CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 508

_id acadia16_10
id acadia16_10
authors Ahlquist, Sean
year 2016
title Procedural Design
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 10-11
doi https://doi.org/10.52842/conf.acadia.2016.010
series ACADIA
type introduction
email
last changed 2022/06/07 07:54

_id ijac201614207
id ijac201614207
authors Chaszar, Andre and Sam Conrad Joyce
year 2016
title Generating freedom: Questions of flexibility in digital design and architectural computation
source International Journal of Architectural Computing vol. 14 - no. 2, 167-181
summary Generative processes and generative design approaches are topics of continuing interest and debate within the realms of architectural design and related fields. While they are often held up as giving designers the opportunity (the freedom) to explore far greater numbers of options/alternatives than would otherwise be possible, questions also arise regarding the limitations of such approaches on the design spaces explored, in comparison with more conventional, human-centric design processes. This article addresses the controversy with a specific focus on parametric-associative modelling and genetic programming methods of generative design. These represent two established contenders within the pool of procedural design approaches gaining increasingly wide acceptance in architectural computational research, education and practice. The two methods are compared and contrasted to highlight important differences in freedoms and limitations they afford, with respect to each other and to ‘manual’ design. We conclude that these methods may be combined with an appropriate balance of automation and human intervention to obtain ‘optimal’ design freedom, and we suggest steps towards finding that balance.
keywords Design space exploration, parametric-associative modelling, genetic programming, mixed-initiative methods
series journal
last changed 2016/06/13 08:34

_id acadia18_404
id acadia18_404
authors Clifford, Brandon; McGee, Wes
year 2018
title Cyclopean Cannibalism. A method for recycling rubble
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 404-413
doi https://doi.org/10.52842/conf.acadia.2018.404
summary Each year, the United States discards 375 million tons of concrete construction debris to landfills (U.S. EPA 2016), but this is a new paradigm. Past civilizations cannibalized their constructions to produce new architectures (Hopkins 2005). This paper interrogates one cannibalistic methodology from the past known as cyclopean masonry in order to translate this valuable method into a contemporary digital procedure. The work contextualizes the techniques of this method and situates them into procedural recipes which can be applied in contemporary construction. A full-scale prototype is produced utilizing the described method; demolition debris is gathered, scanned, and processed through an algorithmic workflow. Each rubble unit is then minimally carved by a robotic arm and set to compose a new architecture from discarded rubble debris. The prototype merges ancient construction thinking with digital design and fabrication methodologies. It poses material cannibalism as a means of combating excessive construction waste generation.
keywords full paper, cyclopean, algorithmic, robotic fabrication, stone, shape grammars, computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id sigradi2016_733
id sigradi2016_733
authors Guedes, Thiago Matheus Costa; Acosta, Daniel Albernaz; Borda, Adriane; Ferreira, Cristiano Correa; Peronti, Gabriela Gonzalez; Brum, Valentina Toaldo
year 2016
title Antropoplástico: Desdobramentos em arte a partir do desenho paramétrico e da fabricaç?o digital [Antropoplástico: Developments in art from the parametric design and digital fabrication]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.567-571
summary The present article represents a series of contextual works started through the collection of a stone. The process occurred during an artistic residency in Argentine Patagonia. This procedural event shows interest in investigating situations of geometrization and scale between body, object and landscape. Resulting of these works from the residency experience I present a research which focuses on an artistic view between the fields of art and architecture.
keywords Geometrization of landscape; body scale; resonant place; art-architecture
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia16_130
id acadia16_130
authors Koschitz, Duks; Ramagosa, Bernat; Rosenbaum, Eric
year 2016
title Beetle Blocks: A New Visual Language for Designers and Makers
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 130-139
doi https://doi.org/10.52842/conf.acadia.2016.130
summary We are introducing a new teaching tool to show designers, architects, and artists procedural ways of constructing objects and space. Computational algorithms have been used in design for quite some time, but not all tools are very accessible to novice programmers, especially undergraduate students. ‘Beetle Blocks’ (beetleblocks.com) is a software environment that combines an easy-to-use graphical programming language with a generative model for 3D space, drawing on ‘turtle geometry,’ a geometry paradigm introduced by Abelson and Disessa, that uses a relative as opposed to an absolute coordinate system. With Beetle Blocks, designers are able to learn computational concepts and use them for their designs with more ease, as individual computational steps are made visually explicit. The beetle, the relative coordinate system, follows instructions as it moves about in 3D space. Anecdotal evidence from studio teaching in undergraduate programs shows that despite the early introduction of digital media and tools, architecture students still struggle with learning formal languages today. Beetle Blocks can significantly simplify the teaching of complex geometric ideas and we explain how this can be achieved via several examples. The blocks-based programming language can also be used to teach fundamental concepts of manufacturing and digital fabrication and we elucidate in this paper which possibilities are conducive for 2D and 3D designs. This project was previously implemented in other languages such as Flash, Processing and Scratch, but is now developed on top of Berkeley’s ‘Snap!’
keywords generative design, design pedagogy, digital fabrication, tool-building, pedagogical tools
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaade2016_136
id ecaade2016_136
authors Kwiecinski, Krystian, Santos, Filipe, Almeida, Ana de, Taborda, Bruno and Eloy, Sara
year 2016
title Wood Mass-Customized Housing - A dual computer implementation design strategy
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 349-358
doi https://doi.org/10.52842/conf.ecaade.2016.2.349
wos WOS:000402064400034
summary This paper reports our current research on automatic generation of houses layouts according to future inhabitant's requirements. For that generation we propose the use of a design method based on shape grammars that encodes light wood frame construction guidelines. Two different implementations for the design system are presently under development. One based on shape grammars supplemented with procedural knowledge and another using a genetic algorithm. Both implementations allow the generation of house layouts that fulfill both the user requirements and the design language.
keywords shape grammar; genetic algorithm; computer implementation
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2016_157
id caadria2016_157
authors Patrick Janssen, Ruize Li and Akshata Mohanty
year 2016
title Mobius: A Parametric Modeller for the Web
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 157-166
doi https://doi.org/10.52842/conf.caadria.2016.157
summary For complex parametric modelling tasks, systems that use textual programming languages (TPLs) currently have clear ad- vantages over visual programming languages (VPLs) systems. Their support for a rich variety of programming mechanisms means that the complexity of the program can remain commensurate with the com- plexity of the modelling task. A prototype parametric modelling sys- tem called Mo?bius is presented that aims to overcome the limitations of existing VPL systems. The proposed system integrates associative and imperative programming styles and supports iterative looping and higher order functions. In order to demonstrate the versatility of the Mo?bius, a modelling task is presented that requires the model to be modified.
keywords Parametric procedural modelling; generative design; visu- al programming; human-computer interaction
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia16_0
id acadia16_0
authors Velikov, Kathy; Ahlquist, Sean; del Campo, Matias; Thün, Geoffrey (eds.)
year 2016
title ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, 514p.
doi https://doi.org/10.52842/conf.acadia.2016
summary The ACADIA 2016 Conference will feature research and design work from practice and academia that is positioned at the intersection of procedural design, digital environments, and autonomous machines. POSTHUMAN FRONTIERS: DATA, DESIGNERS, AND COGNITIVE MACHINES will bring together architects, designers, material scientists, engineers, programmers, and artists to explore the current trend in computational design to develop and apply quasi-cognitive machines, and to advance the integration of software, information, fabrication, and sensing in the generation of mechanisms for interfacing with the physical realm
series ACADIA
email
last changed 2022/06/07 07:49

_id ecaade2016_067
id ecaade2016_067
authors Stouffs, Rudi
year 2016
title An Algebraic Approach to Implementing a Shape Grammar Interpreter
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 329-338
doi https://doi.org/10.52842/conf.ecaade.2016.2.329
wos WOS:000402064400032
summary Shape grammars come in a variety of forms. Algebras of shapes have been defined for spatial elements of different kinds, as well as for shapes augmented with varying attributes, allowing for grammar forms to be expressed in terms of a direct product of basic algebras. This algebraic approach is extended here to the algebraic derivation of combinations of basic shape algebras with attribute algebras. This algebraic abstraction at the same time serves as a procedural abstraction, giving insights into the modular implementation of a general shape grammar interpreter for different grammar forms.
keywords shape grammars; shape algebras; parallel grammars; compound shapes; implementation
series eCAADe
email
last changed 2022/06/07 07:56

_id lasg_whitepapers_2016_fulltext
id lasg_whitepapers_2016_fulltext
year 2016
title Living Architecture Systems Group White Papers 2016
source Living Architecture Systems Group White Papers 2016 [ISBN 978-1-988366-10-4 (EPUB)] Riverside Architectural Press 2016: Toronto, Canada
summary Living Architecture Systems Group "White Papers 2016" is a dossier produced for the occasion of the Living Architecture Systems Group launch event and symposium hosted on November 4 and 5 at the Sterling Road Studio in Toronto and the University of Waterloo School of Architecture at Cambridge. The "White Papers 2016" presents research contributions from the LASG partners, forming an overview of the partnership and highlighting oppportunities for future collaborations.
keywords design, dissipative methods, design methods, synthetic cognition, neuroscience, metabolism, STEAM, organicism, field work, responsive systems, space, visualizations, sensors, actuators, signal flows, art and technology, new media art, digital art, emerging technologies, citizen building, bioinspiration, performance, paradigms, artificial nature, virtual design, regenerative design, 4DSOUND, spatial sound, biomanufacturing, eskin, delueze, bees, robotics
last changed 2019/07/29 14:02

_id ascaad2016_049
id ascaad2016_049
authors Abdelsabour, Inas; Heba Farouk
year 2016
title Impact of Using Structural Models on Form Finding - Incorporating Practical Structural Knowledge into Design Studio
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 483-492
summary Physical Models as an architectural design tool, had major effect on architecture learning process. In structural form finding, it helped in improving visual design thinking to track form creation processes during form finding design stage. The aim is to study the impact of using physical models for second year architecture students in design studios learning. By analyzing and comparing students’ performance and progress; to clarify the effect of using physical models as a tool for designing progression, followed by analytical study on the students' structural models, in order to investigate the influence of models on their design educational progress. Research achieved that there were three basic phases the students pass through during form finding process when used manual physical models that improve the students' design capability.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ecaade2016_048
id ecaade2016_048
authors Abramovic, Vasilija and Achten, Henri
year 2016
title From Moving Cube to Urban Interactive Structures - A case study
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 661-668
doi https://doi.org/10.52842/conf.ecaade.2016.1.661
wos WOS:000402063700071
summary When thinking about the future vision of a city, having in mind recent development in digital technologies and digital design tools we are inclined to expect new building structures which incorporate this technology to better help us manage the complexity of life, and to simplify our daily lives and tasks. The idea behind this research paper lies in design of such structures, which could be put inside an urban context and engage in creating a built environment that can add more to the quality of life. For us Interactive architecture is architecture that is responsive, flexible, changing, always moving and adapting to the needs of today. The world is becoming more dynamic, society is constantly changing and the new needs it develops need to be accommodated. As a result architecture has to follow. Spaces have to become more adaptive, responsive and nature concerned, while having the ability for metamorphosis, flexibility and interactivity. Taken as a starting point of this idea is a specific module from graduation project in 2014 "The Unexpected city", where it was possible to test out first ideas about interactive and flexible objects in an urban environment.
keywords Flexible architecture; Interactive architecture; Responsive systems
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_777
id caadria2016_777
authors Aditra, Rakhmat F. and Andry Widyowijatnoko
year 2016
title Combination of mass customisation and conventional construction: A case study of geodesic bamboo dome
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 777-786
doi https://doi.org/10.52842/conf.caadria.2016.777
summary With the development of advance fabrication, several digi- tal fabrication approaches have been developed. These approaches en- able better form exploration than the conventional manufacturing pro- cess. But, the built examples mostly rely on advance machinery which was not familiar or available in developed country where construction workers are still abundant. Meanwhile, much knowledge gathers in the field practice. This research is aimed to explore an alternative con- struction workflow and method with the combination of mass custom- ization and conventional construction method and to propose the structure system that emphasized this alternative workflow and meth- od. Lattice structure was proposed. The conventional construction method was used in the struts production and mass customization method, laser cutting, and was used for connection production. The algorithmic process was used mainly for data mining, details design, and component production. The backtracking was needed to be pre- dicted and addressed previously. Considerations that will be needed to be tested by further example are on the transition from the digital pro- cess to the manual process. Next research could be for analysing the other engineering aspect for this prototype and suggesting other struc- tural system with more optimal combination of conventional construc- tion and mass customization.
keywords Mass customisation; algorithmic design; digital fabrication; geodesic dome; lattice structure
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2016_059
id ascaad2016_059
authors Admed, Mohammad H.K.
year 2016
title Towards Developing BIM Curriculum in Higher Education in Egypt
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 589-598
summary The paper surveys and discusses the current state of teaching BIM in departments of architecture in Egypt. It also connects it to the increasing professional market demand for technologically qualified architects. In specific, the paper explores the reasons behind the fact that the local BIM curriculum is lagging behind its international counterpart. It also explores the need to utilise BIM software capabilities. A further comparative survey is carried out between local case studies and international cases through identifying several stages of BIM implementation in both teaching and design. The advantages and disadvantages of the current method of teaching are explored in an effort to improve performance of BIM curriculum.
series ASCAAD
email
last changed 2017/05/25 13:34

_id ecaade2016_026
id ecaade2016_026
authors Agkathidis, Asterios
year 2016
title Implementing Biomorphic Design - Design Methods in Undergraduate Architectural Education
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 291-298
doi https://doi.org/10.52842/conf.ecaade.2016.1.291
wos WOS:000402063700033
summary In continuation to Generative Design Methods, this paper investigates the implementation of Biomorphic Design, supported by computational techniques in undergraduate, architectural studio education. After reviewing the main definitions of biomorphism, organicism and biomimicry synoptically, we will assess the application of a modified biomorphic method on a final year, undergraduate design studio, in order to evaluate its potential and its suitability within the framework of a research led design studio, leading to an RIBA accredited Part I degree. Our research findings based on analysis of design outputs, student performance as well as moderators and external examiners reports initiate a constructive debate about accomplishments and failures of a design methodology which still remains alien to many undergraduate curricula.
keywords CAAD Education; Strategies, Shape Form and Geometry; Generative Design; Design Concepts
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_797
id caadria2016_797
authors Agusti?-Juan, Isolda and Guillaume Habert
year 2016
title An environmental perspective on digital fabrication in architecture and construction
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 797-806
doi https://doi.org/10.52842/conf.caadria.2016.797
summary Digital fabrication processes and technologies are becom- ing an essential part of the modern product manufacturing. As the use of 3D printing grows, potential applications into large scale processes are emerging. The combined methods of computational design and robotic fabrication have demonstrated potential to expand architectur- al design. However, factors such as material use, energy demands, du- rability, GHG emissions and waste production must be recognized as the priorities over the entire life of any architectural project. Given the recent developments at architecture scale, this study aims to investi- gate the environmental consequences and opportunities of digital fab- rication in construction. This paper presents two case studies of classic building elements digitally fabricated. In each case study, the projects were assessed according to the Life Cycle Assessment (LCA) frame- work and compared with conventional construction with similar func- tion. The analysis highlighted the importance of material-efficient de- sign to achieve high environmental benefits in digitally fabricated architecture. The knowledge established in this research should be di- rected to the development of guidelines that help designers to make more sustainable choices in the implementation of digital fabrication in architecture and construction.
keywords Digital fabrication; LCA; sustainability; environment
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia16_152
id acadia16_152
authors Ahlquist, Sean
year 2016
title Generative Robotics
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 152-153
doi https://doi.org/10.52842/conf.acadia.2016.152
series ACADIA
type introduction
email
last changed 2022/06/07 07:54

_id acadia16_234
id acadia16_234
authors Ahlquist, Sean
year 2016
title Programmable Matter
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 234-235
doi https://doi.org/10.52842/conf.acadia.2016.234
series ACADIA
type introduction
email
last changed 2022/06/07 07:54

_id ijac201614105
id ijac201614105
authors Ahlquist, Sean
year 2016
title Sensory material architectures: Concepts and methodologies for spatial tectonics and tactile responsivity in knitted textile hybrid structures
source International Journal of Architectural Computing vol. 14 - no. 1, 63-82
summary As the knowledge of material computation advances, continuing the seamless integration of design and fabrication, questions beyond materialization can be addressed with a focus on sensing, feedback, and engagement as critical factors of design exploration. This article will discuss a series of prototypes, design methodologies, and technologies that articulate a textile’s micro-architecture, at the scale of fibers and stitches, to instrumentalize simultaneous structural, spatial, and sensory-responsive qualities. The progression of research displays an ever-deepening instrumentalization of fiber structure and its implications to form definition and responsivity, in creating form- and bending-active structures. The research results in a more refined definition of material behavior as the innate phenomena which emerge at the moment of textile fabrication. Ultimately, the architecture, in its materiality and physical, visual, and auditory responsivity, is designed to address specific challenges for children in filtering multiple sensory inputs, an underlying factor of autism spectrum disorder.
keywords CNC Knitting, Form-active, Bending-active, Textile hybrid, Mutli-sensory
series journal
last changed 2016/06/13 08:34

_id ascaad2016_014
id ascaad2016_014
authors Ahmed, Zeeshan Y.; Freek P. Bos, Rob J.M. Wolfs and Theo A.M. Salet
year 2016
title Design Considerations Due to Scale Effects in 3D Concrete Printing
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 115-124
summary The effect of scale on different parameters of the 3D printing of concrete is explored through the design and fabrication of a 3D concrete printed pavilion. This study shows a significant gap exists between what can be generated through computer aided design (CAD) and subsequent computer aided manufacturing (generally based on CNC technology). In reality, the 3D concrete printing on the one hand poses manufacturing constraints (e.g. minimum curvature radii) due to material behaviour that is not included in current CAD/CAM software. On the other hand, the process also takes advantage of material behaviour and thus allows the creation of shapes and geometries that, too, can’t be modelled and predicted by CAD/CAM software. Particularly in the 3D printing of concrete, there is not a 1:1 relation between toolpath and printed product, as is the case with CNC milling. Material deposition is dependent on system pressure, robot speed, nozzle section, layer stacking, curvature and more – all of which are scale dependent. This paper will discuss the design and manufacturing decisions based on the effects of scale on the structural design, printed and layered geometry, robot kinematics, material behaviour, assembly joints and logistical problems. Finally, by analysing a case study pavilion, it will be explore how 3D concrete printing structures can be extended and multiplied across scales and functional domains ranging from structural to architectural elements, so that we can understand how to address questions of scale in their design.
series ASCAAD
email
last changed 2017/05/25 13:31

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_494219 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002