CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id ecaade2016_210
id ecaade2016_210
authors Abdelmohsen, Sherif, Massoud, Passaint and Elshafei, Ahmed
year 2016
title Using Tensegrity and Folding to Generate Soft Responsive Architectural Skins
doi https://doi.org/10.52842/conf.ecaade.2016.1.529
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 529-536
summary This paper describes the process of designing a prototype for a soft responsive system for a kinetic building facade. The prototype uses lightweight materials and mechanisms to generate a building facade skin that is both soft (less dependent on hard mechanical systems) and responsive (dynamically and simultaneously adapting to spatial and environmental conditions). By combining concepts stemming from both tensegrity structures and folding mechanisms, we develop a prototype that changes dynamically to produce varying facade patterns and perforations based on sensor-network data and feedback. We use radiation sensors and shape memory alloys to control the prototype mechanism and allow for the required parametric adaptation. Based on the data from the radiation sensors, the lengths of the shape memory alloys are altered using electric wires and are parametrically linked to the input data. The transformation in the resulting overall surface is directly linked to the desired levels of daylighting and solar exposure. We conclude with directions for future research, including full scale testing, advanced simulation, and multi-objective optimization.
wos WOS:000402063700058
keywords Soft responsive systems; tensegrity; folding; kinetic facades
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_445
id caadria2016_445
authors Silvestre, Joaquim; Franc?ois Gue?na and Yasushi Ikeda
year 2016
title Edition-Oriented 3D Model Rebuilt from Photography
doi https://doi.org/10.52842/conf.caadria.2016.445
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 445-454
summary The topic of this paper is about a technique to turn pictures into an intuitively modifiable 3D model. The research employs an analytical method using algorithms to conceptualise and digital- ise architectural spaces in order to highlight parametric shapes. Usual- ly, from one group of digital photos, photogrammetry techniques pro- duce a 3D-model mesh through a high-density 3D point cloud. This discordance between our intuitive partitioning of the mesh and its bare polygonal structure makes it interact poorly compared to the af- fordance of shape and component in our daily experience. Through a capture device, a visualisation of architecture in a digital data form is produced. They are processed by computer vision algorithms and ma- chine learning systems in order to be refined into a parametric model. Parametric elements can be described as a compound of formulas and parameters. By keeping the formula and changing the parameters, the- se elements can be easily modified in a range of likenesses. After be- ing detected during scans, these shapes can be adapted to fit the inten- tion of the designer during the design phase.
keywords Photogrammetry; convolutional neural network; 3D model; design tool
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2016_383
id sigradi2016_383
authors Menegotto, José Luis
year 2016
title Explicitando a estrutura do prédio em modelos BIM [Giving an explicit definition of a building structure in BIM models]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.459-465
summary This paper presents an API implementation for a BIM program written in .NET platform. The goal of this application is to launch the structure of a building automatically. The automation creates and controls the building's structural elements types using external text files with a dual purpose of being the source of information and to be the explicit description of the project. Our target is to create a definition of semantics that integrate the application with a voice user interface (VUI). The present version of the work is focused on a conventional and compact building type.
keywords Structural automation; Revit; Speech recognition
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2016_448
id sigradi2016_448
authors Afsari, Kereshmeh; Eastman, Charles M.; Shelden, Dennis R.
year 2016
title Data Transmission Opportunities for Collaborative Cloud-Based Building Information Modeling
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.907-913
summary Collaboration within Building Information Modeling process is mainly based on file transfer while BIM data being exchanged in either vendor specific file formats or neutral format using Industry Foundation Classes (IFC). However, since the Web enables Cloud-based BIM services, it provides an opportunity to exchange data via Web transfer services. Therefore, the main objective of this paper is to investigate what features of Cloud interoperability can assist a network-based BIM data transmission for a collaborative work flow in the Architecture, Construction, and Engineering (AEC) industry. This study indicates that Cloud-BIM interoperability needs to deploy major components such as APIs, data transfer protocols, data formats, and standardization to redefine BIM data flow in the Cloud and to reshape the collaboration process.
keywords BIM; Cloud Computing; Data Transmission; Interoperability; IFC
series SIGRADI
email
last changed 2021/03/28 19:58

_id ijac201614408
id ijac201614408
authors Bard, Joshua David; David Blackwood, Nidhi Sekhar and Brian Smith
year 2016
title Reality is interface: Two motion capture case studies of human–machine collaboration in high-skill domains
source International Journal of Architectural Computing vol. 14 - no. 4, 398-408
summary This article explores hybrid digital/physical workflows in the building trades, a high-skill domain where human dexterity and craft can be augmented by the precision and repeatability of digital design and fabrication tools. In particular, the article highlights two projects where historic construction techniques were extended through live motion capture of human gesture, information-rich visualization projected in the space of fabrication and custom robotic tooling to generate free-form running moulds. The first case study explores decorative plastering techniques and an augmented workflow where designers and craftspeople can quickly explore patterns through freehand sketch, test ideas with shaded previews and seamlessly produce physical parts using robotic collaborators. The second case study reimagines a roman vaulting technique that used terracotta bottles as part of an interlocking masonry system. Motion capture is used to place building elements precisely in material arrays with real-time visual feedback guiding the hand-held placement of each bottle. These case studies serve to underscore the emerging importance of reality capture in the design and construction of the built environment. Increasingly, the algorithmic power of computational tools and the nuances of human skill can be combined in hybrid design and fabrication workflows.
keywords Reality computing, motion capture, robotic fabrication, haptic interface, hybrid skill, human–machine collaboration, reality capture
series journal
email
last changed 2016/12/09 10:52

_id sigradi2016_712
id sigradi2016_712
authors Braida, Frederico; Castro, Janaina Mendes de; Pires, Letícia Bedendo Campanha; Pereira, Luiz Antônio Rozendo; Cardoso, Marcela Martins Cavalari
year 2016
title Projetando com Blocos de Montar Digitais: Possibilidades e Limitaç?es do Jogo LEGO Digital Designer [Designing with Digital Building Blocks: Possibilities and Limitations of the LEGO Digital Designer Game]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.244-251
summary This article proposes a reflection on the possibilities of using building blocks games as educational tool applied to the universe of Architecture and Urbanism design, from literature search and empirical data gathered in a workshop coordinated by the Research Group of Languages and Expressions in Architecture, Urbanism and Design – LEAUD (Brasil). The goal is to highlight the possibilities and limitations of using projetual world of building blocks as an academic material for Architecture and Urbanism, especially after the experience with LEGO Digital Designer software.
keywords Design methodology; Building blocks; LEGO; Digital game; Design worlds
series SIGRADI
email
last changed 2021/03/28 19:58

_id ascaad2016_027
id ascaad2016_027
authors Cocho-Bermejo, Ana
year 2016
title Time in Adaptable Architecture - Deployable emergency intelligent membrane
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 249-258
summary The term "Parametricism" widespread mainly by Patrick Schumacher (Schumacher, 2008) is worthy of study. Developing the concept of Human Oriented Parametric Architecture, the need of implementing time as the lost parameter in current adaptive design techniques will be discussed. Morphogenetic processes ideas will be discussed through the principle of an adaptable membrane as a case study. A model implementing a unique Arduino[i] on the façade will control its patterns performance through an Artificial Neural Network that will understand the kind of scenario the building is in, activating a Genetic Algorithm that will optimize the insulation performance of the ETFE pillows. The system will work with a global behavior for façade pattern performance and with a local one for each pillow, giving the option of individual sun-shading control. Machine learning implementation will give the façade the possibility to learn from the efficacy of its decisions through time, eliminating the need of a general on-off behavior.
series ASCAAD
email
last changed 2017/05/25 13:31

_id acadia20_688
id acadia20_688
authors del Campo, Matias; Carlson, Alexandra; Manninger, Sandra
year 2020
title 3D Graph Convolutional Neural Networks in Architecture Design
doi https://doi.org/10.52842/conf.acadia.2020.1.688
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 688-696.
summary The nature of the architectural design process can be described along the lines of the following representational devices: the plan and the model. Plans can be considered one of the oldest methods to represent spatial and aesthetic information in an abstract, 2D space. However, to be used in the design process of 3D architectural solutions, these representations are inherently limited by the loss of rich information that occurs when compressing the three-dimensional world into a two-dimensional representation. During the first Digital Turn (Carpo 2013), the sheer amount and availability of models increased dramatically, as it became viable to create vast amounts of model variations to explore project alternatives among a much larger range of different physical and creative dimensions. 3D models show how the design object appears in real life, and can include a wider array of object information that is more easily understandable by nonexperts, as exemplified in techniques such as building information modeling and parametric modeling. Therefore, the ground condition of this paper considers that the inherent nature of architectural design and sensibility lies in the negotiation of 3D space coupled with the organization of voids and spatial components resulting in spatial sequences based on programmatic relationships, resulting in an assemblage (DeLanda 2016). These conditions constitute objects representing a material culture (the built environment) embedded in a symbolic and aesthetic culture (DeLanda 2016) that is created by the designer and captures their sensibilities.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2016_589
id caadria2016_589
authors Grigoriadis, Kostas
year 2016
title Translating Digital to Physical Gradients
doi https://doi.org/10.52842/conf.caadria.2016.589
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 589-598
summary As the practice of using notations to translate from two to three-dimensions is becoming superseded by the direct relaying of building information digitally, the separation between designing and building is diminishing. A key aspect in lessening further this divi- sion, is heterogeneous materiality that supersedes component thinking and effectively tectonics. Being an embodiment of the redundancies of tectonic assembly, a curtain wall detail has been redesigned with a heterogeneous and continuous multi-material using CFD. The main research problem following this redesign has been the conversion of material data from the CFD program into a 3D-printable format and in order to achieve a closer linkage between design and building. This has been pursued by initially converting the fused material parameters into fluid weight data and eventually into RGB colour values. The re- sulting configuration was output initially as a multi-colour print and effectively fabricated in a multi-material.
keywords Multi-materials; CFD; 3D-printing; autography
series CAADRIA
email
last changed 2022/06/07 07:51

_id ascaad2016_010
id ascaad2016_010
authors Harnomo Fajar I.; Aswin Indraprastha
year 2016
title Computational Weaving Grammar of Traditional Woven Pattern
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 75-84
summary Weaving technique is one of the indigenous craftsmanship practices that are common in most of ethnic groups in Indonesia. Generally, it uses thin strips of organic material such as bamboo or rattan to make plane of surface that further can be developed into daily utensils or as a traditional architectural building components such as partition wall and floor. The research of weaving grammar as a system and process had been introduced and explored using Shape Grammar theory and principles. Having the potential implementation and to preserve the traditional weaving method, the grammar can be explored as a method of exploration in architectural design by extending the computation method based on the visual embedding of its pattern languages. The aim of the study is to discover the geometrical configuration underlied traditional weaving grammar by reconfiguring and elaborating procedures and further develop generative method using computational approach. We focused on the exploration of single and dual patterns of biaxial types of West Java woven pattern by using shape grammar principles. The result shows computational method is constructed by several rules which are defined as generative procedure. The result advised that traditional woven pattern has similarity according to its ruled-based system of generative algorithm.
series ASCAAD
email
last changed 2017/05/25 13:13

_id ijac201614303
id ijac201614303
authors Matsubayashi, Michio and Shun Watanabe
year 2016
title Generating two-dimensional schematic diagrams of mechanical, electrical, and plumbing systems from three-dimensional building information models
source International Journal of Architectural Computing vol. 14 - no. 3, 219-232
summary In this article, we propose a method of generating two-dimensional schematic diagrams from three-dimensional models of mechanical, electrical, and plumbing systems on computer-aided design software to represent this information in a more traditional, user-friendly format. It can be difficult to grasp the relationships between various mechanical, electrical, and plumbing elements in building information models because they are represented in a visually complex, three-dimensional manner. On the other hand, the relationships between building elements can be easily understood when using traditional schematic diagrams. First, the network of mechanical, electrical, and plumbing systems and a section view are extracted separately from three-dimensional models. Next, these extracted files are displayed as schematic diagrams on computer-aided design software. The expressions of traditional drawings were referenced to generate new diagrams. After schematic diagrams were created, they were evaluated by staff members in the facilities department of a university in Japan.
keywords Building information model, schematic diagram, existing buildings, attribute information, two-dimensional drawings
series journal
last changed 2016/10/05 08:21

_id ecaade2016_042
id ecaade2016_042
authors Narangerel, Amartuvshin, Lee, Ji-Hyun and Stouffs, Rudi
year 2016
title Daylighting Based Parametric Design Exploration of 3D Facade Patterns
doi https://doi.org/10.52842/conf.ecaade.2016.2.379
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 379-388
summary A building façade plays an important role of reducing artificial lighting by introducing natural light into the interior space. A majority of research and current technology heavily focuses on the optimization of window properties such as the size, location, and glazing with the consideration of external shading device as well as the building wall in order to obtain appropriate natural lit space. In the present work, we propose a 3-dimensional approach that can explore the trade-offs between two objectives, daylight performance and electricity generation, by means of paramedic modeling and multi-objective optimization algorithm. The case study was simulated under the environmental setting of the geographical location of Incheon, Korea without any urban context. Using the proposed methods, 50 pareto-front optimal solutions were derived and investigated based on the achieved daylighting and generated electricity.
wos WOS:000402064400037
keywords Parametric design; façade design; daylight performance; building-integrated photovoltaics; multi-objective optimization
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2016_881
id caadria2016_881
authors Silvestre, Joaquim; Yasushi Ikeda and Franc?ois Gue?na
year 2016
title Artificial Imagination of Architecture with Deep Convolutional Neural Network
doi https://doi.org/10.52842/conf.caadria.2016.881
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 881-890
summary This paper attempts to determine if an Artificial Intelli- gence system using deep convolutional neural network (ConvNet) will be able to “imagine” architecture. Imagining architecture by means of algorithms can be affiliated to the research field of generative archi- tecture. ConvNet makes it possible to avoid that difficulty by automat- ically extracting and classifying these rules as features from large ex- ample data. Moreover, image-base rendering algorithms can manipu- late those abstract rules encoded in the ConvNet. From these rules and without constructing a prior 3D model, these algorithms can generate perspective of an architectural image. To conclude, establishing shape grammar with this automated system opens prospects for generative architecture with image-base rendering algorithms.
keywords Machine learning; convolutional neural network; generative design; image-based rendering
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2016_167
id caadria2016_167
authors Su, Hsiu-Pai and Sheng-Fen Chien
year 2016
title Revealing Patterns: Using parametric design patterns in building façade design workflow
doi https://doi.org/10.52842/conf.caadria.2016.176
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 176-176
summary The objective of this paper is to provide a way of viewing design knowledge imbedded in the design workflow. By reviewing known design projects, we have observed common occurrences of de- sign patterns in different stages of parametric fac?ade design workflow. We demonstrate the application of parametric design patterns in prac- tices as preliminary studies of forming a pattern language of paramet- ric design.
keywords Design pattern; parametric design; fac?ade design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2016_019
id ecaade2016_019
authors Thurow, Torsten, Langenhan, Christoph and Petzold, Frank
year 2016
title Assisting Early Architectural Planning Using a Geometry-Based Graph Search
doi https://doi.org/10.52842/conf.ecaade.2016.2.199
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 199-207
summary In early design phases of architecture ideas exist mostly on a vague level concerning the expectations for the building plan and the respective design parameters. One established method is to examine and develop ideas through existing designs, and to use these to clarify design parameters and be further inspired. Thus, the aim is a computer-based system like sketch-based query approach to show similar floor plans using semantic building fingerprints.During the search floor plans are compared in form of graphs, which means that the sketch-based floor plans are converted to graphs together with the existing floor plans. Herewith, a gradual condensation of the request is possible. The entry is condensed continuously through the repetitive process of entry and search. The challenges with this approach lie in the following mathematical model behind similar floor plans, Queries that satisfy complexity of the data and optimal way for the user to engage in search process.
wos WOS:000402064400019
keywords Semantic fingerprints; early architectural planning; geometry-based graph search; adjustment theory
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia16_184
id acadia16_184
authors Vasey; Lauren; Long Nguyen; Tovi Grossman; Heather Kerrick; Danil Nagy; Evan Atherton; David Thomasson; Nick Cote; David Benjamin; George Fitzmaurice; Achim Menges
year 2016
title Collaborative Construction: Human and Robotic Collaboration Enabling the Fabrication and Assembly of a Filament-Wound Structure
doi https://doi.org/10.52842/conf.acadia.2016.184
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 184-195
summary In this paper, we describe an interdisciplinary project and live-exhibit that investigated whether untrained humans and robots could work together collaboratively towards the common goal of building a large-scale structure composed out of robotically fabricated modules using a filament winding process. We describe the fabrication system and exhibition setup, including a custom end effector and tension control mechanism, as well as a collaborative fabrication process in which instructions delivered via wearable devices enable the trade-off of production and assembly tasks between human and robot. We describe the necessary robotic developments that facilitated a live fabrication process, including a generic robot inverse kinematic solver engine for non-spherical wrist robots, and wireless network communication connecting hardware and software. In addition, we discuss computational strategies for the fiber syntax generation and robotic motion planning which mitigated constraints such as reachability, axis limitations, and collisions, and ensured predictable and therefore safe motion in a live exhibition setting. We discuss the larger implications of this project as a case study for handling deviations due to non-standardized materials or human error, as well as a means to reconsider the fundamental separation of human and robotic tasks in a production workflow. Most significantly, the project exemplifies a hybrid domain of human and robot collaboration in which coordination and communication between robots, people, and devices can enhance the integration of robotic processes and computational control into the characteristic processes of construction.
keywords machin vision, cyber-physical systems, internet of things, robotic fabrication, human robot collaboration, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id ascaad2016_012
id ascaad2016_012
authors Veloso, Pedro; Ramesh Krishnamurti
year 2016
title On Slime Molds and Corridors - The application of network design algorithms to connect architectural arrangements
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 95-104
summary The use of adjacency graphs to represent and generate architectural arrangements tends to favor direct connections between contiguous rooms. These disregard specialized circulatory systems (such as corridors), which consider connections between non-contiguous spatial units or accesses. This paper addresses two specific issues: (1) how to represent a circulation network for a specific access/adjacency graph embedding; and (2) how to design good circulatory solutions for the arrangement that optimizes this network. To represent a complete circulation network, we propose a scheme, an adapted straight skeleton, based on the boundaries of the spatial units. To design possible circulation alternatives, we adopt the Slime Mold model (Tero et al., 2006; 2007). Using this model, we develop an original method, termed Adjacency Graph Selection (AGS), to generate circulation solutions for arrangements. As an initial test case for AGS, we use floor plan of the Louvre Abu Dhabi, designed by the French architect Jean Nouvel.
series ASCAAD
email
last changed 2017/05/25 13:31

_id ecaade2016_018
id ecaade2016_018
authors Wurzer, Gabriel and Lorenz, Wolfgang E.
year 2016
title SpaceBook - A Case Study of Social Network Analysis in Adjacency Graphs
doi https://doi.org/10.52842/conf.ecaade.2016.2.229
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 229-238
summary In this paper, we have adopted methods from Social Network Analysis in order to analyze adjacency graphs. Our intent was to uncover as much hidden structures as possible so as to improve adjacency requirements before they are used further on during the design process. To that end, we have conducted a case study using two readily available software packages (Gephi, Pajek), concluding that these could benefit from being more transparent about the underlying algorithms and more geared towards the problem domain 'adjacency analysis' when it comes to data entry and visualization. As a matter of fact, we produced an open-source prototype called SpaceBook, which customizes computation and visualization in the aforementioned spirit.
wos WOS:000402064400022
keywords Adjacency Graph; Social Network Analysis
series eCAADe
email
last changed 2022/06/07 07:57

_id lasg_whitepapers_2016_fulltext
id lasg_whitepapers_2016_fulltext
year 2016
title Living Architecture Systems Group White Papers 2016
source Living Architecture Systems Group White Papers 2016 [ISBN 978-1-988366-10-4 (EPUB)] Riverside Architectural Press 2016: Toronto, Canada
summary Living Architecture Systems Group "White Papers 2016" is a dossier produced for the occasion of the Living Architecture Systems Group launch event and symposium hosted on November 4 and 5 at the Sterling Road Studio in Toronto and the University of Waterloo School of Architecture at Cambridge. The "White Papers 2016" presents research contributions from the LASG partners, forming an overview of the partnership and highlighting oppportunities for future collaborations.
keywords design, dissipative methods, design methods, synthetic cognition, neuroscience, metabolism, STEAM, organicism, field work, responsive systems, space, visualizations, sensors, actuators, signal flows, art and technology, new media art, digital art, emerging technologies, citizen building, bioinspiration, performance, paradigms, artificial nature, virtual design, regenerative design, 4DSOUND, spatial sound, biomanufacturing, eskin, delueze, bees, robotics
last changed 2019/07/29 14:02

_id ascaad2016_052
id ascaad2016_052
authors Al-Badry, Sally; Cesar Cheng, Sebastian Lundberg and Georgios Berdos
year 2016
title Living on the Edge - Reinventing the amphibiotic habitat of the Mesopotamian Marshlands
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 513-526
summary The Mesopotamian Marshlands form one of the first landscapes where people started to transform and manipulate the natural environment in order to sustain human habitation. For thousands of years, people have transformed natural ecosystems into agricultural fields, residential clusters and other agglomerated environments to sustain long-term settlement. In this way, the development of human society has been intricately linked to the extraction, processing and consumption of natural resources. The Mesopotamian Marshlands, located in one of the hottest and most arid areas on the planet, formed a unique wetlands ecosystem, which apart from millions of people, sustained a very high number of wildlife and endemic species. Several historical, political, social and climatic changes, which densely occurred during the past century, completely destroyed the unique civilisation of the area, made all the wild flora and fauna disappear and forced hundreds of thousands of people to migrate. During the last decade, many efforts have been made to restore the marshlands. However, these efforts are lacking a comprehensive design strategy, coherent goals and deep understanding of the complex current geopolitical situation, making the restoration process an extremely difficult task. This work aims at providing strategies for recovering the Mesopotamian Marshlands, organising productive functions in order to sustain the local population and design a new inhabitation model, using advanced computational tools while taking into account the extreme climatic conditions and several unique cultural aspects. Part of the aim of this work is to advance the use of computation and explore the opportunities that digital tools afford in helping find solutions to complex design problems where various design variables need to be coordinated to satisfy the design goals. Today, advanced computation enables designers to use population consumption demands, ecological processes and environmental inputs as design parameters to develop more robust and resilient regional planning strategies. This work has the double aim of first, presenting a framework for re-inhabiting the Marshlands of Mesopotamia. Second, the work suggests a design methodology based on computer-aided design for developing and organising productive functions and patterns of human occupation in wetland environments.
series ASCAAD
email
last changed 2017/05/25 13:34

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_983928 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002