CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 544

_id acadia16_318
id acadia16_318
authors Huang, Alvin
year 2016
title From Bones to Bricks: Design the 3D Printed Durotaxis Chair and La Burbuja Lamp
doi https://doi.org/10.52842/conf.acadia.2016.318
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 318-325
summary Drawing inspiration from the variable density structures of bones and the self-supported cantilvers of corbelled brick arches, the Durotaxis Chair and the La Burbuja lamp explore a material-based design process by responding to the challenge of designing a 3D print, rather than 3D printing a design. As such, the fabrication method and materiality of 3D printing define the generative design constraints that inform the geometry of each. Both projects are seen as experiments in the design of 3D printed three-dimensional space packing structures that have been designed specifically for the machines by which they are manufactured. The geometry of each project has been carefully calibrated to capitalize on a selection of specific design opportunities enabled by the capabilities and constraints of additive manufacturing. The Durotaxis Chair is a half-scale prototype of a fully 3D printed multi-material rocking chair that is defined by a densely packed, variable density three-dimensional wire mesh that gradates in size, scale, density, color, and rigidity. Inspired by the variable density structure of bones, the design utilizes principal stress analysis, asymptotic stability, and ergonomics to drive the logics of the various gradient conditions. The La Burbuja Lamp is a full scale prototype for a zero-waste fully 3D printed pendant lamp. The geometric articulation of the project is defined by a cellular 3D space packing structure that is constrained to the angles of repose and back-spans required to produce un-supported 3D printing.
keywords parametic design, digital fabrication, structural analysis, additive manufacturing, 3d printing
series ACADIA
type paper
email
last changed 2022/06/07 07:50

_id caadria2020_354
id caadria2020_354
authors Tomarchio, Ludovica, He, Peijun, Herthogs, Pieter and Tuncer, Bige
year 2020
title Cultural-Smart City: Establishing New Data-informed Practices to Plan Culture in Cities
doi https://doi.org/10.52842/conf.caadria.2020.2.081
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 81-90
summary The idea of the Creative City has encouraged planners to develop cultural policies to support creative economies, city branding, urban identity and urban quality. On the other side, the concept of Smart City introduced the possibility to create, collect and analyse data to inform decisions on cities. The two city agendas overlap in different ways, creating a Smart cultural city nexus, that propose similar goals and mixed methodologies, like the possibility to inform planning processes with big data-based technologies. In line with this direction, we introduced conceptual and methodological tools: the first tool is the definition of Hybrid Art Spaces, the second tool is the Singapore Art Maps (SAM), which uses social media data to locate art venues in cities (Tomarchio et al. 2016); the third tool is the Social Media Art Model, which establishes a relationship between social media production and art venues features. While these tools have already shown interesting analytics outcomes (Tomarchio et al. 2016), it is important to validate their utility among practitioners and to set protocols of practices. This paper presents results from semi-structured interviews and a focus group, as a first step towards assessing the usefulness of our three tools for cultural planning practice.
keywords social media; art; cultural planning; urban planning
series CAADRIA
email
last changed 2022/06/07 07:58

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id caadria2016_569
id caadria2016_569
authors Williams, Nicholas and Dharman Gersch
year 2016
title Developing the Termite Plug-In: Abstracting operations to link 5-axis CNC routers with para-metric CAAD tools
doi https://doi.org/10.52842/conf.caadria.2016.569
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 569-578
summary Since the turn of the millennium, architects and designers have used greater access to Computer Aided Manufacturing (CAM) machines to explore links between design and fabrication. This trend is recently manifested in plug-ins for CAD software packages, which enable designers to program industrial robots and additive manufac- turing machines. However, amongst the array of contemporary tools, few connect CAD packages to commercial 5-axis routers and, as a re- sult, designers are forced to use complex CAM software to operate these machines with limited exploration of the interface with design. This paper reports on the development of a CAD plug-in for driving such routers and targeted at designers. It discusses key aspects in the conception of the software libraries for an alpha release of the tool, a plug-in for McNeel Grasshopper named Termite. Primary considera- tions for the development team include the areas and extent of flexi- bility offered in order to enable non-expert users of such machines to use them to in an effective and efficient manner. Key elements of the tools are discussed, including the definition of machining tools, the creation of generic toolpaths and the subsequent writing machine-code files. A set of example pieces are presented to demonstrate the pro- posed approach for flank-milling, patterning and connecting timber components at a furniture scale. These are compared to plug-ins for industrial robot with similar technical knowledge and experience amongst the target audience.
keywords Digital fabrication; parametric design; architectural proto-types; digital material
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia16_254
id acadia16_254
authors Sharmin, Shahida; Ahlquist, Sean
year 2016
title Knit Architecture: Exploration of Hybrid Textile Composites Through the Activation of Integrated Material Behavior
doi https://doi.org/10.52842/conf.acadia.2016.254
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 254-259
summary The hybrid system in textile composites refers to the structural logic defined by Heino Engel, which describes a system that integrates multiple structural behaviors to achieve an equilibrium state (Engel 2007). This research explores a material system that can demonstrate a hybrid material behavior defined by the differentiated tensile and bending-active forces in a single, seamless knitted composite material. These behaviors were installed during the materialization phase and activated during the composite formation process. Here, the material formation involves two interdependent processes: 1) development of the knitted textile with integrated tensile and reinforced materials and 2) development of the composite by applying pre-stress and vacuuming the localized area with reinforcements in a consistent resin-based matrix. The flat bed industrial weft knitting machine has been utilized to develop the knitted textile component of the system with a controlled knit structure. This enables us to control the material types, densities, and cross sections with integrated multiple layers/ribs and thus, the performance of the textile at the scale of fiber structure. Both of these aspects were researched in parallel, using physical and computational methods informed and shaped by the potentials and constraints of each other. A series of studies has been utilized to develop small-scale prototypes that depict the potential of the hybrid textile composite as the generator of complex form and bending active structures. Ultimately, it indicates the possibilities of hybrid textile composite materials as self-structuring lightweight components that can perform as highly articulated and differentiated seamless architectural elements that are capable of transforming the perception of light, space, and touch.
keywords form-finding, programmable materials, composite forming processes, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2016_043
id ecaade2016_043
authors Wit, Andrew and Kim, Simon
year 2016
title rolyPOLY - A Hybrid Prototype for Digital Techniques and Analog Craft in Architecture
doi https://doi.org/10.52842/conf.ecaade.2016.1.631
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 631-638
wos WOS:000402063700068
summary The rapid emergence of computational design tools, advanced material systems and robotic fabrication within the disciplines of architecture and construction has granted designers immense freedom in form and assembly, while retaining pronounced control over output quality throughout the entirety of the design and fabrication process. Simultaneously, the complexity inherent within these tools and processes can lead to a loss of craft though the production of methodologies, forms and artifacts left with extremely recognizable residues from tooling processes utilized during their production. This paper investigates the fecund intersection of digital technologies and handcraft through core-less carbon fiber reinforced polymer (CFRP) winding as a means of creating a new typology of digital craft blurring the line between human and machine. Through the lens of an innovative wound CFRP shelter rolyPOLY completed during the winter of 2015, this paper will show the exigencies and affordances between the realms of digital and analog methodologies of CFRP winding on large-scale structures.
keywords additive manufacturing; composites; form finding; craft; analog / digital
series eCAADe
email
last changed 2022/06/07 07:57

_id ascaad2016_019
id ascaad2016_019
authors Ibrahim, Magdy M.
year 2016
title 3D Printed Architecture - A new practical frontier in construction methods
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 169-178
summary It is important to discuss and compare the rationale behind the success of the additive manufacturing technology in particular industries and at a particular scale versus full-scale building construction. The comparison should include structural qualities of the possible used materials, the cost effectiveness of the process, the time factor and its value in the construction process, the mass customization potential of the technology and its effect on building forms. The current state of technology in architecture, despite huge potential, has not produced new architectural forms.
series ASCAAD
email
last changed 2017/05/25 13:31

_id caadria2016_539
id caadria2016_539
authors Lublasser, E.; J. Braumann, D. Goldbach and S. Brell-Cokcan
year 2016
title Robotic Forming: Rapidly Generating 3D Forms and Structures through Incremental Forming
doi https://doi.org/10.52842/conf.caadria.2016.539
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 539-548
summary The past years have seen significant developments in the area of robotic design interfaces. Building upon visual programming environments, these interfaces now allow the creative industry to de- fine even complex fabrication processes in an easy, accessible way, while providing instant, production-immanent feedback. However, while these software tools greatly speed up the programming of robot- ic arms, many processes are still inherently slow: Subtractive process- es need to remove a large amount of material with comparably small tools, while additive processes are limited by the speed of the extruder and the properties of the extruded material. In this research we present a new method for incrementally shaping transparent polymer materi- als with a robotic arm, without requiring heat or dies for deep- drawing, thus allowing us to rapidly fabricate individual panels within a minimum of time.
keywords Incremental forming; robotic fabrication; visual programming
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia16_332
id acadia16_332
authors Retsin, Gilles; Garcia, Manuel Jimenez
year 2016
title Discrete Computational Methods for Robotic Additive Manufacturing: Combinatorial Toolpaths
doi https://doi.org/10.52842/conf.acadia.2016.332
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 332-341
summary The research presented in this paper is part of a larger, emerging body of research into large-scale 3D printing. The research attempts to develop a computational design method specifically for large-scale 3D printing of architecture. Influenced by the concept of Digital Materials, this research is situated within a critical discussion of what fundamentally constitutes a digital object and process. This requires a holistic understanding, taking into account both computational design and fabrication. The intrinsic constraints of the fabrication process are used as opportunities and generative drivers in the design process. The paper argues that a design method specifically for 3D printing should revolve around the question of how to organize toolpaths for the continuous addition or layering of material. Two case-study projects advance discrete methods as efficient ways to compute a continuous printing process. In contrast to continuous models, discrete models allow users to serialize problems and errors in toolpaths. This allows a local optimization of the structure, avoiding the use of global, computationally expensive, problem-solving algorithms. Both projects make use of a voxel-based approach, where a design is generated directly from the combination of thousands of serialized toolpath fragments. The understanding that serially repeated elements can be assembled into highly complex and heterogeneous structures has implications stretching beyond 3D printing. This combinatorial approach for example also becomes highly valuable for construction systems based on modularity and prefabrication.
keywords prgrammable materials, simulation and design optimization, digital fabrication, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2016_745
id caadria2016_745
authors Suzuki E., Seiichi
year 2016
title Extruded Architectures: Grading weight-to-strength ratio of cement based materials through extrusion techniques
doi https://doi.org/10.52842/conf.caadria.2016.745
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 745-754
summary In recent years, a growing research agenda on the subject of additive manufacturing for architectural design has been established on the basis of jetting and extrusion technology. While jetting pro- vides enough flexibility to print multiple digital materials in a single run, extrusion has proven to be the most viable technique for large- scale and on-site manufacturing. Because major contributions of both research lines cannot be combined due to technological differences, special attention has been devoted towards the development of print- ing strategies that could approximate similar material flexibility of jet- ting by means of extrusion techniques. In this context, this paper pre- sents a computational design methodology for architectural components that enables grading weight-strength ratio of cement based materials through extrusion. Built upon the integration of mod- elling, analysis and fabrication, such methodology allows to optimize material distribution and geometric definition on the basis of physical and fabrication constraints. A case study is presented for describing the design processes of a circular column and the fabrication of a sec- tion it.
keywords Additive manufacturing; cement based materials; computational design
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia16_224
id acadia16_224
authors Schwinn, Tobias; Krieg, Oliver David; Menges, Achim
year 2016
title Robotic Sewing: A Textile Approach Towards the Computational Design and Fabrication of Lightweight Timber Shells
doi https://doi.org/10.52842/conf.acadia.2016.224
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 224-233
summary Unlike any other building material, timber has seen numerous innovations in design, manufacturing, and assembly processes in recent years. Currently available technology not only allows architects to freely shape building elements but also to define their micro- or macroscopic material make-up and therefore the material itself. At the same time, timber shells have become a focus of research in wood architecture by rethinking both construction typologies and material application. Their main advantage, however, also poses a challenge to its construction: As the shell is both the load-bearing structure as well as enclosure, its segmentation and the individual segment’s connections become increasingly important. Their complex and often differentiated geometries do not allow for standardized timber joints, and with decreasing material thickness, conventional connection techniques become less feasible. The research presented in this paper investigates textile strategies for the fabrication of ultra-lightweight timber shells in architecture. Specifically, a robotic sewing method is developed in conjunction with a computational design method for the development of a new construction system that was evaluated through a large-scale prototype building.
keywords textile connection, robotic fabrication, timber construction, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id sigradi2024_229
id sigradi2024_229
authors Andrade de Martino, Jarryer
year 2024
title Between the Continuous and the Discrete: The Digital in Architecture
source Herrera, Pablo C., Gómez, Paula, Estevez, Alberto T., Torreblanca-Díaz, David A. Biodigital Intelligent Systems - Proceedings of the XXVIII Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2024) - ISBN 978-9915-9635-2-5, iBAG-UIC Barcelona, Spain, 13-15 November 2024, pp. 143–154
summary The edition “Discrete: Reappraising the Digital in Architecture”, published by “Architectural Design”, aims to reassess the digital in architecture, suggesting a reevaluation of the paradigm of formal continuity and mass customization developed over the past two decades, resulting in unique volumetric forms with a wide variety of construction components. These projects exhibit a high level of personalization and incur significant costs due to their failure to address the scalability of production, which is considered a shortcoming in the economics of parametric design. Building on this premise, this article proposes to conceptualize and discuss the notion of "discrete" in the fields of mathematics, philosophy, and computing, in order to understand it in its essence and create a foundation for subsequent discussions about the digital in architecture. Additionally, it aims to identify and recognize the use of the term "discrete" in the field of architecture from 2016 to 2022.
keywords Digital architecture, Discrete, Continuous, Mathematics, Philosophy
series SIGraDi
email
last changed 2025/07/21 11:48

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id acadia16_460
id acadia16_460
authors Dade-Robertson, Martyn; Corral, Javier Rodriguez; Mitrana, Helen; Zhang, Meng; Wipat, Anil; Ramirez-Figueroa, Carolina; Hernan, Luis
year 2016
title Thinking Soils: A synthetic biology approach to material-based design computation
doi https://doi.org/10.52842/conf.acadia.2016.460
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 460-469
summary The paper details the computational modelling work to define a new type of responsive material system based on genetically engineered bacteria cells. We introduce the discipline of synthetic biology and show how it may be possible to program a cell to respond genetically to inputs from its environment. We propose a system of synthetic biocementing, where engineered cells, living within a soil matrix, respond to pore pressure changes in their environment when the soil is loaded by synthesising new material and strengthening the soil. We develop a prototype CAD system which maps genetic responses of individual bacteria cells to geotechnical models of stress and pore pressure. We show different gene promoter sensitivities may make substantial changes to patterns of consolidation. We conclude by indicating future research in this area which combines both in vivo and in silico work.
keywords intelligent materials, material based design computation, synthetic biology, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2016_224
id ecaade2016_224
authors Gerber, David and Pantazis, Evangelos
year 2016
title Design Exploring Complexity in Architectural Shells - Interactive form finding of reciprocal frames through a multi-agent system
doi https://doi.org/10.52842/conf.ecaade.2016.1.455
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 455-464
wos WOS:000402063700050
summary This paper presents an integrated workflow for interactive design of shell structures, which couples structural and environmental analysis through a multi-agent systems (MAS) for design. The work lies at the intersection of architecture, engineering and computer science research, incorporating generative design with analytical techniques. A brief review on architectural shell structures and the structural logic of reciprocal frames is described. Through the morphological study of reciprocal frames locally we seek to inform the behavior of a MAS, which integrates form-finding techniques, with daylight factor analysis (DFA) and finite element analysis (FEA) on a global configuration. An experimental design is developed in order to explore the solution space of large span free form shells with varying topologies and boundary conditions, as well as identify the relationships between local design parameters of the reciprocal frames (i.e. number of elements, profile) and the analyses (i.e. stress distribution, solar radiation) for enabling the generation of different global design alternatives. The research improves upon design decision-making latency and certainty through harnessing geometric complexity and structural form finding for early stage design. Additionally, the research improves upon design outcomes by establishing a feedback loop between design generation, analysis and performance.
keywords Generative design; computational design; multi-agent systems; shell structures; reciprocal frames; form finding; parametric design
series eCAADe
email
last changed 2022/06/07 07:51

_id ascaad2016_031
id ascaad2016_031
authors Amireh, Omar; Manal Ryalat and Tasbeeh Alaqtum
year 2016
title Narrative Architectural Fiction in Mentally Built Environments
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 283-294
summary A thin line lies between reality and fiction; what is mentally imagined and what is visualized. It all depends on how ideas and images are perceived or what neurological activity is triggered in the user’s brain. Architects and designers spare no effort or tools in presenting buildings, architecture or designs in all forms or ways that would augment users’ experience whether on the perceptual or the cognitive level and in both the digital or the physical environments. In a progressive tendency they, the designers, tend to rely more and more on digitizing their vision and mission, which subsequently give them, impressive and expressive superiority, that would influence the users conscious on the one hand and manipulate their subconscious on the other. Within that process designers work hard to break any mental firewall that would prevent their ideas from pervading the space of any mental environment the user, build or visualize. In that context, to what extent such ways of mental entertainments used by architects, legitimize deception in design? What distinguishes employing the rhythmic simulation of the narrative fictional inceptions (virtual reality) from deploying the adaptive stimulation of the experience modeling conceptions. The difference between planting an idea and constructing an idea. It is not the intention of the paper to prove the failure of the computer aided design neither to stand against the digital architectural design media and applications development. It is rather to present a different way of understanding of how architectural design whether virtual, digital, or real can stimulates and induces codes and messages that is correlated to the brainwave cognitive attributes and can generate a narrative brain environment where the brain can construct and simulate its own fictional design. Doing so, the paper will review certain experimental architectural events and activities which integrate sound and sight elements and effects within some electronic, technical and digital environments.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ecaade2018_165
id ecaade2018_165
authors Fisher-Gewirtzman, Dafna and Bruchim, Elad
year 2018
title Considering Variant Movement Velocities on the 3D Dynamic Visibility Analysis (DVA) - Simulating the perception of urban users: pedestrians, cyclists and car drivers.
doi https://doi.org/10.52842/conf.ecaade.2018.2.569
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 569-576
summary The objective of this research project is to simulate and evaluate the effect of movement velocity and cognitive abilities on the visual perception of three groups of urban users: pedestrians, cyclists and car drivers.The simulation and analysis is based on the 3D Dynamic Visual Analysis (DVA) (Fisher-Gewirtzman, 2017). This visibility analysis model was developed in the Rhinoceros and Grasshopper software environments and is based on the conceptual model presented in Fisher-Gewirtzman (2016): a 3D Line of Sight (LOS) visibility analysis, taking into account the integrated effect of the 3D geometry of the environment and the variant elements of the view (such as the sky, trees and vegetation, buildings and building types, roads, water etc.). In this paper, the current advancement of the existing model considers the visual perception of human users employing three types of movement in the urban environment--pedestrians, cyclists and drivers--is explored.We expect this research project to exemplify the contribution of such a quantification and evaluation model to evaluating existing urban structures, and for supporting future human perception-based urban design processes.
keywords visibility analysis and simulation; predicting perception of space; movement in the urban environment; pedestrians; cyclists; car drivers
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia16_270
id acadia16_270
authors Korner, Axel; Mader, Anja; Saffarian, Saman; Knippers, Jan
year 2016
title Bio-Inspired Kinetic Curved-Line Folding for Architectural Applications
doi https://doi.org/10.52842/conf.acadia.2016.270
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp.270-279
summary This paper discusses the development of a bio-inspired compliant mechanism for architectural applications and explains the methodology of investigating movements found in nature. This includes the investigation of biological compliant mechanisms, abstraction, and technical applications using computational tools such as finite element analysis (FEA). To demonstrate the possibilities for building envelopes of complex geometries, procedures are presented to translate and alter the disclosed principles to be applicable to complex architectural geometries. The development of the kinetic façade shading device flectofold, based on the biological role-model Aldrovanda vesiculosa, is used to demonstrate the process. The following paper shows results of FEA simulations of kinetic curved-line folding mechanisms with pneumatic actuation and provides information about the relationship between varying geometric properties (e.g. curved-line fold radii) and multiple performance metrics, such as required actuation force and structural stability.
keywords composite forming process, form-finding, biomimetics and biological design, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaade2016_070
id ecaade2016_070
authors Takagi, Naoya and Takizawa, Atsushi
year 2016
title Development of The Method for Estimating Traffic Volume of Pedestrians in An Underground Mall by Use of Watch Cameras
doi https://doi.org/10.52842/conf.ecaade.2016.2.463
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 463-472
wos WOS:000402064400046
summary This paper describes a method for estimating pedestrian traffic volume by using video cameras. In the Umeda underground mall in Osaka City, we estimated the traffic volume without tracking technology and while protecting pedestrian's privacy. We developed an original algorithm that roughly estimates the traffic volume of pedestrians from sequential images of video cameras. We focused on a line on each image cut out from video and made a new image which shows the spatiotemporal distribution of pedestrians. We defined this image as 'time historical image of pedestrian spots (THIPS)'. In a THIPS, a pedestrian is regarded as a cluster of connected pixels with the same label. We captured the spatiotemporal distribution of pedestrians by using these images. We found that this algorithm requires a THIPS to estimate the number of pedestrians who passed the spot for a few minutes and plural THIPSs to estimate their traveling directions. Finally, we concluded that this algorithm is an efficient means of estimating pedestrian traffic volume.
keywords Pedestrian Flow; Underground Mall; Spatiotemporal Distribution; Watch Cameras; Background Subtraction; Integer Linear Problem
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_890093 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002