CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 552

_id ijac201614204
id ijac201614204
authors Lima, Fernando T; Jose R Kos and Rodrigo C Paraizo
year 2016
title Algorithmic approach toward Transit-Oriented Development neighborhoods: (Para)metric tools for evaluating and proposing rapid transit-based districts
source International Journal of Architectural Computing vol. 14 - no. 2, 131-146
summary This article focuses on the use of computational tools to provide dynamic assessment and optimized arrangements while planning and discussing interventions in urban areas. The objective is to address the use of algorithmic systems for generating and evaluating urban morphologies guided by Transit-Oriented Development principles. Transit- Oriented Development is an urban development model that considers geometric and measurable parameters for designing sustainable cities. It advocates compact mixed-use neighborhoods within walking distance to a variety of transportation options and amenities, seeking to result in optimized infrastructure provision and energy-efficient low- carbon districts. This article presents algorithmic experiments for the optimization of a rapid transit district, through its urban morphology and services’ location, providing an accurate Transit-Oriented Development modeling. The main findings of this study highlight that the combination of Transit-Oriented Development and algorithmic–parametric tools has the potential to significantly contribute to a process of responsible planning and, ultimately, to mitigate global warming.
keywords Transit Oriented Development, Optimization, Computational design, Urban planning
series journal
last changed 2016/06/13 08:34

_id sigradi2016_556
id sigradi2016_556
authors Silva Junior, Edgard Rosa
year 2016
title Urbanismo Paramétrico: Experimentos para uma cidade compacta e sustentável [Parametric Urbanism: Experiments for a Compact and Sustainable city]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.519-527
summary This paper aims to present the Parametric Urbanism connected to the concept of Compact City and Sustainable Urbanism as an urban design alternative to the current dynamics of Brazilian cities. Using a system of parameters linked to the concepts of compact and sustainable city, through modeling and data analyzing, it is possible to obtain several solutions that will serve as project basis or for the continuity of the parameterized process, aiding the decision making process.
keywords Parametric Urbanism; Sustainable Urbanism; Generative System.
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia16_124
id acadia16_124
authors Ferrarello, Laura
year 2016
title The Tectonic of the Hybrid Real: Data Manipulation, Oxymoron Materiality, and Human-Machine Creative Collaboration
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 124-129
doi https://doi.org/10.52842/conf.acadia.2016.124
summary This paper describes the latest progress of the design platform Digital Impressionism (DI), created by staff and students in the Information Experience Design programme at the Royal College of Art in London. DI aims to bridge human creative thinking with machine computation, under the theoretical method/concept of oxymoron tectonic. Oxymoron tectonic describes the process under which hybrid materiality, that is the materiality created between the digital and the physical, takes form in human-machine creative interactions. The methodology intends to employ multimaterial 3D printers in combination with data manipulation (a process that gives data physical substance), pointclouds, and the influence of intangible environmental data (like sound and wind) to model physical forms by interfacing digital and physical making. In DI, modeling is a hybrid set of actions that take place at the boundary of the physical and digital. Through this interactive platform, design is experienced as a complex, hybrid process, which we call a digital tectonic; forms are constructed via a creative feedback loop of human engagement with nonhuman agents to form a creative network of sustainable and interactive design and fabrication. By developing a mutual understanding of design, machines and humans work together in the process of design and making.
keywords human-computer interaction and design, craft in design computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ascaad2016_005
id ascaad2016_005
authors Khabazi, Zubin; Michael Budig
year 2016
title Materiality in Its Minimum - Minimum Material Consumption through Design with Mathematics
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 29-38
summary Contemporary practice of architecture has extensively utilized computation in its processes, which has brought lots of potentials like explicit integration of mathematics with design. This helped designers in different ways, ranging from modeling complex forms to simulating material behavior. Through presenting two experimental projects, this paper discusses how mathematical form-finding and math-driven form generation techniques could help to achieve not only complex designs, but also products which are optimized in their material use. This is a study to use mathematical functions in favor of mass reduction, as a sustainable design approach.
series ASCAAD
email
last changed 2017/05/25 13:13

_id ascaad2016_007
id ascaad2016_007
authors Elsayed, Mohamed; Osama Tolba and Ahmed Elantably
year 2016
title Architectural Space Planning Using Parametric Modeling - Egyptian National Housing Project
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 45-54
summary The Egyptian government resorts to prototype housing for low-income citizens to meet the growing demand of the housing market. The problem with the prototype is that it does not meet specific needs. Consequently, users make modifications to the prototype without professional intervention because of the high cost. This paper discusses an automatic multi-stories space planning tool that helps low-income citizens to modify their prototype housing provided by the government. Social, spatial and functional design aspects were set in the original design prototype by an architect. The proposed tool simulates spaces spatial locations in the original design by simulating the analogy of mechanical springs through an interactive simulation of a parametric model. The authors developed the used algorithm in the generative design tool Grasshopper and the live physics engine Kangaroo, both working within the Rhino 3D environment. The algorithm has two versions, one-floor level version and two floors version targeting the wealthier users. Results indicate that this tool integrates with the exploratory nature of the design process even for non-professional users. The authors designed a tool that will help the users to study the effect of the desired modifications against the originally provided prototype, it also makes it easier for users to express their requirements to a professional designer, conserving time and financial cost.
series ASCAAD
email
last changed 2017/05/25 13:13

_id ecaade2017_144
id ecaade2017_144
authors Lange, Christian J.
year 2017
title Elements | robotic interventions II
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 671-678
doi https://doi.org/10.52842/conf.ecaade.2017.1.671
summary Reviewing the current research trends in robotic fabrication around the world, the trajectory promises new opportunities for innovation in Architecture and the possible redefinition of the role of the Architect in the industry itself. New entrepreneurial, innovative start-ups are popping up everywhere challenging the traditional model of the architect. However, it also poses new questions and challenges in the education of the architect today. What are the appropriate pedagogical methods to instill enthusiasm for new technologies, materials, and craft? How do we avoid the pure application of pre-set tools, such as the use of the laser cutter has become, which in many schools around the world has caused problems rather than solving problems? How do we teach students to invent their tools especially in a society that doesn't have a strong background in the making? The primary focus of this paper is on how architectural CAAD/ CAM education through the use of robotic fabrication can enhance student's understanding, passion and knowledge of materiality, technology, and craftsmanship. The paper is based on the pedagogical set-up and method of an M. Arch I studio that was taught by the author in fall 2016 with the focus on robotic fabrication, materiality, traditional timber construction systems, tool design and digital and physical craftsmanship.
keywords CAAD Education, Digital Technology, Craftsmanship, Material Studies, Tool Design, Parametric Modeling, Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:52

_id ijac201614309
id ijac201614309
authors Yu, Rongrong and John S Gero
year 2016
title An empirical basis for the use of design patterns by architects in parametric design
source International Journal of Architectural Computing vol. 14 - no. 3, 289-302
summary This article presents the results from exploring the impact of using a parametric design tool on designers’ behavior in terms of using design patterns in the early conceptual development stage of designing. It is based on an empirical cognitive study in which eight architectural designers were asked to complete two architectural design tasks with similar complexity, respectively, in a parametric design environment and a geometric modeling environment. The protocol analysis method was employed to study the designers’ behavior. In order to explore the development of design patterns in the empirical data, Markov model analysis is utilized. Through Markov models analysis of the parametric design environment and geometric modeling environment results, it was found that there are some significantly different design patterns being used when designing in a parametric design environment compared to designing in a geometric modeling environment. The article articulates these differences and draws conclusions from these results.
keywords Design patterns, parametric design, protocol analysis
series journal
last changed 2016/10/05 08:21

_id ascaad2016_054
id ascaad2016_054
authors Mandhan, Sneha; David Birge and Alan Berger
year 2016
title Dynamic Simulation of External Visual Privacy in Arab Muslim Neighborhoods - A case study of Emirati neighborhoods in Abu Dhabi, UAE
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 537-546
summary The countries of the Gulf Cooperation Council have, in recent years, undertaken several initiatives to make sustainability central to their urban agendas. This research aims to operationalize the concept of sustainable development – environmental, economic and socio-cultural – in the region, and develop parameters that define it. Using native neighborhoods in Abu Dhabi as a case study, it focuses on the development process of a computational toolkit which has two major components – a quantitative toolkit which contains modules for simulation of aspects of environmental and economic sustainability, and a spatial toolkit which contains modules for simulation of socio-spatial practices associated with the specific social and cultural context. One of the primary needs of these communities, identified through an extensive review of literature and through conversations with Emiratis, is that of visual and acoustical privacy. Privacy from neighbors and passers-by, externally, and between genders, internally within the house. Using this as a starting point, this paper describes the development process of a module that aims to measure levels of external visual privacy of surfaces at a housing plot level, from neighbors and passers-by. The first section of the paper establishes the context of the research. The second section focuses on describing the process of modeling built form and testing it for visibility and thus, privacy.
series ASCAAD
email
last changed 2017/05/25 13:34

_id ecaade2016_040
id ecaade2016_040
authors Marchal, Théo, Remy, Nicolas, Chelkoff, Grégoire, Bardyn, Jean-Luc, Gamal, Noha and Pirhosseinloo, Hengameh
year 2016
title Esquis'sons ! Sound Sketch : A Parametric Tool to Design Sustainable Soundscapes - How to apprehend environmental complexity in a simple tool for architectural design
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 275-284
doi https://doi.org/10.52842/conf.ecaade.2016.2.275
wos WOS:000402064400027
summary Since the 80s, several researches have developed the theoretical notions of sound effects, sound proxemy, city sound identities, sound comfort, architectural sound prototypes which were meant to help designers consider sound in their projects. Nevertheless, taking care of the inherent sound dimensions in architectural urban projects remains an unresolved challenge. The researches of the last 30 years have shown how the sound environment qualities are forgotten in favour of visual qualities. This article presents a new method dedicated to generating simple sound sketches for architectural conception while preserving the complexity of acoustic simulation. This paper argues that the Esquis'sons! sound sketch tool reconfigures architectural design by considering an innovative view its the temporality, allowed by numeric designing tools able to intervene and offer a continuous feedback regarding sound environment.
keywords sound environment; sound effects; sketch; parametric design; architecture; didactic; grasshopper
series eCAADe
email
last changed 2022/06/07 07:59

_id sigradi2016_000
id sigradi2016_000
authors Martin Iglesias, Rodrigo
year 2016
title Crowdthinking
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016
summary The topic "Crowdthinking" reveals the inquiries of researchers about collaborative work, distributed intelligence and collective research. The call focuses on transdisciplinary thinking as a construct based on multiplicity and diversity. All these topics are essential not only in the field of design and architecture, but also in emerging areas of human sciences and arts . Currently, the collaborative design is considered one of the key bases for change in the city and society. In its genesis, it manifests the notion that the world around us is inadequate for many of the needs of the society and from that design can be collectively improved. Such collective research, by combining distributed intelligence, sustainable social development, design cutting edge research, theories and computational strategies, generates a research partnership based on participation and distributed cognition of complex problems. This call proposes an approach in which the results of the experiences can build a model, define or apply axioms and lead to applications. It also looks for emerging conjectures about the process, the creation of computer models and the behaviour of the resulting designs. On the other hand, the need to find solutions that improve the quality of life for the community and sustainable development includes concerns about the integration of the physical and cultural context of cities, mass education and the inclusion of parametric design, digital manufacturing and digital prototyping, and BIM as a system that organizes and ensures the correspondence between the physical urban design and sustainable archetypes. These are some of the concerns in which technology has been contributing to improve the design process by integrating information. This integration optimizes resources and enables the various project professionals to work on the same model, run simulations, improve materializations and evaluate massive amount of data. Projects with greater social and environmental responsibility can be achieved adopting into the teaching and practice this new way of design that anticipates an extensive exchange that wilt foster self-evaluation and reformulation of educational paradigms.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2016_021
id ecaade2016_021
authors Plotnikov, Boris, Schubert, Gerhard and Petzold, Frank
year 2016
title Tangible Grasshopper - A method to combine physical models with generative, parametric tools
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 127-136
doi https://doi.org/10.52842/conf.ecaade.2016.2.127
wos WOS:000402064400012
summary The use of digital tools in the early, creative design process is the focus of an interdisciplinary teaching and research project. Starting from the question of how a seamless connection between physical and digital tools could be made possible, the proposed method tries to bridge the gap between both methodologies and provide intuitive, visual and collaborative design coupled with advanced, real time computer simulations. A design platform has been developed which supports a seamless connection between freely shaped physical models, GIS data and Grasshopper3D. The environment combines the reconstructed physical models with the digital one (surrounding buildings) and passes the information to a custom Grasshopper3D plug-in which serves as a link to existing and custom developed simulative tools. All simulations are performed and visualized in real time to support the intuitive and iterative design process.
keywords urban design; tangible interface; grasshopper; sustainable design; design decision support
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2016_735
id caadria2016_735
authors Sousa, Jose Pedro; Pedro Martins and Pedro De Azambuja Varela
year 2016
title The CorkCrete Arch Project: The digital design and robotic fabrication of a novel building system made out of cork and glass-fibre reinforced concrete
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 735-744
doi https://doi.org/10.52842/conf.caadria.2016.735
summary The CorkCrete arch is a 1:1 scale construction aiming at testing the use of robotic fabrication technologies in the production of a novel building system made out of two different materials – cork and concrete (GRC). The combination of these materials is promising since it merges the sustainable and performative properties of first with the structural efficiency of the second one. The result is a materi- al system suited for customized prefabrication and easy on-site instal- lation. The current paper describes the design and fabrication process of the arch, which employed a single parametric design environment to bridge design and fabrication, and an innovative sequence of differ- ent robotic processes. The success of this experience invites the team to continue this research into the future construction of larger scale applications.
keywords Cork; concrete; computational design; digital fabrication; robotics
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2021_173
id caadria2021_173
authors Xu, Wenzhao, Huang, Xiaoran and Kimm, Geoff
year 2021
title Tear Down the Fences: Developing ABM Informed Design Strategies for Ungating Closed Residential Communities - Developing ABM informed design strategies for ungating closed residential communities
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 467-477
doi https://doi.org/10.52842/conf.caadria.2021.2.467
summary Embedded in Chinas urbanization process, the growth of gated residential estates has gradually induced severance of urban spaces, resulting in an underutilization of public amenities, a lack of walkable permeability, and congestion of traffic. Responding to these negative effects on urban development, the CPC has released a guideline in February 2016 to prohibit the development of any new closed residential areas in principle and to advocate ungated communities. In this paper, we utilized ABM simulation analysis to test different degrees of openness, the position of new entrances/openness, and pedestrian network typologies, aiming to explore feasible strategies to accommodate the new urban design agenda. A series of typical gated compounds in Beijing were selected for comparative case studies, conducted under different degrees of openness of each case and under diverse ungating modes between cases. On the basis of these analyses, we summarized a sequence of pedestrian-centric design strategies, seeking to increase the communities permeability and walkability by suggesting alternative internal and external road network design options for Beijing urban renewal. By integrating quantified simulation into the empirical method of urban design, our research can positively assist and inform urban practitioners to propose a more sustainable urbanity in the future.
keywords Gated community; agent-based modeling; pedestrian simulation; computer-aided urban design; road network optimization
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2016_353
id caadria2016_353
authors Yuan, Feng; Shuyi Huang and Tong Xiao
year 2016
title Physical and numerical simulation as a generative design tool
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 353-362
doi https://doi.org/10.52842/conf.caadria.2016.353
summary Environmentally sound and high-performance buildings are contributing towards a sustainable future. With increased density of contemporary urban space and the urgent desire to promote building performance, a better understanding of wind behaviour will positively influence future design explorations. In the traditional sequential ar- chitectural practice, there is a gap between design and performance simulation. This paper presents an experimental and systematic study of the performance-oriented design tools, strategies and workflows utilized in the concept prototyping of a high-rise building. It describes a new approach to incorporate wind tunnel testing, computational flu- id dynamics simulation as well as parametric software, sensors and open-source electronics platform into an accessible, interactive and low-cost form generation kit, rapidly evaluating the performance of potential design options in the early design stage. As indicated in this research, environmental simulation can be a decision-making tool, in- tegrating the concept of continuity into the design process.
keywords Environmental performance; building aerodynamics; wind tunnel testing; computational fluid dynamics
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2016_063
id ecaade2016_063
authors Al-Qattan, Emad, Galanter, Philip and Yan, Wei
year 2016
title Developing a Tangible User Interface for Parametric and BIM Applications Using Physical Computing Systems.
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 621-630
doi https://doi.org/10.52842/conf.ecaade.2016.2.621
wos WOS:000402064400063
summary This paper discusses the development of an interactive and a responsive Tangible User-Interface (TUI) for parametric and Building Information Modeling (BIM) applications. The prototypes presented in this paper utilizes physical computing systems to establish a flexible and intuitive method to engage digital design processes.The prototypes are hybrid UIs that consist of a digital modeling tool and an artifact. The artifact consists of a control system (sensors, actuators, and microcontrollers) and physical objects (architectural elements). The link between both environments associates physical objects with their digital design information to assist users in the digital design process. The integration of physical computing systems will enable the objects to physically respond to analog input and provide real-time feedback to users. The research aims to foster tangible computing methods to extend the capabilities of digital design tools. The prototypes demonstrate a method that allows architects to simultaneously interact with complex architectural systems digitally and physically.
keywords Physical Computing; Parametric Design; BIM; Tangible UI
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2016_450
id sigradi2016_450
authors Araujo, André L.; Celani, Gabriela
year 2016
title Exploring Weaire-Phelan through Cellular Automata: A proposal for a structural variance-producing engine
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.710-714
summary Complex forms and structures have always been highly valued in architecture, even much before the development of computers. Many architects and engineers have strived to develop structures that look very complex but at the same time are relatively simple to understand, calculate and build. A good example of this approach is the Beijing National Aquatics Centre design for the 2008 Olympic Games, also known as the Water Cube. This paper presents a proposal for a structural variance-producing engine using cellular automata (CA) techniques to produce complex structures based on Weaire-Phelan geometry. In other words, this research evaluates how generative and parametric design can be integrated with structural performance in order to enhance design flexibility and control in different stages of the design process. The method we propose was built in three groups of procedures: 1) we developed a method to generate several fits for the two Weaire-Phelan polyhedrons using CA computation techniques; 2) through the finite elements method, we codify the structural analysis outcomes to use them as inputs for the CA algorithm; 3) evaluation: we propose a framework to compare how the final outcomes deviate for the good solutions in terms of structural performance and rationalization of components. We are interested in knowing how the combination of the procedures could contribute to produce complex structures that are at the same time certain rational. The system developed allows the structural analysis of structured automatically generated by a generative system. However, some efficient solutions from the structural performance point of view do not necessarily represent a rational solution from the feasibility aspects.
keywords Structural design; Complex structures; Bottom-up design approach
series SIGRADI
email
last changed 2021/03/28 19:58

_id ascaad2016_008
id ascaad2016_008
authors Armstrong, Logan; Guy Gardner and Christina James
year 2016
title Evolutionary Solar Architecture - Generative Solar Design Through Soft Forms and Rigid Logics
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 55-64
summary This paper describes the development of a workflow for the production of a net zero off-grid research cabin.  The workflow deploys a number of affiliated parametric software packages as a form finding tool for the exterior envelope of this structure, with a focus on passive solar design as a generative formal driver. The design was required to incorporate the spatial and programmatic needs of the users in a compact, barrier free, net zero building. Simultaneously, the research question asked the designers to harness the potential of digital design in the consideration of future fabrication techniques, in order to optimize the building’s performance and the speed and quality of assembly once the project moves into construction. Parameters considered include solar exposure, external surface area, cost, fabrication, functionality, and aesthetic criteria. This project was developed by a multidisciplinary team of graduate students at the University of Calgary.
series ASCAAD
email
last changed 2017/05/25 13:13

_id ecaade2017_280
id ecaade2017_280
authors Baldissara, Matteo, Perna, Valerio, Saggio, Antonino and Stancato, Gabriele
year 2017
title Plug-In Design - Reactivating the Cities with responsive Micro-Architectures. The Reciprocal Experience
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 571-580
doi https://doi.org/10.52842/conf.ecaade.2017.2.571
summary Every city has under utilized spaces that create a series of serious negative effects. Waiting for major interventions, those spaces can be reactivated and revitalized with soft temporary projects: micro interventions that light up the attention, give new meaning and add a new reading to abandoned spaces. We can call this kind of operations "plug-in design", inheriting the term from computer architecture: interventions which aim to involve the citizens and activate the environment, engage multiple catalyst processes and civil actions. Plug-in design interventions are by all meanings experimental, they seek for interaction with the users, locally and globally. Information Technology - with its parametric and site-specific capabilities and interactive features - can be instrumental to create such designs and generate a new consciousness of the existing environment. With this paper we will illustrate how two low-budget interventions have re-activated a forgotten public space. Parametric design with a specific script allowing site-specific design, materials and structure optimization and a series of interactive features, will be presented through Reciprocal 1.0 and Reciprocal 2.0 projects which have been built in 2016 in Italy by the nITro group.
keywords reciprocal frame; parametric design; responsive technology; plug-in design; interactivity; re-activate
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2016_013
id ascaad2016_013
authors Belkis Öksüz, Elif
year 2016
title Parametricism for Urban Aesthetics - A flawless order behind chaos or an over-design of complexity
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 105-112
summary Over the last decade, paradigm shifts in the philosophy of space-time relations, the change from space-time to spatio-temporality, caused significant changes in the design field, and introduced new variations and discourses for parametric approaches in architecture. Among all the discourses, parametricism is likely the most spectacular one. The founder of parametricism, Patrik Schumacher (2009) describes it as “a new style,” which has “the superior capacity to articulate programmatic complexity;” and “aesthetically, it is the elegance of ordered complexity in the sense of seamless fluidity.” In its theoretical background, Schumacher (2011) affiliates this style with the philosophy of autopoiesis, the philosophy that stands between making and becoming. Additionally, parametricism concerns not only the physical geometry in making of form; but also discusses the relational and causal aspects in becoming of form. In other words, it brings the aesthetic qualities in making through the topological intelligence behind becoming. Regarding that, parametricism seems an effective way of managing /creating complex topologies in form-related issues. However, when it comes to practice, there are some challenging points of parametricism in large-scale design studies. Thus, this work underlines that the dominance of elegance for urban planning has the potential of limiting the flexible and dynamic topology of the urban context, and objectifying the whole complex urban form as an over-designed product. For an aesthetic inquiry into urban parametricism, this paper highlights the challenging issues behind the aesthetic premises of parametricism at the urban design scale. For that, Kartal Master Plan Design Proposal by Zaha Hadid Architects (2006) will be discussed as an exemplary work.
series ASCAAD
email
last changed 2017/05/25 13:31

_id caadria2016_383
id caadria2016_383
authors Beorkrem, C.; J. Ellinger, P. Bernstein and A. Hauck
year 2016
title Multivariate Schematic Design Tooling
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 383-394
doi https://doi.org/10.52842/conf.caadria.2016.383
summary This paper will examine the results from a research collaboration between (BIM Software Manufacturer) and (School), whose problem statement focused on supporting robust interoperability by defining goals focused on multivariate conceptual design tools. The collaboration included design faculty, students and software professionals, the latter providing access to a broad range of design simulation tools either commercially available or currently in development. The tools were developed first through case studies and background research, followed by the design and implementation of novel computational methods advancing the architectural design workflow by seeking to create comparative tools which allow a designer to connect multiple data typologies in a single model. With advanced computational tools employed both as standalone resources and embedded in parametric loops, we sought to provide immediate feedback on design goals.
keywords Building information modelling; simulation and prediction; education; optimization; scripting
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_434932 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002