existence or operation of something over a period of time, continuity represents stability without interrup- tion. In the context of architectural design education, continuity aligns almost symbiotically with the design process; a system that facilitates a continuous loop of input, output and feedback for the designer— from defining the brief, collecting information, synthesising and pre- senting a design proposal. Preliminary findings of a larger research study that investigates the role of technology in architecture educa- tion, suggest that cultural patterns of technology adoption and valua- tion exist, valorising particular tools and establishing a framework for design teaching and practice that might disrupt the continuity of stu- dents’ design process. Moreover, the study shows evidence of a dis- ruption of continuity in design school narratives, emphasising the need to rethink design pedagogy and the place of technology herein. Reflecting on these observations, this paper explores the question: when the tools of digital technology challenge the established design process paradigm of an architectural school, how do educators re- spond to such a disruption in continuity?
keywords Digital design technology: student learning; course delivery; perception; phenomenology
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2016_038
id ecaade2016_038
authors Lee, Jongwook, Min, Aram and Lee, Jihyun
year 2016
title An Intuitive Heritage Education System for Learning Architectural Structures and Styles - Focusing on the historical Korean architectures
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 529-537
doi https://doi.org/10.52842/conf.ecaade.2016.2.529
wos WOS:000402064400053
summary Although national and international attention toward the cultural heritage is on a rise, there is a lack of public attention toward cultural heritage sites. One of the main problems is the lack of interaction and the visualization of cultural heritage on the sites. Especially Korean historical architectures are structurally complex and are not easily understood by common people. To improve the public awareness of architectural heritages, we propose a model-based diagnosis system to educate the visitors and tourists. The system is designed to guide the users to model an appropriate architecture in accordance with the era, location, and the usage. For the system, we built a robust set of cases based on the ontological structure we designed especially for architectural heritage education. It basically enables users to reconstruct buildings intuitively in six steps from bottom to top. A system evaluation was conducted on the affective, cognitive, operative aspect of the system at a heritage site. The results show well in terms of cognitive aspect but was evaluated poorly in terms of the operative aspect.
keywords Historical Korean architecture; JESS rule engine; heritage education system
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2016_015
id ecaade2016_015
authors Nováková, Kateøina and Achten, Henri
year 2016
title From Interactivity Towards Ambience Through a Bottle-brick
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 613-619
doi https://doi.org/10.52842/conf.ecaade.2016.1.613
wos WOS:000402063700066
summary According to the dictionary ambient architecture should be kind of object or space that relies to its surrounding or spontaneously reacts on the presence of human. Ambient architecture can also be musically expressed [1] or painted [2]. We developed special architectural building units that offer space for incorporation of intelligence and media for human interaction and for ambience.We are introducing an object called PET(ch)air made of PET(b)rick [3], a hollow transparent bottle-brick. The first intention was to generate new building unit from recycled PET material. Now that we observe its qualities, we can see it is well prepared for ambient intelligence application, especially in combination with light. For the purpose of a brick we are transforming old recycled plastic into new bottle-bricks. Using the bottle-brick as building unit we build interior objects that are ready to turn spaces into ambient rooms, places that can be customized by their visitors or spontaneously react on them. Together with this, we opened a design studio, where students were asked to develop ambient interior pieces for a special event using the method of learning by doing.
keywords Interactivity; ambient architecture; waste reuse ; bottle-brick; PET(b)rick; PET(ch)air
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2016_111
id ecaade2016_111
authors Passaro, Andrés Martin, Henriques, Gonçalo Castro and Paraizo, Rodrigo Cury
year 2016
title Sensitive Shelters: Poetics of Interaction
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 537-548
doi https://doi.org/10.52842/conf.ecaade.2016.1.537
wos WOS:000402063700059
summary This paper describes and reflects about a workshop activity in the field of Digital Manufacturing technologies to build responsive shelters that interact with their users and the environment. It addresses a teaching strategy intended to overcome tooling or the simple use of instruments and proposes instead to frame the production of objects using a new language, or a new operative strategy, directly linked to the production of the objects. It addresses a teaching strategy behind the workshop two main levels: first, by the development of technical skills by means of an operative action directly linked to the production of the object, and not apart from the action of making it (as in learning first and applying later). And second - and no less important -, it helped foster the maturation of critical thinking arising from the creation of a dynamic object of architecture - with moving parts and programmed to respond to its users.
keywords Digital Fabrication; Parametric Design; Responsive Architecture; Sensitive Shelters
series eCAADe
email
last changed 2022/06/07 07:59

_id ijac201614103
id ijac201614103
authors Savov, Anton; Oliver Tessmann and Stig Anton Nielsen
year 2016
title Sensitive Assembly: Gamifying the design and assembly of fac?ade wall prototypes
source International Journal of Architectural Computing vol. 14 - no. 1, 30-48
summary The article describes a method for gamifying the design and assembly of computationally integrated structures built out of discrete identical blocks. As a case study, the interactive installation Sensitive Assembly was designed and built at the Digital Design Unit (Prof. Dr Oliver Tessmann) at the Technische Universita?t of Darmstadt and exhibited during the digital art festival NODE 2015 in Frankfurt in 2015. Sensitive Assembly invites people to play a Jenga-like game: starting from a solid wall, players are asked to remove and replace the installation’s building blocks to create windows to a nurturing light while challenging its stability. A computational system that senses the current state of the wall guides the physical interaction and predicts an approaching collapse or a new light beam breaking through. The installation extends the notion of real-time feedback from the digital into the physical and uses machine-learning techniques to predict future structural behaviour.
keywords Gamification, prediction, feedback, interaction, assembly
series journal
last changed 2016/06/13 08:34

_id sigradi2017_082
id sigradi2017_082
authors Itao Palos, Karine; Gisela Belluzzo de Campos
year 2017
title A resiliência na tipografia digital: Interações propiciadas por programas generativos [Resilience in digital typography: Interactions provided by generative programs]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.568-574
summary This article aims to describe the ephemeral qualities that typography acquires in the digital context, caused by the polyvalence of the algorithmic code, which, from generative programming, allows the user to interact with the typographic object. These reflection are realized through the study of four projects: “Lettree” (2004), “Pyrographie” (2005), “Falling in Love” (2016) and “He liked Thick Word Soup” (2014). The observations were made by drawing a comparison between the concept of “matter” in the computational scenario proposed by the design philosopher Vilém Flusser (2015) and the quality of “fluidity” observed in the images created by digital generative programs.
keywords Typography; Interaction; Generative Systems; Design; Resilience.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ascaad2016_047
id ascaad2016_047
authors Algeciras-Rodríguez, José
year 2016
title Trained Architectonics
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 461-468
summary The research presented here tests the capacity of artificial-neural-network (ANN) based multi-agent systems to be implemented in architectural design processes. Artificial Intelligence algorithms allow for a new approach to design, taking advantage of its generic functioning to produce meaningful outcomes. Experimentation within this project is based on Self-Organizing Maps (SOMs) and takes advantage of its behavior in topology to produce architectural geometry. SOMs as full stochastic processes involve randomness, uncertainty and unpredictability as key features to deal with during the design process. Following this behavior, SOMs are used to transmit information, which, instead of being copied, is reproduced after a learning (training) process. Pre-existent architectural objects are taken as learning models as they have been considered masterpieces. In this context, by defining the SOM input set, masterpieces become measurement elements and can be used to set a distance to the new element position in a comparatistic space. The characteristics of masterpieces get embedded within the code and are transmitted to 3D objects. SOM produced objects from a population with shared characteristics where the masterpiece position is its probabilistic center point.
series ASCAAD
email
last changed 2017/05/25 13:33

_id caadria2016_013
id caadria2016_013
authors Aschwanden, Gideon D.P.A.
year 2016
title Neighbourhood detection with analytical tools
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 13-22
doi https://doi.org/10.52842/conf.caadria.2016.013
summary The increasing population size of cities makes the urban fabric ever more complex and more disintegrated into smaller areas, called neighbourhoods. This project applies methods from geoscience and software engineering to the process of identification of those neighbourhoods. Neighbourhoods, by nature, are defined by connec- tivity, centrality and similarity. Transport and geospatial datasets are used to detect the characteristics of places. An unsupervised learning algorithm is then applied to sort places according to their characteris- tics and detect areas with similar make up: the neighbourhood. The at- tributes can be static like land use or space syntax attributes as well as dynamic like transportation patterns over the course of a day. An un- supervised learning algorithm called Self Organizing Map is applied to project this high dimensional space constituting of places and their attributes to a two dimensional space where proximity is similarity and patterns can be detected – the neighbourhoods. To summarize, the proposed approach yields interesting insights into the structure of the urban fabric generated by human movement, interactions and the built environment. The approach represents a quantitative approach to ur- ban analysis. It reveals that the city is not a polychotomy of neigh- bourhoods but that neighbourhoods overlap and don’t have a sharp edge.
keywords Data analytics; urban; learning algorithms; neighbourhood delineation
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2016_027
id ascaad2016_027
authors Cocho-Bermejo, Ana
year 2016
title Time in Adaptable Architecture - Deployable emergency intelligent membrane
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 249-258
summary The term "Parametricism" widespread mainly by Patrick Schumacher (Schumacher, 2008) is worthy of study. Developing the concept of Human Oriented Parametric Architecture, the need of implementing time as the lost parameter in current adaptive design techniques will be discussed. Morphogenetic processes ideas will be discussed through the principle of an adaptable membrane as a case study. A model implementing a unique Arduino[i] on the façade will control its patterns performance through an Artificial Neural Network that will understand the kind of scenario the building is in, activating a Genetic Algorithm that will optimize the insulation performance of the ETFE pillows. The system will work with a global behavior for façade pattern performance and with a local one for each pillow, giving the option of individual sun-shading control. Machine learning implementation will give the façade the possibility to learn from the efficacy of its decisions through time, eliminating the need of a general on-off behavior.
series ASCAAD
email
last changed 2017/05/25 13:31

_id sigradi2016_805
id sigradi2016_805
authors Cormack, Jordan; Sweet, Kevin S.
year 2016
title Parametrically Fabricated Joints: Creating a Digital Workflow
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.412-417
summary Timber joinery for furniture and architectural purpose has always been identified as a skill or craft. The craft is the demonstration of hand machined skill and precision which is passed down or developed through the iteration of creation and refined reflection. Using digital fabrication techniques provides new, typically unexplored ways of creating and designing joints. It is as if these limitations which bind the ratio of complexity and use are stretched. This means that these joints, from a technical standpoint, can be more advanced than historically hand-made joints as digital machines are not bound by the limitations of the human. The research investigated in this paper explores the ability to create sets of joints in a parametric environment that will be produced with CNC machines, thus redefining the idea of the joint through contemporary tools of creation and fabrication. The research also aims to provide a seamless, digital workflow from the flexible, parametric creation of the joint to the final physical fabrication of it. Traditional joints, more simple in shape and assembly, were first digitally created to ease the educational challenges of learning a computational workflow that entailed the creation and fabrication of geometrically programmed joints. Following the programming and manufacturing of these traditional joints, more advanced and complex joints were created as the understanding of the capabilities of the software and CNC machines developed. The more complex and varied joints were taken from a CAD virtual environment and tested on a 3-axis CNC machine and 3D printer. The transformation from the virtual environment to the physical highlighted areas that required further research and testing. The programmed joint was then refined using the feedback from the digital to physical process creating a more robust joint that was informed by reality.
keywords Joinery; digital fabrication; parametric; scripting; machining
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_693
id caadria2016_693
authors Fernando, Ruwan; Karine Dupre and Henry Skates
year 2016
title Tangible User Interfaces for Teaching Building Physics: Towards continuous designing in education
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 693-702
doi https://doi.org/10.52842/conf.caadria.2016.693
summary This paper follows our evaluation and research into designing tangible physical media for the purposes of teaching building physics to undergraduate architecture students. These media interfaces make use of a virtual environment to promote an understanding of the cycles, which govern architectural and urban projects (for example solar studies, the flow of heat, air and water). This project aims to create an ecology of devices which can be used by students to self-direct themselves and harbour critical making in their research methods (with the explicit intent of dissolving the barrier between design and research). The basic premise of this research, is that in light of growing student numbers, more students lacking confidence in numeracy skills as well as the desire to have self-directed or group-directed learning, tangible media has a promising role to play. There are several reasons for this optimism. The first is that a better sense of intuition is gained from an interactive model over reading notes from a lecture or textbook. The second is that tangible media engages in other modes of learning, being valuable to students who have an aptitude for kinesthetic and spatial learning over text-dominant learning.
keywords Pedagogy; tangible user interfaces; augmented reality; internet of things; designing for teaching
series CAADRIA
email
last changed 2022/06/07 07:50

_id ascaad2016_041
id ascaad2016_041
authors Kartalou, Nikolia
year 2016
title Visualising Heritage-Memory - The paradigm of Chambers Street
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 399-408
summary Aristotle in his treatise, On the Soul, defined memory as knowledge of the past, obtained through seeing, sensing, observing, listening and learning. Memory can be envisaged as the mental imprint of an image that can be recalled through the experience of existing objects and places. How is cultural heritage related to the experience and knowledge called memory? Why do memories appear to have a strong influence in unconscious spatial perception? How can visualisation techniques activate heritage-memory? Buildings, as tangible elements of the historic city, disclose the memories of the past into the present, and direct us to an experience of time through matter. Buildings serve as a link bridging the past with the present, and eventually, the future sites of memory. Their fabric is constantly altered with engraved layers of historical change, a sequence of past events which emerge from the remnants of their structure. The past, imprinted on the city’s artefacts, manifests its tangible form, and through a new reading of heritage, as ‘heritage-memory’, immaterial qualities of previous eras can perhaps be revealed. This paper, part of an ongoing research situated in between theory and practice, argues that the immaterial elements of cultural heritage emerging from historic urban spaces, can be critically explored in a new way through the use of digital technology, as a tool to revisualise the memory of a locus. Taking Chambers Street in the Old Town of Edinburgh as a site of focus, this presentation demonstrates several steps towards visualising the heritage-memory of the site. The paper poses the question of how the site might serve as a memorial itself, revealing to the observer the knowledge of past events engraved on its locus. Chambers Street serves as a paradigm of constructing a virtual narrative of heritage-memory, examining the site in parts and whole.
series ASCAAD
email
last changed 2017/05/25 13:33

_id acadia16_130
id acadia16_130
authors Koschitz, Duks; Ramagosa, Bernat; Rosenbaum, Eric
year 2016
title Beetle Blocks: A New Visual Language for Designers and Makers
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 130-139
doi https://doi.org/10.52842/conf.acadia.2016.130
summary We are introducing a new teaching tool to show designers, architects, and artists procedural ways of constructing objects and space. Computational algorithms have been used in design for quite some time, but not all tools are very accessible to novice programmers, especially undergraduate students. ‘Beetle Blocks’ (beetleblocks.com) is a software environment that combines an easy-to-use graphical programming language with a generative model for 3D space, drawing on ‘turtle geometry,’ a geometry paradigm introduced by Abelson and Disessa, that uses a relative as opposed to an absolute coordinate system. With Beetle Blocks, designers are able to learn computational concepts and use them for their designs with more ease, as individual computational steps are made visually explicit. The beetle, the relative coordinate system, follows instructions as it moves about in 3D space. Anecdotal evidence from studio teaching in undergraduate programs shows that despite the early introduction of digital media and tools, architecture students still struggle with learning formal languages today. Beetle Blocks can significantly simplify the teaching of complex geometric ideas and we explain how this can be achieved via several examples. The blocks-based programming language can also be used to teach fundamental concepts of manufacturing and digital fabrication and we elucidate in this paper which possibilities are conducive for 2D and 3D designs. This project was previously implemented in other languages such as Flash, Processing and Scratch, but is now developed on top of Berkeley’s ‘Snap!’
keywords generative design, design pedagogy, digital fabrication, tool-building, pedagogical tools
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaade2016_023
id ecaade2016_023
authors Olascoaga, Carlos Sandoval, Xu, Wenfei and Flores, Hector
year 2016
title Crowd-Sourced Neighborhoods - User-Contextualized Neighborhood Ranking
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 19-30
doi https://doi.org/10.52842/conf.ecaade.2016.2.019
wos WOS:000402064400001
summary Finding an attractive or best-fit neighborhood for a new resident of any city is not only important from the perspective of the resident him or herself, but has larger implications for developers and city planners. The environment or mood of the right neighborhood is not simply created through traditional characteristics such as income, crime, or zoning regulations - more ephemeral traits related to user-perception also have significant weight. Using datasets and tools previously unassociated with real-estate decision-making and neighborhood planning, such as social media and machine learning, we create a non-deterministic and customized way of discovering and understanding neighborhoods. Our project creates a customizable ranking system for the 195 neighborhoods in New York City that helps users find the one that best matches their preferences. Our team has developed a composite weighted score with urban spatial data and social media data to rank all NYC neighborhoods based on a series of questions asked to the user. The project's contribution is to provide a scientific and calibrated understanding of the impact that socially oriented activities and preferences have towards the uses of space.
keywords Textual Semantic analysis; machine learning; participatory planning; community detection; neighborhood definition
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2016_508
id sigradi2016_508
authors Pazmino, Ana Veronica; Braga, Rodrigo; Pupo, Regiane
year 2016
title Gest?o de projeto interdisciplinar: smart design, design de interaç?o, materializaç?o e projeto de alta complexidade [Management Interdisciplinary Project: Smart Design, Interaction Design, materialization and High Complexity Project]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.65-70
summary This paper presents the management of interdisciplinary practice in design course at the Federal University of Santa Catarina in the design discipline with emphasis on interaction and technology. The work shows the project management used to facilitate the interrelation of design disciplines interaction, intelligent design and materialization through which the students developed an interactive product with the appropriation and application of programming knowledge with arduino, digital manufacturing and interaction. The results are qualitative in relation to students' learning and recommendations for an interdisciplinary design process in design courses.
keywords Project management; interdisciplinarity; Intelligent Design; Interaction; Digital Manufacturing
series SIGRADI
email
last changed 2021/03/28 19:59

_id caadria2016_281
id caadria2016_281
authors Pinochet, Diego
year 2016
title Making - Gestures: Continuous design through real time Human Machine interaction
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 281-290
doi https://doi.org/10.52842/conf.caadria.2016.281
summary Design is “something that we do” that is related to our unique human condition as creative individuals, so as “making” is related to how we manifest and impress that uniqueness into our surrounding environment. As designers, the way we impress our ideas into the material world is tightly connected to a ‘continuous creative performance’ and with concepts often missing in digital design and fabrication techniques –yet present in analog processes - such as ambiguity, improvisation and imprecision. In this paper, a model of human-machine interaction is proposed, that seeks to transcend the ‘hylomorphic’ model imperative in today’s digital architectural design practice to a more performative and reciprocal form of computational making. By using body gestures and imbuing fabrication machines with behaviour, the research seeks to embrace the concept of ‘performance and error’ as promoters of creativity and cognition about the things we create, installing human as the bond of the interrelations between designing and making.
keywords Human machine interaction; computational making; machine learning; digital design and fabrication
series CAADRIA
email
last changed 2022/06/07 08:00

_id sigradi2016_647
id sigradi2016_647
authors Reginato, Bruna Rovere; Pereira, Alice Theresinha Cybis
year 2016
title Definiç?o do plano de escopo do projeto TEAR_AD - Tecnologia no Ensino e Aprendizagem em Rede nas a?rea de Arquitetura e Design [Scope plan definition of TEAR_AD project – Technology in Teaching and Learning Network in Architecture and Design Area]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.802-807
summary This paper aims to present the construction of the scope plan of TEAR_AD and presents structured through four main topics: (1) the introduction, which is the contextualization of TEAR_AD project and shows what was built until now, (2) methodology, the presentation of Garret's (2011) methodology for scope construction together with techniques based on agile development and Scrum; (3) results, showing the objects constructed from the presented methodology and (4) discussion about the difficulties encountered in the process, strengths and the next steps for the project.
keywords User centered design, interface design, design method, scrum
series SIGRADI
email
last changed 2021/03/28 19:59

_id caadria2016_445
id caadria2016_445
authors Silvestre, Joaquim; Franc?ois Gue?na and Yasushi Ikeda
year 2016
title Edition-Oriented 3D Model Rebuilt from Photography
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 445-454
doi https://doi.org/10.52842/conf.caadria.2016.445
summary The topic of this paper is about a technique to turn pictures into an intuitively modifiable 3D model. The research employs an analytical method using algorithms to conceptualise and digital- ise architectural spaces in order to highlight parametric shapes. Usual- ly, from one group of digital photos, photogrammetry techniques pro- duce a 3D-model mesh through a high-density 3D point cloud. This discordance between our intuitive partitioning of the mesh and its bare polygonal structure makes it interact poorly compared to the af- fordance of shape and component in our daily experience. Through a capture device, a visualisation of architecture in a digital data form is produced. They are processed by computer vision algorithms and ma- chine learning systems in order to be refined into a parametric model. Parametric elements can be described as a compound of formulas and parameters. By keeping the formula and changing the parameters, the- se elements can be easily modified in a range of likenesses. After be- ing detected during scans, these shapes can be adapted to fit the inten- tion of the designer during the design phase.
keywords Photogrammetry; convolutional neural network; 3D model; design tool
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2016_881
id caadria2016_881
authors Silvestre, Joaquim; Yasushi Ikeda and Franc?ois Gue?na
year 2016
title Artificial Imagination of Architecture with Deep Convolutional Neural Network
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 881-890
doi https://doi.org/10.52842/conf.caadria.2016.881
summary This paper attempts to determine if an Artificial Intelli- gence system using deep convolutional neural network (ConvNet) will be able to “imagine” architecture. Imagining architecture by means of algorithms can be affiliated to the research field of generative archi- tecture. ConvNet makes it possible to avoid that difficulty by automat- ically extracting and classifying these rules as features from large ex- ample data. Moreover, image-base rendering algorithms can manipu- late those abstract rules encoded in the ConvNet. From these rules and without constructing a prior 3D model, these algorithms can generate perspective of an architectural image. To conclude, establishing shape grammar with this automated system opens prospects for generative architecture with image-base rendering algorithms.
keywords Machine learning; convolutional neural network; generative design; image-based rendering
series CAADRIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 16HOMELOGIN (you are user _anon_685486 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002