CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 618

_id acadia16_154
id acadia16_154
authors Brugnaro, Giulio; Baharlou, Ehsan; Vasey, Lauren; Menges, Achim
year 2016
title Robotic Softness: An Adaptive Robotic Fabrication Process for Woven Structures
doi https://doi.org/10.52842/conf.acadia.2016.154
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 154-163
summary This paper investigates the potential of behavioral construction strategies for architectural production through the design and robotic fabrication of three-dimensional woven structures inspired by the behavioral fabrication logic used by the weaverbird during the construction of its nest. Initial research development led to the design of an adaptive robotic fabrication framework composed of an online agent-based system, a custom weaving end-effector and a coordinated sensing strategy utilizing 3D scanning.The outcome of the behavioral weaving process could not be predetermined a priori in a digital model, but rather emerged out of the negotiation among design intentions, fabrication constraints, performance criteria, material behaviors and specific site conditions. The key components of the system and their role in the fabrication process are presented both theoretically and technically, while the project serves as a case study of a robotic production method envisioned as a soft system: a flexible and adaptable framework in which the moment of design unfolds simultaneously with fabrication, informed by a constant flow of sensory information.
keywords soft systems, agent-based systems, robotic fabrication, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia16_12
id acadia16_12
authors Gerber, David Jason; Pantazis, Evangelos
year 2016
title A Multi-Agent System for Facade Design: A design methodology for Design Exploration, Analysis and Simulated Robotic Fabrication
doi https://doi.org/10.52842/conf.acadia.2016.012
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 12-23
summary For contemporary design practices, there still remains a disconnect between design tools used for early stage design exploration and performance analysis, and those used for fabrication and construction of complex tectonic architectural systems. The research brings forward downstream fabrication constraints into the up-stream design exploration and design decision making. This paper addresses the issues of developing an integrated digital design work-flow and details a research framework for the incorporation of environmental performance into a robotic fabrication for early stage design exploration and generation of intricate and complex alternative façade designs. The method allows the user to import a design surface, define design parameters, set a number of environmental performance objectives, and then simulate and select a robotic construction strategy. Based on these inputs, design alternatives are generated and evaluated in terms of their performance criteria in consideration of their robotically simulated constructability. In order to validate the proposed framework, an experimental case study of office building façade designs that are generatively created from a multi-agent system for design methodology is design explored and evaluated. Initial results define a heuristic function for improving simulated robotic constructability and illustrate the functionality of our prototype. Project limitations and future research steps are then discussed.
keywords generative design, multi-objective design optimization, robotic fabrication, simulation, design performance, design decision making
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id caadria2016_529
id caadria2016_529
authors Rust, Romana; David Jenny, Fabio Gramazio and Matthias Kohler
year 2016
title Spatial Wire Cutting: Cooperative robotic cutting of non-ruled surface geometries for bespoke building components
doi https://doi.org/10.52842/conf.caadria.2016.529
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 529-538
summary The research project Spatial Wire Cutting (SWC) investi- gates a multi-robotic cutting technique that allows for an efficient production of geometrically complex architectural components. Being pursued by the group of Gramazio Kohler Research at ETH Zurich, this approach involves a spatially coordinated movement of two six- axis robotic arms that control the curvature of a hot-wire, which adopts itself against the resistance of the processed material (e.g. pol- ystyrene). In contrast to standard CNC hot-wire cutting processes, in which the cutting medium remains linear, it allows the automated fab- rication of non-ruled, doubly curved surfaces. This pursuit includes the development of a custom digital design and robotic control framework that combines computational simulation and manufactur- ing feedback information. Ultimately, SWC enables a considerably expanded design and fabrication space for complex architectural ge- ometries and their construction through automated robotic technology. This paper addresses the applied workflow and technology 1) such as computational design and simulation, robotic control and adaptive fabrication, 2) results of application within a two-week design and building workshop, and 3) will conclude with further steps of future research.
keywords Computational design and digital fabrication; feedback-based automated manufacturing; multi-robot control; digital simulation; hot-wire cutting
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia18_404
id acadia18_404
authors Clifford, Brandon; McGee, Wes
year 2018
title Cyclopean Cannibalism. A method for recycling rubble
doi https://doi.org/10.52842/conf.acadia.2018.404
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 404-413
summary Each year, the United States discards 375 million tons of concrete construction debris to landfills (U.S. EPA 2016), but this is a new paradigm. Past civilizations cannibalized their constructions to produce new architectures (Hopkins 2005). This paper interrogates one cannibalistic methodology from the past known as cyclopean masonry in order to translate this valuable method into a contemporary digital procedure. The work contextualizes the techniques of this method and situates them into procedural recipes which can be applied in contemporary construction. A full-scale prototype is produced utilizing the described method; demolition debris is gathered, scanned, and processed through an algorithmic workflow. Each rubble unit is then minimally carved by a robotic arm and set to compose a new architecture from discarded rubble debris. The prototype merges ancient construction thinking with digital design and fabrication methodologies. It poses material cannibalism as a means of combating excessive construction waste generation.
keywords full paper, cyclopean, algorithmic, robotic fabrication, stone, shape grammars, computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2016_559
id caadria2016_559
authors Cokcan, Baris; Johannes Braumann, W. Winter and Martin Trautz
year 2016
title Robotic Production of Individualised Wood Joints
doi https://doi.org/10.52842/conf.caadria.2016.559
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 559-568
summary Modern modular constructions can consist of highly indi- vidualised elements that are produced at nearly the same efficiency as serial manufacturing. This paper focuses on the project “WoodWaves” an Info-Point for the conference World Congress of Timber Engineer- ing, which was designed with this new conception of modularity. The process utilises a robotically operated milling cutter to form block- board panels out of spruce, which make up the multifunctional infor- mation point. The entire object is produced with only sliding dovetail joints. Parametric design methods were developed to automatically adjust each joint to fit the individual conditions. New CAD/CAM in- terfaces, linking design directly with fabrication, enabled the serial production of 108 different shaped elements with a 6-axis robotic arm.
keywords Computational design; robotic production; digital fabrication; wood joints; info-point
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia16_206
id acadia16_206
authors Devadass, Pradeep; Dailami, Farid; Mollica, Zachary; Self, Martin
year 2016
title Robotic Fabrication of Non-Standard Material
doi https://doi.org/10.52842/conf.acadia.2016.x.g4f
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp
summary This paper illustrates a fabrication methodology through which the inherent form of large non-linear timber components was exploited in the Wood Chip Barn project by the students of Design + Make at the Architectural Association’s Hooke Park campus. Twenty distinct Y-shaped forks are employed with minimal machining in the construction of a structural truss for the building. Through this workflow, low-value branched sections of trees are transformed into complex and valuable building components using non-standard technologies. Computational techniques, including parametric algorithms and robotic fabrication methods, were used for execution of the project. The paper addresses the various challenges encountered while processing irregular material, as well as limitations of the robotic tools. Custom algorithms, codes, and post-processors were developed and integrated with existing software packages to compensate for drawbacks of industrial and parametric platforms. The project demonstrates and proves a new methodology for working with complex, large geometries which still results in a low cost, time- and quality-efficient process.
keywords parametric design, craft in digital communication, digital fabrication, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:49

_id sigradi2016_809
id sigradi2016_809
authors García Amen, Fernando; Martín Iglesias, Rodrigo; Schieda, Alejandro; Lagomarsino, Federico; Miret, Santiago
year 2016
title Digital domes that become urban symbionts
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.892-896
summary Montevideo has a new visitor. In the heritage building of the german architect Karl Trambauer, located in the Old City, a new presence was installed filling the vacuum left by its former collapsed dome, seeking to restore a message, adding a new vision and recovering the lost dialogue between the architecture, the city and its inhabitants. This paper summarizes and explains the experience of the workshop Adaptation 2015, held on September 2015 at the Universidad de la República, Uruguay. Exposing the theoretical framework, design strategies, morphogenetic development, digital manufacturing experimentations, conclusions and open questions from the experience made. We will go through this temporary intervention on Trambauer’s building, being a rare but symbiotic object, with parametric genes, digital and handcrafted manufacture, and also looking for the impact of theory and academic practices in the city.
keywords Urban intervention – Cities – Heritage – Parametric design – Digital fabrication
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_539
id caadria2016_539
authors Lublasser, E.; J. Braumann, D. Goldbach and S. Brell-Cokcan
year 2016
title Robotic Forming: Rapidly Generating 3D Forms and Structures through Incremental Forming
doi https://doi.org/10.52842/conf.caadria.2016.539
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 539-548
summary The past years have seen significant developments in the area of robotic design interfaces. Building upon visual programming environments, these interfaces now allow the creative industry to de- fine even complex fabrication processes in an easy, accessible way, while providing instant, production-immanent feedback. However, while these software tools greatly speed up the programming of robot- ic arms, many processes are still inherently slow: Subtractive process- es need to remove a large amount of material with comparably small tools, while additive processes are limited by the speed of the extruder and the properties of the extruded material. In this research we present a new method for incrementally shaping transparent polymer materi- als with a robotic arm, without requiring heat or dies for deep- drawing, thus allowing us to rapidly fabricate individual panels within a minimum of time.
keywords Incremental forming; robotic fabrication; visual programming
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia16_174
id acadia16_174
authors Moorman, Andrew; Liu, Jingyang; Sabin, Jenny E.
year 2016
title RoboSense: Context-Dependent Robotic Design Protocols and Tools
doi https://doi.org/10.52842/conf.acadia.2016.174
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 174-183
summary While nonlinear concepts are widely applied in analysis and generative design in architecture, they have not yet convincingly translated into the material realm of fabrication and construction. As the gap between digital design model, shop drawing, and fabricated result continues to diminish, we seek to learn from fabrication models and natural systems that do not separate code, geometry, pattern, material compliance, communication, and form, but rather operate within dynamic loops of feedback, reciprocity, and generative fabrication. Three distinct, but connected problems: 1) Robotic ink drawing; 2) Robotic wine pouring and object detection; and 3) Dynamically Adjusted Extrusion; were addressed to develop a toolkit including software, custom digital design tools, and hardware for robotic fabrication and user interaction in cyber-physical contexts. Our primary aim is to simplify and consolidate the multiple platforms necessary to construct feedback networks for robotic fabrication into a central and intuitive programming environment for both the advanced to novice user. Our experimentation in prototyping feedback networks for use with robotics in design practice suggests that the application of this knowledge often follows a remarkably consistent profile. By exploiting these redundancies, we developed a support toolkit of data structures and routines that provide simple integrated software for the user-friendly programming of commonly used roles and functionalities in dynamic robotic fabrication, thus promoting a methodology of feedback-oriented design processes.
keywords online programming, cyber-physical systems, computational design, robotic fabrication, human-robot interaction
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
doi https://doi.org/10.52842/conf.acadia.2016.140
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id acadia17_446
id acadia17_446
authors Nejur, Andrei; Steinfeld, Kyle
year 2017
title Ivy: Progress in Developing Practical Applications for a Weighted-Mesh Representation for Use in Generative Architectural Design
doi https://doi.org/10.52842/conf.acadia.2017.446
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 446- 455
summary This paper presents progress in the development of practical applications for graph representations of meshes for a variety of problems relevant to generative architectural design (GAD). In previous work (Nejur and Steinfeld 2016), the authors demonstrated that while approaches to marrying mesh and graph representations drawn from computer graphics (CG) can be effective within the domains of applications for which they have been developed, they have not adequately addressed wider classes of problems in GAD. There, the authors asserted that a generalized framework for working with graph representations of meshes can effectively bring recent advances in mesh segmentation to bear on GAD problems, a utility demonstrated through the development of a plug-in for the visual programming environment Grasshopper. Here, we describe a number of implemented solutions to mesh segmentation and transformation problems, articulated as a series of additional features developed as a part of this same software. Included are problems of mesh segmentation approached through the creation of acyclic connected graphs (trees); problems of mesh transformations, such as those that unfold a segmented mesh in anticipation of fabrication; and problems of geometry generation in relation to a segmented mesh, as demonstrated through a generalized approach to mesh weaving. We present these features in the context of their potential applications in GAD and provide a limited set of examples for their use.
keywords design methods; information processing
series ACADIA
email
last changed 2022/06/07 07:58

_id acadia16_308
id acadia16_308
authors Nicholas, Paul; Zwierzycki, Mateusz; Stasiuk, David; Norgaard, Esben; Thomsen, Mette Ramsgaard
year 2016
title Concepts and Methodologies for Multiscale Modeling: A Mesh-Based Approach for Bi-Directional Information Flows
doi https://doi.org/10.52842/conf.acadia.2016.308
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 308-317
summary This paper introduces concepts and methodologies for multiscale modeling in architecture, and demonstrates their application to support bi-directional information flows in the design of a panelized, thin skinned metal structure. Parameters linked to the incremental sheet forming fabrication process, rigidisation, panelization, and global structural performance are included in this information flow. The term multiscale refers to the decomposition of a design problem into distinct but interdependent models according to scales or frameworks, and to the techniques that support the transfer of information between these models. We describe information flows between the scales of structure, panel element, and material via two mesh-based approaches. The first approach demonstrates the use of adaptive meshing to efficiently and sequentially increase resolution to support structural analysis, panelization, local geometric formation, connectivity, and the calculation of forming strains and material thinning. A second approach shows how dynamically coupling adaptive meshing with a tree structure supports efficient refinement and coarsening of information. The multiscale modeling approaches are substantiated through the production of structures and prototypes.
keywords adaptive meshing, robotic fabrication, simulation, material behavior, incremental sheet forming, multiscale
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id ecaade2016_113
id ecaade2016_113
authors Poinet, Paul, Baharlou, Ehsan, Schwinn, Tobias and Menges, Achim
year 2016
title Adaptive Pneumatic Shell Structures - Feedback-driven robotic stiffening of inflated extensible membranes and further rigidification for architectural applications
doi https://doi.org/10.52842/conf.ecaade.2016.1.549
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 549-558
summary The paper presents the development of a design framework that aims to reduce the complexity of designing and fabricating free-form inflatables structures, which often results in the generation of very complex geometries. In previous research the form-finding potential of actuated and constrained inflatable membranes has already been investigated however without a focus on fabrication (Otto 1979). Consequently, in established design-to-fabrication approaches, complex geometry is typically post-rationalized into smaller parts and are finally fabricated through methods, which need to take into account cutting pattern strategies and material constraints. The design framework developed and presented in this paper aims to transform a complex design process (that always requires further post-rationalization) into a more integrated one that simultaneously unfolds in a physical and digital environment - hence the term cyber-physical (Menges 2015). At a full scale, a flexible material (extensible membrane, e.g. latex) is actuated through inflation and modulated through additive stiffening processes, before being completely rigidified with glass fibers and working as a thin-shell under compression.
wos WOS:000402063700060
keywords pneumatic systems; robotic fabrication; feedback strategy; cyber-physical; scanning processes
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia16_332
id acadia16_332
authors Retsin, Gilles; Garcia, Manuel Jimenez
year 2016
title Discrete Computational Methods for Robotic Additive Manufacturing: Combinatorial Toolpaths
doi https://doi.org/10.52842/conf.acadia.2016.332
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 332-341
summary The research presented in this paper is part of a larger, emerging body of research into large-scale 3D printing. The research attempts to develop a computational design method specifically for large-scale 3D printing of architecture. Influenced by the concept of Digital Materials, this research is situated within a critical discussion of what fundamentally constitutes a digital object and process. This requires a holistic understanding, taking into account both computational design and fabrication. The intrinsic constraints of the fabrication process are used as opportunities and generative drivers in the design process. The paper argues that a design method specifically for 3D printing should revolve around the question of how to organize toolpaths for the continuous addition or layering of material. Two case-study projects advance discrete methods as efficient ways to compute a continuous printing process. In contrast to continuous models, discrete models allow users to serialize problems and errors in toolpaths. This allows a local optimization of the structure, avoiding the use of global, computationally expensive, problem-solving algorithms. Both projects make use of a voxel-based approach, where a design is generated directly from the combination of thousands of serialized toolpath fragments. The understanding that serially repeated elements can be assembled into highly complex and heterogeneous structures has implications stretching beyond 3D printing. This combinatorial approach for example also becomes highly valuable for construction systems based on modularity and prefabrication.
keywords prgrammable materials, simulation and design optimization, digital fabrication, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia16_24
id acadia16_24
authors Savov, Anton; Buckton, Ben; Tessmann, Oliver
year 2016
title 20,000 Blocks: Can gameplay be used to guide non-expert groups in creating architecture?
doi https://doi.org/10.52842/conf.acadia.2016.024
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 24-33
summary The paper follows research in engaging groups of non-trained individuals in the creation of architectural designs using games and crowdsourcing for human-directed problem-solving. With the proposed method, architectural experts can encode their design knowledge into custom-developed multiplayer gameplay in Minecraft. Non-expert players then are constrained by this gameplay which guides them to create unique architectural results. We describe a method with three components: guiding rules, verification routines and fast feedback. The method employs a real-time link between the game and structural analysis in Grasshopper to verify the designs. To prove the viability of these results, we use robotic fabrication, where the digital results are brought to reality at scale. A major finding of the work is the suite of tools for calibrating the balance of influence on the resulting designs between the Experts and the Players. We believe that this process can create designs which are not limited to parametrically optimal solutions but could also solve real-world problems in new and unexpected ways.
keywords robot-human collaboration, digital fabrication, gaming in design, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id acadia16_214
id acadia16_214
authors Schwartz, Mathew
year 2016
title Use of a Low-Cost Humanoid for Tiling as a Study in On-Site Fabrication: Techniques and Methods
doi https://doi.org/10.52842/conf.acadia.2016.214
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 214-223
summary Since the time architecture and construction began embracing robotics, the pre-fab movement has grown rapidly. As the possibilities for new design and fabrication emerge from creativity and need, the application and use of new robotic technologies becomes vital. This movement has been largely focused on the deployment of industrial-type robots used in the (automobile) manufacturing industry for decades, as well as trying to apply these technologies into off-site building construction. Beyond the pre-fab (off-site) conditions, on-site fabrication offers a valuable next step to implement new construction methods and reduce human work-related injuries. The main challenge in introducing on-site robotic fabrication/construction is the difficulty in calibrating robot navigation (localization) in an unstructured and constantly changing environment. Additionally, advances in robotic technology, similar to the revolution of at-home 3D printing, shift the ownership of modes of production from large industrial entities to individuals, allowing for greater levels of design and construction customization. This paper demonstrates a low-cost humanoid robot as highly customizable technology for floor tiling. A novel end-effector design to pick up tiles was developed, along with a localization system that can be applied to a wide variety of robots.
keywords humanoid robot, digital fabricaiton, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id acadia16_224
id acadia16_224
authors Schwinn, Tobias; Krieg, Oliver David; Menges, Achim
year 2016
title Robotic Sewing: A Textile Approach Towards the Computational Design and Fabrication of Lightweight Timber Shells
doi https://doi.org/10.52842/conf.acadia.2016.224
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 224-233
summary Unlike any other building material, timber has seen numerous innovations in design, manufacturing, and assembly processes in recent years. Currently available technology not only allows architects to freely shape building elements but also to define their micro- or macroscopic material make-up and therefore the material itself. At the same time, timber shells have become a focus of research in wood architecture by rethinking both construction typologies and material application. Their main advantage, however, also poses a challenge to its construction: As the shell is both the load-bearing structure as well as enclosure, its segmentation and the individual segment’s connections become increasingly important. Their complex and often differentiated geometries do not allow for standardized timber joints, and with decreasing material thickness, conventional connection techniques become less feasible. The research presented in this paper investigates textile strategies for the fabrication of ultra-lightweight timber shells in architecture. Specifically, a robotic sewing method is developed in conjunction with a computational design method for the development of a new construction system that was evaluated through a large-scale prototype building.
keywords textile connection, robotic fabrication, timber construction, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2024_361
id ecaade2024_361
authors Sochùrková, Petra; Devyatkina, Svetlana; Kordová, Sára; Vaško, Imrich; Tsikoliya, Shota
year 2024
title Bioreceptive Parameters for Additive Manufacturing of Clay based Composites
doi https://doi.org/10.52842/conf.ecaade.2024.1.045
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 45–54
summary Due to climate change and the problematic amount of waste and CO2 emissions in the construction industry, non-human organisms and sustainable solutions are key motivators of the study. This paper focuses on developing a bioreceptive (Guillitte, 1995) composite suitable for additive manufacturing, composed to support growth of various organisms. It investigates key properties which have shown to be beneficial for promoting biological growth, such as water absorption, water permeability, humidity, and surface texture. The study evaluates the effect of two groups of clay-based waste additives, wooden sawdust (Arslan, et al., 2021) and sediment material sourced from local tunnel excavation in Prague. Simultaneously the need for intelligent reintegration and waste use is prevalent. Additive fabrication offers the ability to test a variety of composites and (re-)integrate them into the manufacturing processes. Current approach explores how to design artificial environments/skins for greenery and small life with the potential to improve both diversity and survivability while maintaining a better climate in its immediate surroundings. Bioreceptive design has the potential to improve the quality of the urban environment and bring new aesthetic influences into it (Cruz and Beckett 2016, p. 51-64).
keywords Digital Design, Material Research, Bioreceptive Design, Robotic Fabrication, Additive Manufacturing, Experimental Pastes, Bio compatibility, Waste Materials, Clay Composites
series eCAADe
email
last changed 2024/11/17 22:05

_id acadia16_470
id acadia16_470
authors Sollazzo, Aldo; Baseta, Efilena; Chronis, Angelos
year 2016
title Symbiotic Associations
doi https://doi.org/10.52842/conf.acadia.2016.470
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 470-477
summary Soil contamination poses a series of important health issues, following years of neglect, constant industrialization, and unsustainable agriculture. It is estimated that 30% of the total cultivated soil in the world will convert to degraded land by 2020 (Rashid et al. 2016). Finding suitable treatment technologies to clean up contaminated water and soil is not trivial, and although technological solutions are sought, many are both resource-expensive and potentially equally unsustainable in long term. Bacteria and fungi have proved efficient in contributing to the bioavailability of nutrients and in aggregating formation in degraded soils (Rashid et al. 2016). Our research aims to explore the possible implementation of physical computing, computational analysis, and digital fabrication techniques in the design and optimization of an efficient soil remediation strategy using mycelium. The study presented here is a first step towards an overarching methodology for the development of an automated soil decontamination process, using an optimized bio-cell fungus seed that can be remotely populated using aerial transportation. The presented study focuses on the development of a methodology for capturing and modeling the growth of the mycelium fungus using photogrammetry-based 3D scanning and computational analysis techniques.
keywords computational design, photogrammetry, simulation, mycelium, 3d scanning, growth strategies
series ACADIA
type paper
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_82315 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002