CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 622

_id caadria2020_043
id caadria2020_043
authors Bai, Nan, Nourian, Pirouz, Xie, Anping and Pereira Roders, Ana
year 2020
title Towards a Finer Heritage Management - Evaluating the Tourism Carrying Capacity using an Agent-Based Model
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 305-314
doi https://doi.org/10.52842/conf.caadria.2020.1.305
summary As one of the most important areas in the Palace Museum, Beijing, China, the Hall of Mental Cultivation had suffered from overcrowding of visitors before it was closed in 2016 for conservation. Preparing for the reopening in 2020, the Palace Museum decided to take the chance and initiate finer-grained tourism management in the Hall. This research intends to provide an audio-guided touring program by dynamically evaluating the Tourism Carrying Capacity (TCC) with the highlight spots in the Hall, to operate the touring program spatiotemporally. Framing an optimization problem for the touring program, an agent-based simulator, Thunderhead Pathfinder, originally developed for evacuation in the emergency, is utilized to verify the performance of the touring system. The simulation shows that the proposed touring program could precisely fit all the key requirements to improve the visitors' experience, to guarantee heritage safety, and to ensure more efficient management.
keywords Tourism Carrying Capacity; Agent-Based Simulation; Operations Research; Heritage Management
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2016_507
id caadria2016_507
authors Choi, Jungsik; Inhan Kim and Jiyong Lee
year 2016
title Development of schematic estimation system through linking QTO with Cost DB
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 507-516
doi https://doi.org/10.52842/conf.caadria.2016.507
summary Cost estimate in architectural projects is an important factor for decision-making and financing the project in both early design phase and detailed design phase. In Korea, estimate work based on 2D drawing has generated problems of difference form QTO according to worker’s mistake and know-how. In addition, 2D-based estimation are obtained uncertainty factors of estimation depending on lack of infor- mation due to becoming larger and more complex than any other pro- ject of the architectural project. In order to solve limitations, this study is to suggest an open BIM-based schematic estimation process and a prototype system within the building frame through linking QTO and cost information. This study consists of the following steps: 1) Ana- lysing Level of Detail (LoD) to apply to the process and system, 2) BIM modelling for open BIM-based QTO, 3) Verifying the quality of the BIM model, 4) Developing a schematic estimation prototype sys- tem. This study is expected to improve work efficiency as well as reli- ability of construction cost.
keywords Cost DB; Industry Foundation Classes (IFC); Open Building Information Modelling (BIM); schematic estimation; Quantity Take-Off (QTO)
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2016_621
id caadria2016_621
authors Lee, Ji Ho and Ji-Hyun Lee
year 2016
title Cultural Difference in Colour Usages for Building Exteriors Focusing on Theme Park Buildings
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 621-630
doi https://doi.org/10.52842/conf.caadria.2016.621
summary The notion of globalisation has become widely spread in various fields, and accordingly, it is increasingly more important to take account of indigenous culture characteristics in each field. An as- pect of achieving globalisation, globalization with local consideration, is to consider the difference of colour usage between distinct cultures. This study suggests an approach to investigate the colour difference between eastern and western cultures with the case analysis of build- ing fac?ade colours in Disneyland Paris and Tokyo Disneyland. We an- alysed cultural colour usage characteristics and derived tendencies for both Paris and Tokyo Disneyland building fac?ade colours. To do this, we use image based k-means clustering algorithm and CIELAB colour space distances to explore colour characteristics. Our analysis indi- cates an overall colour usage tendency that Paris uses more green and bluish colours and Tokyo uses more red and yellowish colours for building fac?ades, based on CIELAB colour space values. The major motivation of this paper was to reflect the atmosphere and the mood of the space that can be easily felt but not readily expressible into a cultural colour palette. Eventually, by finding the characteristics of perceived colours, we hope to create a colour recommendation system for different cultures based on cultural clues.
keywords Culture; colour usage; colour clustering; building fac?ade; computational approach
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2016_113
id ecaade2016_113
authors Poinet, Paul, Baharlou, Ehsan, Schwinn, Tobias and Menges, Achim
year 2016
title Adaptive Pneumatic Shell Structures - Feedback-driven robotic stiffening of inflated extensible membranes and further rigidification for architectural applications
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 549-558
doi https://doi.org/10.52842/conf.ecaade.2016.1.549
wos WOS:000402063700060
summary The paper presents the development of a design framework that aims to reduce the complexity of designing and fabricating free-form inflatables structures, which often results in the generation of very complex geometries. In previous research the form-finding potential of actuated and constrained inflatable membranes has already been investigated however without a focus on fabrication (Otto 1979). Consequently, in established design-to-fabrication approaches, complex geometry is typically post-rationalized into smaller parts and are finally fabricated through methods, which need to take into account cutting pattern strategies and material constraints. The design framework developed and presented in this paper aims to transform a complex design process (that always requires further post-rationalization) into a more integrated one that simultaneously unfolds in a physical and digital environment - hence the term cyber-physical (Menges 2015). At a full scale, a flexible material (extensible membrane, e.g. latex) is actuated through inflation and modulated through additive stiffening processes, before being completely rigidified with glass fibers and working as a thin-shell under compression.
keywords pneumatic systems; robotic fabrication; feedback strategy; cyber-physical; scanning processes
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2016_871
id caadria2016_871
authors Tombesi, P.; B. Gardiner and S. Colabella
year 2016
title Is conventional knowledge enough? Playing the devil’s advocate in the adoption of digital fabrication technology
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 871-880
doi https://doi.org/10.52842/conf.caadria.2016.871
summary Building on the research on the industrial potential of digi- tal fabrication technologies commenced by the late University of Mel- bourne academic, Professor Bharat Dave, this paper explores actual patterns of technological adoption within communities of practice bound together in a few selected projects. Its main aim is three-fold: 1) highlight the distribution of knowledge required for the actual take- up of digital technologies; 2) look for the presence of possible gaps in such work landscapes; and 3) discuss the transformations that may oc- cur in practice as a result of the conflation of innovative technologies and established professional cultures. The research being reported in this paper examines the socio-technical environment of the projects selected and the challenges intrinsic to the introduction of innovative digital technologies. Its findings suggest that the inherent complexity of building production needs to be considered in a far more nuanced and substantive manner than generally assumed by mainstream tech- nological positivism.
keywords Innovation; digital technologies; digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2016_007
id ecaade2016_007
authors ElGhazi, Yomna Saad and Mahmoud, Ayman Hassaan Ahmed
year 2016
title Origami Explorations - A Generative Parametric Technique For kinetic cellular façade to optimize Daylight Performance
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 399-408
doi https://doi.org/10.52842/conf.ecaade.2016.2.399
wos WOS:000402064400039
summary At present the kinetics is basic, but there is no doubt that research into the field of responsive building facades will continue, to find more sophisticated design and technical solutions. This research explores the possibilities of kinetic composition afforded by Origami different techniques using squared module. Origami and paper pleating techniques are one of the conceptual design approaches from which Kinetics can be developed. The paper examines the possibilities of different arrangements of folded modules to create environmental efficient kinetic morphed skins. The paper aims to achieve different Kinetic origami-based shading screens categorized by series of parameters to provide appropriate daylighting. The main tested parameters are the form of Origami folds, the module size and motion scenarios. Ten origami cases where explored first using conceptual folded paper maquette modules, then parametrically modelled and simulated at four times of the year, 21st of March, June, September and December, taken every hour of the working day.
keywords Kinetic cellular façade; Origami; Parametric modelling; Parametric simulations; Daylighting performance.
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2016_147
id caadria2016_147
authors Feist, S.; G. Barreto, B. Ferreira and A. Leita?o
year 2016
title Portable generative design for building information modelling
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 147-156
doi https://doi.org/10.52842/conf.caadria.2016.147
summary Generative Design (GD) is a valuable asset for architecture because it provides opportunities for innovation and improvement in the design process. Despite its availability for Computer-Aided De- sign (CAD), there are few applications of GD within the Building In- formation Modelling (BIM) paradigm, and those that exist suffer from portability issues. A portable program is one that will not only work in the application it was originally written for, but also in others with equivalent results. This paper proposes a solution that explores porta- ble GD in the context of BIM. We also propose a set of guidelines for a programming methodology for GD, adapted to the BIM paradigm. In the end, we evaluate our solution using a practical example.
keywords Building information modelling; generative design; porta- bility; programming
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia23_v1_34
id acadia23_v1_34
authors Gascon Alvarez, Eduardo; Curth, Alexander (Sandy); Feickert, Kiley; Martinez Schulte, Dinorah; Mueller, Caitlin; Ismail, Mohamed
year 2023
title Algorithmic Design for Low-Carbon, Low-Cost Housing Construction in Mexico
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 34-38.
summary Mexico is one of the most urbanized countries in the Global South, and simultaneously faces a rapidly increasing population and a deluge of inadequate housing (URBANET 2019). In 2016, it was estimated that 40 percent of all private residences in Mexico were considered inadequate by UN-Habitat (UN-Habitat 2018). As informal housing constitutes over half of all Mexican housing construction, the most vulnerable groups of the population are particularly impacted. Therefore, there is a serious need to innovate in the area of low-cost building construction for housing in Mexico. This research explores how shape-optimized concrete and earth construction could help provide adequate housing without jeopardizing the country’s commitment to sustainability.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ascaad2016_010
id ascaad2016_010
authors Harnomo Fajar I.; Aswin Indraprastha
year 2016
title Computational Weaving Grammar of Traditional Woven Pattern
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 75-84
summary Weaving technique is one of the indigenous craftsmanship practices that are common in most of ethnic groups in Indonesia. Generally, it uses thin strips of organic material such as bamboo or rattan to make plane of surface that further can be developed into daily utensils or as a traditional architectural building components such as partition wall and floor. The research of weaving grammar as a system and process had been introduced and explored using Shape Grammar theory and principles. Having the potential implementation and to preserve the traditional weaving method, the grammar can be explored as a method of exploration in architectural design by extending the computation method based on the visual embedding of its pattern languages. The aim of the study is to discover the geometrical configuration underlied traditional weaving grammar by reconfiguring and elaborating procedures and further develop generative method using computational approach. We focused on the exploration of single and dual patterns of biaxial types of West Java woven pattern by using shape grammar principles. The result shows computational method is constructed by several rules which are defined as generative procedure. The result advised that traditional woven pattern has similarity according to its ruled-based system of generative algorithm.
series ASCAAD
email
last changed 2017/05/25 13:13

_id ecaade2016_065
id ecaade2016_065
authors Henriques, Goncalo Castro
year 2016
title Responsive Systems: Foundations and Application - The importance of defining meta-systems and their methods
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 511-520
doi https://doi.org/10.52842/conf.ecaade.2016.1.511
wos WOS:000402063700056
summary Responsive architecture is often considered as one that merely adapts to change. This reflects its limited and still incipient application in architecture. Due to the current resource crisis, systemic building management is essential. This article argues that there are no established processes for creating and managing responsive architecture. To establish a foundation in this area, it claims that it is necessary to deepen knowledge about systems, computation, mathematics, biology and robotics. Despite being a vast subject, it proposes a state of the art of the systems, investigating how to operate them. A method for generating responsive systems is tested and implemented in a practical case. Two methods of adaptation are proposed and tested: static and dynamic adaptation. These methods reinforce the point that responsive architecture can use not only active mechanisms, but also passive methods embedded in its form as information. The research concludes that information management is critical to define what is designated in software engineering as architecture of the system. Thus, it suggests that it is necessary to define meta-systems and to define their methods to support the generation, fabrication, construction and operation of responsive systems.
keywords responsive systems; meta-systems; static adaptation; dynamic adaptation; heuristics
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2016_241
id ecaade2016_241
authors Janssen, Patrick, Stouffs, Rudi, Mohanty, Akshata, Tan, Elvira and Li, Ruize
year 2016
title Parametric Modelling with GIS
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 59-68
doi https://doi.org/10.52842/conf.ecaade.2016.2.059
wos WOS:000402064400005
summary Existing urban planning and design systems and workflows do not effectively support a fast iterative design process capable of generating and evaluating large-scale urban models. One of the key issues is the lack of flexibility in workflows to support iterative design generation and performance analyses, and easily integrate into design and planning processes. We present and demonstrate a parametric modelling system, Möbius, that can easily be linked to Geographic Information Systems for creating modular workflows, provides a novel approach for visual programming that integrates associative and imperative programming styles, uses a rich topological data structure that allows custom data attributes to be added to geometric entities at any topological level, and is fully web-based. The demonstration consists of five main stages that alternate between QGIS and Möbius, generating and analysing an urban model reflecting on site conditions and using a library of parametric urban typologies, and uses as a case study an urban design studio project in which the students sketched a set of rules that defined site coverage and building heights based on the proximity to various elements in the design.
keywords generative design; urban planning; Geographic Information Systems; parametric modelling
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2016_271
id caadria2016_271
authors Khoo, Chin Koi and Flora Salim
year 2016
title Painterface: An integrated responsive architectural interface
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 271-280
doi https://doi.org/10.52842/conf.caadria.2016.271
summary Interface design is one of the main research areas in human- computer interaction (HCI). In computer science, many HCI research- ers and designers explore novel interface designs with cutting-edge technology, but few investigate alternative interfaces for existing built environments, especially in the area of architecture. In this paper, we investigate alternative interface designs for existing architectural ele- ments—such as walls, floors, and ceilings—that can be created with off-the-shelf materials. Instead of merely serving as discrete sensing and display devices integrated to an existing building’s surface, these liquid and thin materials act as interventions that can be ‘painted’ on a surface, transforming it into an architectural interface. This interface, Painterface, is a responsive material intervention that serves as an an- alogue, wall-type media interface that senses and responds to people’s actions. Painterface is equipped with three sensing and responsive ca- pacities: touch, sound, and light. While the interface’s touch capacity performs tactile sensing, its sound-production and illumination capaci- ties emit notes and light respectively. The outcomes of this research suggest the possibility of a simple, inexpensive, replaceable, and even disposable interface that could serve as an architectural intervention applicable to existing building surfaces.
keywords Human-computer interaction; integrated interface; sensing and responsive architectural interface
series CAADRIA
email
last changed 2022/06/07 07:52

_id ascaad2016_054
id ascaad2016_054
authors Mandhan, Sneha; David Birge and Alan Berger
year 2016
title Dynamic Simulation of External Visual Privacy in Arab Muslim Neighborhoods - A case study of Emirati neighborhoods in Abu Dhabi, UAE
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 537-546
summary The countries of the Gulf Cooperation Council have, in recent years, undertaken several initiatives to make sustainability central to their urban agendas. This research aims to operationalize the concept of sustainable development – environmental, economic and socio-cultural – in the region, and develop parameters that define it. Using native neighborhoods in Abu Dhabi as a case study, it focuses on the development process of a computational toolkit which has two major components – a quantitative toolkit which contains modules for simulation of aspects of environmental and economic sustainability, and a spatial toolkit which contains modules for simulation of socio-spatial practices associated with the specific social and cultural context. One of the primary needs of these communities, identified through an extensive review of literature and through conversations with Emiratis, is that of visual and acoustical privacy. Privacy from neighbors and passers-by, externally, and between genders, internally within the house. Using this as a starting point, this paper describes the development process of a module that aims to measure levels of external visual privacy of surfaces at a housing plot level, from neighbors and passers-by. The first section of the paper establishes the context of the research. The second section focuses on describing the process of modeling built form and testing it for visibility and thus, privacy.
series ASCAAD
email
last changed 2017/05/25 13:34

_id ecaade2016_021
id ecaade2016_021
authors Plotnikov, Boris, Schubert, Gerhard and Petzold, Frank
year 2016
title Tangible Grasshopper - A method to combine physical models with generative, parametric tools
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 127-136
doi https://doi.org/10.52842/conf.ecaade.2016.2.127
wos WOS:000402064400012
summary The use of digital tools in the early, creative design process is the focus of an interdisciplinary teaching and research project. Starting from the question of how a seamless connection between physical and digital tools could be made possible, the proposed method tries to bridge the gap between both methodologies and provide intuitive, visual and collaborative design coupled with advanced, real time computer simulations. A design platform has been developed which supports a seamless connection between freely shaped physical models, GIS data and Grasshopper3D. The environment combines the reconstructed physical models with the digital one (surrounding buildings) and passes the information to a custom Grasshopper3D plug-in which serves as a link to existing and custom developed simulative tools. All simulations are performed and visualized in real time to support the intuitive and iterative design process.
keywords urban design; tangible interface; grasshopper; sustainable design; design decision support
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia16_44
id acadia16_44
authors Sanchez, Jose
year 2016
title Combinatorial design: Non-parametric computational design strategies
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 44-53
doi https://doi.org/10.52842/conf.acadia.2016.044
summary This paper outlines a framework and conceptualization of combinatorial design. Combinatorial design is a term coined to describe non-parametric design strategies that focus on the permutation, combination and patterning of discrete units. These design strategies differ substantially from parametric design strategies as they do not operate under continuous numerical evaluations, intervals or ratios but rather finite discrete sets. The conceptualization of this term and the differences with other design strategies are portrayed by the work done in the last 3 years of research at University of Southern California under the Polyomino agenda. The work, conducted together with students, has studied the use of discrete sets and combinatorial strategies within virtual reality environments to allow for an enhanced decision making process, one in which human intuition is coupled to algorithmic intelligence. The work of the research unit has been sponsored and tested by the company Stratays for ongoing research on crowd-sourced design.
keywords non-parametric computational design strategies, permutations, combinatorics, building systems, game design, crowdsourcing, computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2016_735
id caadria2016_735
authors Sousa, Jose Pedro; Pedro Martins and Pedro De Azambuja Varela
year 2016
title The CorkCrete Arch Project: The digital design and robotic fabrication of a novel building system made out of cork and glass-fibre reinforced concrete
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 735-744
doi https://doi.org/10.52842/conf.caadria.2016.735
summary The CorkCrete arch is a 1:1 scale construction aiming at testing the use of robotic fabrication technologies in the production of a novel building system made out of two different materials – cork and concrete (GRC). The combination of these materials is promising since it merges the sustainable and performative properties of first with the structural efficiency of the second one. The result is a materi- al system suited for customized prefabrication and easy on-site instal- lation. The current paper describes the design and fabrication process of the arch, which employed a single parametric design environment to bridge design and fabrication, and an innovative sequence of differ- ent robotic processes. The success of this experience invites the team to continue this research into the future construction of larger scale applications.
keywords Cork; concrete; computational design; digital fabrication; robotics
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2016_234
id ecaade2016_234
authors Sousa, José Pedro and Martins, Pedro Filipe
year 2016
title The Robotic Production of the GRC Panels in the CorkCrete Arch Project - A stratified strategy for the fabrication of customized molds
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 153-160
doi https://doi.org/10.52842/conf.ecaade.2016.1.153
wos WOS:000402063700017
summary The CorkCrete Arch was an experimental prototype built in the scope of a research project concerning the use of robotic fabrication technologies for non-standard solutions in architecture. It combined 2 materials, cork and GRC into a self-supporting lightweight building system, designed to explore the integration of different robotic fabrication technologies in one constructive solution. This paper is focused in providing a detailed description and analysis of the robotic fabrication process used in the production of the GRC components. The presented solution integrated robotic milling and hot-wire cutting technologies with a stratified mold design strategy that allowed for overcoming the limitations of each and enabled a time and cost efficient production process.
keywords Robotic Hot-Wire Cutting; Digital Fabrication; Glass Fiber Reinforced Concrete; Computational Design; Corkcrete
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia16_326
id acadia16_326
authors Wit, Andrew; Ng, Rashida; Zhang, Cheng; Kim Simon
year 2016
title Composite Systems for Lightweight Architectures: Case studies in large-scale CFRP winding
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 326-331
doi https://doi.org/10.52842/conf.acadia.2016.326
summary The introduction of lightweight Carbon Fiber Reinforced Polymer (CFRP) based systems into the discipline of architecture and design has created new opportunities for form, fabrication methodologies and material efficiencies that were previously difficult if not impossible to achieve through the utilization of traditional standardized building materials. No longer constrained by predefined material shapes, nominal dimensions, and conventional construction techniques, individual building components or entire structures can now be fabricated from a single continuous material through a means that best accomplishes the desired formal and structural objectives while creating minimal amounts of construction waste and disposable formwork. This paper investigates the design, fabrication and structural potentials of wound, pre-impregnated CFRP composites in architectural-scale applications through the lens of numeric and craft based composite winding implemented in two unique research projects (rolyPOLY + Cloud Magnet). Fitting into the larger research agenda for the CFRP-based robotic housing prototype currently underway in the “One Day House” initiative, these two projects also function as a proof of concept for CFRP monocoque and gridshell based structural systems. Through a rigorous investigation of these case studies, this paper strives to answer several questions about the integration of pre-impregnated CFRP in future full-scale interventions: What form-finding methodologies lend themselves to working with CFRP? What are the advantages and disadvantages of working with pre-impregnated CFRP tow in large-scale applications? What are efficient methods for the placement of CFRP fiber on-site? As well as how scalable is CFRP?
keywords form finding, winding, cfrp, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id ecaade2016_027
id ecaade2016_027
authors Carl, Timo and Stepper, Frank
year 2016
title "Free Skin" Collaboration - Negotiating complex design criteria across different scales with an interdisciplinary student team
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 591-600
doi https://doi.org/10.52842/conf.ecaade.2016.1.591
wos WOS:000402063700064
summary The complex nature of architecture requires often planning teams with specialists from multiple disciplines. Architectural education however, addresses this interdisciplinary modus operandi rarely. This paper presents the design and production process of a real world solar façade installation realized at the University of Kassel to illustrating the potentials of such an approach. Interdisciplinary teamwork allowed students not only to solve complex problems, but also to produce knowledge and to advance into design research. Student exploration resulted in a unique fabrication technique, combining tensile fabric and resin to facilitate the fabrication of multifunctional, monocoque shells; combining all necessary technical components in a single building element. This paper discusses the success of student collaboration and teaching strategies for key parts of the design process at different scales. Moreover, it highlights the importance of physical form-finding models and an analogue - digital workflow for collaborative communication. The Free Skin project offers both insight into applied use of interdisciplinary teamwork, and a proposal for incorporating such collaboration into architectural education.
keywords interdisciplinary collaboration; design-build; form-finding; reactive design; shell structures
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_457
id caadria2016_457
authors Chen, Szu-Yin; Kokfu Lok and Taysheng Jeng
year 2016
title Smart BIM Objects for Design Intelligence
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 457-466
doi https://doi.org/10.52842/conf.caadria.2016.457
summary By enabling BIM technology, a building can be represented by a set of objects that carry detailed information about how they are constructed and also capture the relationship with other objects in the building model. Smart BIM objects can be classified as specific com- ponents encapsulating typical building rules and relations that can be predicted and defined by a few parameters and constraints. A frame- work is developed to show how a smart BIM object is developed. This paper presents the method of developing smart BIM object capable of better-informing design decision. To demonstrate the usefulness of smart BIM objects, a cloud BIM object library is developed and tested by academia and industry.
keywords Smart BIM object; cloud database; parametric modelling
series CAADRIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_557567 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002