CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 44

_id caadria2016_797
id caadria2016_797
authors Agusti?-Juan, Isolda and Guillaume Habert
year 2016
title An environmental perspective on digital fabrication in architecture and construction
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 797-806
doi https://doi.org/10.52842/conf.caadria.2016.797
summary Digital fabrication processes and technologies are becom- ing an essential part of the modern product manufacturing. As the use of 3D printing grows, potential applications into large scale processes are emerging. The combined methods of computational design and robotic fabrication have demonstrated potential to expand architectur- al design. However, factors such as material use, energy demands, du- rability, GHG emissions and waste production must be recognized as the priorities over the entire life of any architectural project. Given the recent developments at architecture scale, this study aims to investi- gate the environmental consequences and opportunities of digital fab- rication in construction. This paper presents two case studies of classic building elements digitally fabricated. In each case study, the projects were assessed according to the Life Cycle Assessment (LCA) frame- work and compared with conventional construction with similar func- tion. The analysis highlighted the importance of material-efficient de- sign to achieve high environmental benefits in digitally fabricated architecture. The knowledge established in this research should be di- rected to the development of guidelines that help designers to make more sustainable choices in the implementation of digital fabrication in architecture and construction.
keywords Digital fabrication; LCA; sustainability; environment
series CAADRIA
email
last changed 2022/06/07 07:54

_id lasg_whitepapers_2016_314
id lasg_whitepapers_2016_314
authors Alexander Webb
year 2016
title Accepting the Robotic Other: Why Real Dolls and Spambots Suggest a Near-Future Shift in Architecture’s Architecture
source Living Architecture Systems Group White Papers 2016 [ISBN 978-1-988366-10-4 (EPUB)] Riverside Architectural Press 2016: Toronto, Canada pp. 314 - 329
summary Living Architecture Systems Group "White Papers 2016" is a dossier produced for the occasion of the Living Architecture Systems Group launch event and symposium hosted on November 4 and 5 at the Sterling Road Studio in Toronto and the University of Waterloo School of Architecture at Cambridge. The "White Papers 2016" presents research contributions from the LASG partners, forming an overview of the partnership and highlighting oppportunities for future collaborations.
keywords design, dissipative methods, design methods, synthetic cognition, neuroscience, metabolism, STEAM, organicism, field work, responsive systems, space, visualizations, sensors, actuators, signal flows, art and technology, new media art, digital art, emerging technologies, citizen building, bioinspiration, performance, paradigms, artificial nature, virtual design, regenerative design, 4DSOUND, spatial sound, biomanufacturing, eskin, delueze, bees, robotics
email
last changed 2019/07/29 14:02

_id ijac201614408
id ijac201614408
authors Bard, Joshua David; David Blackwood, Nidhi Sekhar and Brian Smith
year 2016
title Reality is interface: Two motion capture case studies of human–machine collaboration in high-skill domains
source International Journal of Architectural Computing vol. 14 - no. 4, 398-408
summary This article explores hybrid digital/physical workflows in the building trades, a high-skill domain where human dexterity and craft can be augmented by the precision and repeatability of digital design and fabrication tools. In particular, the article highlights two projects where historic construction techniques were extended through live motion capture of human gesture, information-rich visualization projected in the space of fabrication and custom robotic tooling to generate free-form running moulds. The first case study explores decorative plastering techniques and an augmented workflow where designers and craftspeople can quickly explore patterns through freehand sketch, test ideas with shaded previews and seamlessly produce physical parts using robotic collaborators. The second case study reimagines a roman vaulting technique that used terracotta bottles as part of an interlocking masonry system. Motion capture is used to place building elements precisely in material arrays with real-time visual feedback guiding the hand-held placement of each bottle. These case studies serve to underscore the emerging importance of reality capture in the design and construction of the built environment. Increasingly, the algorithmic power of computational tools and the nuances of human skill can be combined in hybrid design and fabrication workflows.
keywords Reality computing, motion capture, robotic fabrication, haptic interface, hybrid skill, human–machine collaboration, reality capture
series journal
email
last changed 2016/12/09 10:52

_id acadia16_164
id acadia16_164
authors Braumann, Johannes; Stumm, Sven; Brell-Cokcan, Sigrid
year 2016
title Towards New Robotic Design Tools: Using Collaborative Robots within the Creative Industry
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 164-173
doi https://doi.org/10.52842/conf.acadia.2016.164
summary This research documents our initial experiences of using a new type of collaborative, industrial robot in the area of architecture, design, and construction. The KUKA LBR-iiwa differs from common robotic configurations in that it uses seven axes with integrated force-torque sensors and can be programmed in the Java programming language. Its force-sensitivity makes it safe to interact with, but also enables entirely new applications that use hand-guiding and utilize the force-sensors to compensate for high tolerances on building sites, similar to how we manually approach assembly tasks. Especially for the creative industry, the Java programming opens up completely new applications that would have previously required complex bus systems or industrial data interfaces. We will present a series of realized projects that showcase some of the potential of this new type of collaborative, safe robot, and discuss the advantages and limitations of the robotic system.
keywords material tolerances, individualized production, iiwa, assembly, visual robot programming, collaborative robots
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia16_154
id acadia16_154
authors Brugnaro, Giulio; Baharlou, Ehsan; Vasey, Lauren; Menges, Achim
year 2016
title Robotic Softness: An Adaptive Robotic Fabrication Process for Woven Structures
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 154-163
doi https://doi.org/10.52842/conf.acadia.2016.154
summary This paper investigates the potential of behavioral construction strategies for architectural production through the design and robotic fabrication of three-dimensional woven structures inspired by the behavioral fabrication logic used by the weaverbird during the construction of its nest. Initial research development led to the design of an adaptive robotic fabrication framework composed of an online agent-based system, a custom weaving end-effector and a coordinated sensing strategy utilizing 3D scanning.The outcome of the behavioral weaving process could not be predetermined a priori in a digital model, but rather emerged out of the negotiation among design intentions, fabrication constraints, performance criteria, material behaviors and specific site conditions. The key components of the system and their role in the fabrication process are presented both theoretically and technically, while the project serves as a case study of a robotic production method envisioned as a soft system: a flexible and adaptable framework in which the moment of design unfolds simultaneously with fabrication, informed by a constant flow of sensory information.
keywords soft systems, agent-based systems, robotic fabrication, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2016_079
id ecaade2016_079
authors Cheng, Chi-Li and Hou, June-Hao
year 2016
title Biomimetic Robotic Construction Process - An approach for adapting mass irregular-shaped natural materials
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 133-142
doi https://doi.org/10.52842/conf.ecaade.2016.1.133
wos WOS:000402063700015
summary Beaver dams are formed by two main processes. One is that beavers select proper woods for constructing. The other one is that streams aggregate those woods to be assembled. Using this approach to construction structure is suitable for natural environment. In this paper, we attempt to develop a construction process which is suitable for all-terrain construction robot in the future. This construction process is inspired by beavers' construction behavior in nature. Beavers select proper sticks to make the structure stable. We predict that particular properties of sticks contribute gravity-driven assembly of wood structure. Thus, we implement the system with machine learning to find proper properties of sticks to improve selection mechanism of construction process. During this construction process, 3D scanner on robotic arm scans and recognizes sticks on terrain, and then robot will select proper sticks and place them. After placement, the system will scan and record the results for learning mechanism.
keywords Biomimetic Design; Machine Learning; Natural Material; Point Cloud Analysis; Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia18_404
id acadia18_404
authors Clifford, Brandon; McGee, Wes
year 2018
title Cyclopean Cannibalism. A method for recycling rubble
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 404-413
doi https://doi.org/10.52842/conf.acadia.2018.404
summary Each year, the United States discards 375 million tons of concrete construction debris to landfills (U.S. EPA 2016), but this is a new paradigm. Past civilizations cannibalized their constructions to produce new architectures (Hopkins 2005). This paper interrogates one cannibalistic methodology from the past known as cyclopean masonry in order to translate this valuable method into a contemporary digital procedure. The work contextualizes the techniques of this method and situates them into procedural recipes which can be applied in contemporary construction. A full-scale prototype is produced utilizing the described method; demolition debris is gathered, scanned, and processed through an algorithmic workflow. Each rubble unit is then minimally carved by a robotic arm and set to compose a new architecture from discarded rubble debris. The prototype merges ancient construction thinking with digital design and fabrication methodologies. It poses material cannibalism as a means of combating excessive construction waste generation.
keywords full paper, cyclopean, algorithmic, robotic fabrication, stone, shape grammars, computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2016_559
id caadria2016_559
authors Cokcan, Baris; Johannes Braumann, W. Winter and Martin Trautz
year 2016
title Robotic Production of Individualised Wood Joints
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 559-568
doi https://doi.org/10.52842/conf.caadria.2016.559
summary Modern modular constructions can consist of highly indi- vidualised elements that are produced at nearly the same efficiency as serial manufacturing. This paper focuses on the project “WoodWaves” an Info-Point for the conference World Congress of Timber Engineer- ing, which was designed with this new conception of modularity. The process utilises a robotically operated milling cutter to form block- board panels out of spruce, which make up the multifunctional infor- mation point. The entire object is produced with only sliding dovetail joints. Parametric design methods were developed to automatically adjust each joint to fit the individual conditions. New CAD/CAM in- terfaces, linking design directly with fabrication, enabled the serial production of 108 different shaped elements with a 6-axis robotic arm.
keywords Computational design; robotic production; digital fabrication; wood joints; info-point
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia16_206
id acadia16_206
authors Devadass, Pradeep; Dailami, Farid; Mollica, Zachary; Self, Martin
year 2016
title Robotic Fabrication of Non-Standard Material
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp
doi https://doi.org/10.52842/conf.acadia.2016.x.g4f
summary This paper illustrates a fabrication methodology through which the inherent form of large non-linear timber components was exploited in the Wood Chip Barn project by the students of Design + Make at the Architectural Association’s Hooke Park campus. Twenty distinct Y-shaped forks are employed with minimal machining in the construction of a structural truss for the building. Through this workflow, low-value branched sections of trees are transformed into complex and valuable building components using non-standard technologies. Computational techniques, including parametric algorithms and robotic fabrication methods, were used for execution of the project. The paper addresses the various challenges encountered while processing irregular material, as well as limitations of the robotic tools. Custom algorithms, codes, and post-processors were developed and integrated with existing software packages to compensate for drawbacks of industrial and parametric platforms. The project demonstrates and proves a new methodology for working with complex, large geometries which still results in a low cost, time- and quality-efficient process.
keywords parametric design, craft in digital communication, digital fabrication, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:49

_id ecaade2016_114
id ecaade2016_114
authors Erdine, Elif and Kallegias, Alexandros
year 2016
title Calculated Matter - Algorithmic Form-Finding and Robotic Mold-Making
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 163-168
doi https://doi.org/10.52842/conf.ecaade.2016.1.163
wos WOS:000402063700018
summary The paper addresses a specific method for the production of custom-made, differentiated moulds for the realization of a complex, doubly-curved wall element during an international three-week architectural programme, Architectural Association (AA) Summer DLAB. The research objectives focus on linking geometry, structure, and robotic fabrication within the material agency of concrete. Computational workflow comprises the integration of structural analysis tools and real-time form-finding methods in order to inform global geometry and structural performance simultaneously. The ability to exchange information between various simulation, modelling, analysis, and fabrication software in a seamless fashion is one of the key areas where the creation of complex form meets with the simplicity of exchanging information throughout various platforms. The paper links the notions of complexity and simplicity throughout the design and fabrication processes. The aim to create a complex geometrical configuration within the simplicity of a single material system, concrete, presents itself as an opportunity for further discussion and development.
keywords robotic fabrication; custom form-work; generative design; structural analysis; concrete
series eCAADe
email
last changed 2022/06/07 07:55

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaade2016_062
id ecaade2016_062
authors Erioli, Alessio
year 2016
title Aesthetics of Decision - Unfolding the design process within a framework of complexity and self-organization
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 219-228
doi https://doi.org/10.52842/conf.ecaade.2016.1.219
wos WOS:000402063700025
summary Complexity-grounded paradigms and self-organization based strategies promise enormous potential when channeled in a design process, but their current stage of development (while delivering groundbreaking results in recent years) hasn't significantly impacted yet the widespread architectural practice. Still, the tendency (in the development of technology and society) is clearly towards an increase in complexity and distributed intelligence, henceforth it is of primary importance to adopt a design approach that allows the harnessing of such potential and convey it in the creation of outcomes that favor a richer and heterogeneous ecological entanglement. To tap this kind of potential in an open-ended process requires a design approach that re-defines the distribution of control, choices and information throughout the whole process (including materials and fabrication processes).The paper explores the possibility of such design approach in the territory that links education and research through a series of Master Thesis developed at the University of Bologna and comparing them to other case studies developed worldwide.
keywords continuity; tectonics; architecture; mereology; multi-agent systems; theory; robotic fabrication; computation; simulation
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia16_12
id acadia16_12
authors Gerber, David Jason; Pantazis, Evangelos
year 2016
title A Multi-Agent System for Facade Design: A design methodology for Design Exploration, Analysis and Simulated Robotic Fabrication
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 12-23
doi https://doi.org/10.52842/conf.acadia.2016.012
summary For contemporary design practices, there still remains a disconnect between design tools used for early stage design exploration and performance analysis, and those used for fabrication and construction of complex tectonic architectural systems. The research brings forward downstream fabrication constraints into the up-stream design exploration and design decision making. This paper addresses the issues of developing an integrated digital design work-flow and details a research framework for the incorporation of environmental performance into a robotic fabrication for early stage design exploration and generation of intricate and complex alternative façade designs. The method allows the user to import a design surface, define design parameters, set a number of environmental performance objectives, and then simulate and select a robotic construction strategy. Based on these inputs, design alternatives are generated and evaluated in terms of their performance criteria in consideration of their robotically simulated constructability. In order to validate the proposed framework, an experimental case study of office building façade designs that are generatively created from a multi-agent system for design methodology is design explored and evaluated. Initial results define a heuristic function for improving simulated robotic constructability and illustrate the functionality of our prototype. Project limitations and future research steps are then discussed.
keywords generative design, multi-objective design optimization, robotic fabrication, simulation, design performance, design decision making
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaade2016_162
id ecaade2016_162
authors Heinrich, Mary Katherine and Ayres, Phil
year 2016
title Using the Phase Space to Design Complexity - Design Methodology for Distributed Control of Architectural Robotic Elements
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 413-422
doi https://doi.org/10.52842/conf.ecaade.2016.1.413
wos WOS:000402063700046
summary Architecture that is responsive, adaptive, or interactive can contain active architectural elements or robotic sensor-actuator systems. The consideration of architectural robotic elements that utilize distributed control and distributed communication allows for self-organization, emergence, and evolution on site in real-time. The potential complexity of behaviors in such architectural robotic systems requires design methodology able to encompass a range of possible outcomes, rather than a single solution. We present an approach of adopting an aspect of complexity science and applying it to the realm of computational design in architecture, specifically by considering the phase space and related concepts. We consider the scale and predictability of certain design characteristics, and originate the concept of a formation space extension to the phase space, for design to deal directly with materializations left by robot swarms or elements, rather than robots' internal states. We detail a case study examination of design methodology using the formation space concept for assessment and decision-making in the design of active architectural artifacts.
keywords phase space; complexity; attractor; distributed control
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2016_197
id ecaade2016_197
authors Jovanovic, Marko, Stojakovic, Vesna, Tepavcevic, Bojan, Mitov, Dejan and Bajsanski, Ivana
year 2016
title Generating an Anamorphic Image on a Curved Surface Utilizing Robotic Fabrication Process
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 185-191
doi https://doi.org/10.52842/conf.ecaade.2016.1.185
wos WOS:000402063700021
summary The integration of industrial robots in the creative art industry has increased in recent years. Implementing both brick stacking robotic fabrication, following a curved wall, and generating an image viewed from a single point, by rotating the bricks around their centres, has yet to be studied. The goal of this research is to develop a functional, parametric working model and a workflow that ensure easy manipulation and control of the desired outcome via parameters. This paper shows a workflow for the automatic generation of anamorphic structures on a curved wall by utilizing modular brick-like elements. As a result, a code for the robot controller and the position of the structure during fabrication are provided.
keywords anamorphosis; brick lying; robotic fabrication; generative design
series eCAADe
email
last changed 2022/06/07 07:52

_id ascaad2016_053
id ascaad2016_053
authors Khesroh, Mohammed
year 2016
title Virtual Landscape Assessment and Robotic Allocation Within Extreme Environments
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 527-536
summary The paper describes an iterated system, which explores the concept of a surveying, deploying, self-assembling robotic swarm system within an extreme environment, in a virtual robotics platform named VREP. The pure geometries that are the basis of this species, through study of locomotion in Fauna and energy transformations, produce several iterations of the proposed robot. The created species are used to generate a process in which the robotic swarms are able to make initial scans of landscapes using a series of visual and proximity sensors attached to each exposed face, in order to determine proper deployment zones for the making of a research facility. The explorations in locomotion and transfer of potential to kinetic energy would allow the geometrically pure robot to hop, flap, walk, flip or turn in order to move to achieve the desired location.
series ASCAAD
email
last changed 2017/05/25 13:34

_id ecaade2016_134
id ecaade2016_134
authors Kieferle, Joachim B. and Katodrytis, George
year 2016
title Fabricating Semi Predictable Surfaces - A workshop series on digitally fabricating freeform surfaces with aggregates
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 329-334
doi https://doi.org/10.52842/conf.ecaade.2016.1.329
wos WOS:000402063700037
summary Working with CNC routers and robots is widely used in architecture and fabrication. Our paper describes ways to use these tools more intuitively yet accurately and without a profound knowledge. We have developed a workshop format, in which even inexperienced participants are able to quickly start working with these tools by shaping the non-rigid material sand. Various production methods and tools are incorporated such as "manual", "gestural", "CNC" and "robotic" to create various 3D forms which are captured by methods like 3D scanning, vacuum forming or glueing.
keywords Education; Digital Fabrication; Sand surface; Formwork
series eCAADe
email
last changed 2022/06/07 07:52

_id ijac201614403
id ijac201614403
authors Kontovourkis, Odysseas and George Tryfonos
year 2016
title Design optimization and robotic fabrication of tensile mesh structures: The development and simulation of a custom-made end-effector tool
source International Journal of Architectural Computing vol. 14 - no. 4, 333-348
summary This article presents an ongoing research, aiming to introduce a fabrication procedure for the development of tensile mesh systems. The purpose of current methodology is to establish an integrated approach that combines digital form- finding and robotic manufacturing processes by extracting data and information derived through elastic material behavior for physical implementation. This aspires to extend the capacity of robotically driven mechanisms to the fabrication of complex tensile structures and, at the same time, to reduce the defects that might occur due to the deformation of the elastic material. In this article, emphasis is given to the development of a custom-made end-effector tool, which is responsible to add elastic threads and create connections in the form of nodes. Based on additive fabrication logic, this process suggests the development of physical prototypes through a design optimization and tool-path verification.
keywords Robotic fabrication, tensile mesh structures, real-time response, end-effector tool, multi-objective gentic algorithms, structure optimization, form-finding
series journal
email
last changed 2016/12/09 10:52

_id ecaade2016_094
id ecaade2016_094
authors Kontovourkis, Odysseas and Konatzii, Panagiota
year 2016
title Optimization Process Towards Robotic Manufacturing in Actual Scale - The Implementation of Genetic Algorithms in the Robotic Construction of Modular Formwork Systems
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 169-178
doi https://doi.org/10.52842/conf.ecaade.2016.1.169
wos WOS:000402063700019
summary The application of optimization processes in architectural design has gained significant attention among architects and recently has become a driving force towards more robust, reliable as well as flexible design investigations. Such application, require handling of multiple parameters, aiming at finding the range of possible solutions in morphological or topological problems of optimization, mostly during the design decision-making process and under the influence of functional, environmental, structural, or other design criteria. This ongoing research investigation puts forward the hypothesis that optimization processes might be equally applied during the construction decision-making process where architectural systems are examined in terms of their ability to be statically efficient and easily manufactured through the use of robotic machines. This is important to exist within a bidirectional platform of communication where the design decision-making will inform decision taken during pre-construction stage and vise versa. In order to test our hypothesis, two case studies are developed that implements genetic algorithms to examine the geometric and static behavior as well as the construction ability of proposed flexible three-dimensional modular formworks and overall systems for concrete casting, aiming to be robotically manufactured in actual scale.
keywords Optimization process; genetic algorithms; robotic manufacturing; modular formwork system.
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2017_144
id ecaade2017_144
authors Lange, Christian J.
year 2017
title Elements | robotic interventions II
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 671-678
doi https://doi.org/10.52842/conf.ecaade.2017.1.671
summary Reviewing the current research trends in robotic fabrication around the world, the trajectory promises new opportunities for innovation in Architecture and the possible redefinition of the role of the Architect in the industry itself. New entrepreneurial, innovative start-ups are popping up everywhere challenging the traditional model of the architect. However, it also poses new questions and challenges in the education of the architect today. What are the appropriate pedagogical methods to instill enthusiasm for new technologies, materials, and craft? How do we avoid the pure application of pre-set tools, such as the use of the laser cutter has become, which in many schools around the world has caused problems rather than solving problems? How do we teach students to invent their tools especially in a society that doesn't have a strong background in the making? The primary focus of this paper is on how architectural CAAD/ CAM education through the use of robotic fabrication can enhance student's understanding, passion and knowledge of materiality, technology, and craftsmanship. The paper is based on the pedagogical set-up and method of an M. Arch I studio that was taught by the author in fall 2016 with the focus on robotic fabrication, materiality, traditional timber construction systems, tool design and digital and physical craftsmanship.
keywords CAAD Education, Digital Technology, Craftsmanship, Material Studies, Tool Design, Parametric Modeling, Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2HOMELOGIN (you are user _anon_807563 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002