CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 622

_id caadria2016_209
id caadria2016_209
authors Wang, Likai; Zilong Tan and Guohua Ji
year 2016
title Toward the wind-related building performative design
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 109-218
doi https://doi.org/10.52842/conf.caadria.2016.109
summary The integration of optimization algorithms and building performance simulation tools make it possible to carry out performa- tive design or performance-driven design, which aims to guide the de- sign synthesis process of the simulation results to continuously im- prove the design. However, the associated research work of wind- related building performance is still deficient, resulting from lack of applicable interface and the time consumption. Meanwhile, in the in- dustrial design realm, the aero-dynamics or fluid-dynamics behaviour of the production under development has been vastly analysed and op- timized based on the multi-discipline optimization (MDO) techniques. Owing to offering numerous built-in interface and integrated optimi- zation algorithm, MDO application software has begun to be used in building optimization design with the complex relationship between various objectives. With the advantage of MDO tools and aimed to provide an efficient optimization approach from the perspective of ar- chitect, this paper proposes a wind-related building performance op- timization design system integrating Rhinoceros and Fluent based on iSIGHT - a MDO application software. In addition, the lighting per- formance is considered in this research as well for implementing the multi-objective optimization. Two case studies of tall building optimi- zation design based on varied generative approaches are introduced to investigate the effect and efficiency of this system.
keywords Performative design; wind-related building performance; MDO; parametric generating design
series CAADRIA
email
last changed 2022/06/07 07:58

_id ascaad2016_049
id ascaad2016_049
authors Abdelsabour, Inas; Heba Farouk
year 2016
title Impact of Using Structural Models on Form Finding - Incorporating Practical Structural Knowledge into Design Studio
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 483-492
summary Physical Models as an architectural design tool, had major effect on architecture learning process. In structural form finding, it helped in improving visual design thinking to track form creation processes during form finding design stage. The aim is to study the impact of using physical models for second year architecture students in design studios learning. By analyzing and comparing students’ performance and progress; to clarify the effect of using physical models as a tool for designing progression, followed by analytical study on the students' structural models, in order to investigate the influence of models on their design educational progress. Research achieved that there were three basic phases the students pass through during form finding process when used manual physical models that improve the students' design capability.
series ASCAAD
email
last changed 2017/05/25 13:33

_id caadria2016_383
id caadria2016_383
authors Beorkrem, C.; J. Ellinger, P. Bernstein and A. Hauck
year 2016
title Multivariate Schematic Design Tooling
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 383-394
doi https://doi.org/10.52842/conf.caadria.2016.383
summary This paper will examine the results from a research collaboration between (BIM Software Manufacturer) and (School), whose problem statement focused on supporting robust interoperability by defining goals focused on multivariate conceptual design tools. The collaboration included design faculty, students and software professionals, the latter providing access to a broad range of design simulation tools either commercially available or currently in development. The tools were developed first through case studies and background research, followed by the design and implementation of novel computational methods advancing the architectural design workflow by seeking to create comparative tools which allow a designer to connect multiple data typologies in a single model. With advanced computational tools employed both as standalone resources and embedded in parametric loops, we sought to provide immediate feedback on design goals.
keywords Building information modelling; simulation and prediction; education; optimization; scripting
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2016_118
id ecaade2016_118
authors Cannaerts, Corneel
year 2016
title Coding as Creative Practice
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 397-404
doi https://doi.org/10.52842/conf.ecaade.2016.1.397
wos WOS:000402063700044
summary This paper looks into coding as a creative practice within architecture, more specifically into textual and graphical coding as a practitioner during the design process. It argues that coding is not a mere tool for designing but a particular design medium, with its own affordances and resistances. Using code as a design medium provides a specific form of feedback, it influences the design process and its outcomes. Code is a technological and conceptual support for design thinking. In other words, code and coding can be ascribed agency in architectural design. This research is based on a number of cases from design practice and teaching, ranging from small design experiments, developing software tools for specific design projects and teaching workshops. The cases are grouped into three metaphors, each describing a particular aspect of coding as a design medium.
keywords coding; sketching; tooling; structuring
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_259
id caadria2016_259
authors Chen, Jia-Yih and Shao-Chu Huang
year 2016
title Adaptive Building Facade Optimisation: An integrated Green-BIM approach
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 259-268
doi https://doi.org/10.52842/conf.caadria.2016.259
summary This study focused on the optimal design of adaptive build- ing fac?ade for achieving better energy performance. Iterative fac?ade components design are studied between virtual and physical models with integrated tools of BIM, parametric design and sensor devices. The main objectives of this study are: (1) exploring systematic design process via the analysis of adaptive components in responsive fac?ade design; (2) developing compliance checking system for green building regulations; (3) developing optimization system for adaptive fac?ade design process. This paper demonstrated the integration of various digital design methods and concluded with the energy modelling re- sults of a demo project unit for various fac?ade component designs.
keywords Building fac?ade design; energy performance; design optimization; parametric design; BIM
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2016_078
id ecaade2016_078
authors Das, Subhajit, Zolfagharian, Samaneh, Nourbakhsh, Mehdi and Haymaker, John
year 2016
title Integrated Spatial-Structural Optimization in the Conceptual Design Stage of Project - A tool to generate and optimize design solutions aiding informed decision making for Architects, Engineers and Stakeholders
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 117-126
doi https://doi.org/10.52842/conf.ecaade.2016.2.117
wos WOS:000402064400011
summary Healthcare design projects require the careful integration of spatial and structural requirements. Today, design teams typically resolve these requirements in two separate, largely sequential steps. In the first step, architects leverage their experience and vision to develop space plans that address program and goals. Next, based on the architect's recommended design, engineers generate and refine a structural design to address structural requirements. This manual process produces a very limited number of non optimal spatial and structural design solutions with unclear decision rationale. This paper presents the Integrated Spatial-Structural Optimization (ISSO) decision making methodology. ISSO supports design teams by helping them generate, analyze, and manage a vast number of integrated spatial and structural solutions. ISSO features a bi-level optimization workflow that has been customized for spatial and structural design of healthcare facilities. The paper describes implementation in the Dynamo parametric modeling platform, and retrospective validation of the algorithm and workflow on an industry case study to demonstrate how ISSO can help design teams generate, analyze, and manage more conceptual design options.
keywords Spatial Design; Generative Design; Design Optimization; Facility Planning; Design Tools; Design Automation
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2016_208
id ecaade2016_208
authors Dounas, Theodoros and Spaeth, Benjamin
year 2016
title Ubiquitous Digital Repositories In the Design Studio - A Case study
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 241-249
doi https://doi.org/10.52842/conf.ecaade.2016.1.241
summary The paper investigates the usability and effect of a ubiquitous digital repository in the architectural design process. Acknowledging the post-digital era where students work with diverse media either digital or analogue, the project explores the suitability of a digital log in augmenting conceptual thinking, feedback provision and intellectual exchange by means of a studio in an architectural undergraduate course. Students integrate a digital log into their workflow resolving a design task of an architectural studio. A server-based repository serves as students' individual archive as well as a share-point for peer-students' informal exchange and tutors' feedback. The conclusion of the study is that sketching and organization habits from the analog media the students have learned persist even with a more digitally inclined generation. The use of digital tools that obliterate the analog-digital division, holding the best of both worlds are still subject to the constraints of timely introduction in the curriculum, cultural resistance in terms of organization of a project and more so void of experimentation in their use by students.
keywords digital repositories; Design Studio; hybrid media
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia16_382
id acadia16_382
authors Lopez, Deborah; Charbel, Hadin; Obuchi, Yusuke; Sato, Jun; Igarashi, Takeo; Takami, Yosuke; Kiuchi, Toshikatsu
year 2016
title Human Touch in Digital Fabrication
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 382-393
doi https://doi.org/10.52842/conf.acadia.2016.382
summary Human capabilities in architecture-scaled fabrication have the potential of being a driving force in both design and construction processes. However, while intuitive and flexible, humans are still often seen as being relatively slow, weak, and lacking the exacting precision necessary for structurally stable large-scale outputs—thus, hands-on involvement in on-site fabrication is typically kept at a minimum. Moreover, with increasingly advanced computational tools and robots in architectural contexts, the perfection and speed of production cannot be rivaled. Yet, these methods are generally non-engaging and do not necessarily require a skilled labor workforce, bringing to question the role of the craftsman in the digital age. This paper was developed with the focus of leveraging human adaptability and tendencies in the design and fabrication process, while using computational tools as a means of support. The presented setup consists of (i) a networked scanning and application of human movements and human on-site positioning, (ii) a lightweight and fast-drying extruded composite material, (iii) a handheld “smart” tool, and (iv) a structurally optimized generative form via an iterative feedback system. By redistributing the roles and interactions of humans and machines, the hybridized method makes use of the inherently intuitive yet imprecise qualities of humans, while maximizing the precision and optimization capabilities afforded by computational tools—thus incorporating what is traditionally seen as “human error” into a dynamically engaging and evolving design and fabrication process. The interdisciplinary approach was realized through the collaboration of structural engineering, architecture, and computer science laboratories.
keywords human computer interaction and design, craft in design, tool streams and tool building, cognate streams, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id ascaad2016_017
id ascaad2016_017
authors Yazici, Sevil; David J. Gerber
year 2016
title Prototyping Generative Architecture - Experiments on Multi-Agent Systems, Environmental Performance and 3D Printing
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 145-154
summary Computational design was developed to solve complex problems in architecture and to enable the establishment of systems with complex properties in a holistic manner. With the enhanced capabilities of computational design, there are possibilities to develop integrated approaches to adapt to multi-faceted design problems. Swarm-based multi-agent systems (MAS) are already used as generative bottom-up methods in various design operations, including form-finding and optimization. This study presents a systematic approach, in which multi-agent systems are informed by the environmental performance assessment data where the output is directly linked to the 3D printing process. The intent is to increase efficiency within the design and prototyping process by integrating performance and fabrication into the early stages of the design process. The proposed method has been applied as a case study to a diverse group of students and professionals. The results have proven that applying this systematic approach enabled the designers to achieve highly sophisticated, formal and organizational outputs, with enhanced spatial and geometric qualities.
series ASCAAD
email
last changed 2017/05/25 13:31

_id acadia16_196
id acadia16_196
authors Yuan, Philip F.; Chai, Hua; Yan, Chao; Zhou, Jin Jiang
year 2016
title Robotic Fabrication of Structural Performance-based Timber Gridshell in Large-Scale Building Scenario
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp 196-205
doi https://doi.org/10.52842/conf.acadia.2016.196
summary This paper investigates the potential of a digital geometry system to integrate structural performance-based design and robotic fabrication in the scenario of building a large-scale non-uniform timber shell. It argues that a synthesis of multi-objective optimization, design and construction phases is required in the realization of timber shell construction in architecture practice in order to fulfill the demands of building regulation. Confronting the structural challenge of the non-uniform shell, a digital geometry system correlates all the three phases by translating geometrical information between them. First, a series of structural simulations and experimentations with different objectives are executed to inform the particular shape and tectonic details of each shell component based on its local condition in the geometrical system. Then, controlled by the geometrical system, a hybrid process of different digital fabrication technologies, including a customized robotic timber mill, is established to enable the manufacture of the heterogeneous shell components. Ultimately, the Timber Structure Enterprise Pavilion as the demonstration and evaluation of this method is fabricated and assembled on site through a notational system to indicate the applicability of this research in practical scenarios.
keywords robotic fabrication, geometrical information modeling, simulation and design optimization, big data
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id ecaade2016_210
id ecaade2016_210
authors Abdelmohsen, Sherif, Massoud, Passaint and Elshafei, Ahmed
year 2016
title Using Tensegrity and Folding to Generate Soft Responsive Architectural Skins
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 529-536
doi https://doi.org/10.52842/conf.ecaade.2016.1.529
wos WOS:000402063700058
summary This paper describes the process of designing a prototype for a soft responsive system for a kinetic building facade. The prototype uses lightweight materials and mechanisms to generate a building facade skin that is both soft (less dependent on hard mechanical systems) and responsive (dynamically and simultaneously adapting to spatial and environmental conditions). By combining concepts stemming from both tensegrity structures and folding mechanisms, we develop a prototype that changes dynamically to produce varying facade patterns and perforations based on sensor-network data and feedback. We use radiation sensors and shape memory alloys to control the prototype mechanism and allow for the required parametric adaptation. Based on the data from the radiation sensors, the lengths of the shape memory alloys are altered using electric wires and are parametrically linked to the input data. The transformation in the resulting overall surface is directly linked to the desired levels of daylighting and solar exposure. We conclude with directions for future research, including full scale testing, advanced simulation, and multi-objective optimization.
keywords Soft responsive systems; tensegrity; folding; kinetic facades
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2016_014
id ascaad2016_014
authors Ahmed, Zeeshan Y.; Freek P. Bos, Rob J.M. Wolfs and Theo A.M. Salet
year 2016
title Design Considerations Due to Scale Effects in 3D Concrete Printing
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 115-124
summary The effect of scale on different parameters of the 3D printing of concrete is explored through the design and fabrication of a 3D concrete printed pavilion. This study shows a significant gap exists between what can be generated through computer aided design (CAD) and subsequent computer aided manufacturing (generally based on CNC technology). In reality, the 3D concrete printing on the one hand poses manufacturing constraints (e.g. minimum curvature radii) due to material behaviour that is not included in current CAD/CAM software. On the other hand, the process also takes advantage of material behaviour and thus allows the creation of shapes and geometries that, too, can’t be modelled and predicted by CAD/CAM software. Particularly in the 3D printing of concrete, there is not a 1:1 relation between toolpath and printed product, as is the case with CNC milling. Material deposition is dependent on system pressure, robot speed, nozzle section, layer stacking, curvature and more – all of which are scale dependent. This paper will discuss the design and manufacturing decisions based on the effects of scale on the structural design, printed and layered geometry, robot kinematics, material behaviour, assembly joints and logistical problems. Finally, by analysing a case study pavilion, it will be explore how 3D concrete printing structures can be extended and multiplied across scales and functional domains ranging from structural to architectural elements, so that we can understand how to address questions of scale in their design.
series ASCAAD
email
last changed 2017/05/25 13:31

_id ascaad2016_001
id ascaad2016_001
authors Al-Attili, Aghlab; Anastasia Karandinou and Ben Daley
year 2016
title Parametricism vs Materialism - Evolution of digital technologies for development
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, 597 p.
summary We build on previous technological developments in CAAD by looking into parametric design exploration and the development of the concept of parametricism. We use the phenomenological backdrop to account for our physical experiences and encounters as well as our mental ones; both evident in the link between parametric design as a process and an outcome. In specific, we previously examined two particular metaphors. The first metaphor addressed aspects of virtual environments that resemble our physical world; In other words, computer model as physical model and digital world as material world. In this volume, we extend the exploration into aspects of virtual environments and their resemblance to physical environments by looking at ‘performance’ aspects: the way in which environments are sensed, measured, tracked and visualised. Moreover, we reflect on matters and materiality in both virtual and physical space philosophically, theoretically, practically and reflectively. The second metaphor looked into the modes and means of interaction between our bodies and such virtual environment. Here we extend the investigation to look at the ways in which measures of environmental performance influence human interaction in real environments. The exploration takes us further to look into the area of design fabrication of the built environment, and methods in which developed processes meet environmental performance requirements, and the innovative outcomes that lead to disruptive technologies getting introduced into design and we revisit parametric design under this focus area.
series ASCAAD
type normal paper
email
last changed 2024/02/13 14:28

_id ascaad2016_032
id ascaad2016_032
authors Alhadidi, Suleiman; Justin Mclean, Luchlan Sharah, Isabel Chia, Roger Sam
year 2016
title Multiflight - Creating Interactive Stairs through Positive Technology
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 295-308
summary This paper details a pedagogical project which calls for an improved design performance of the existing built environment through the use of smart technology and data-driven design. The project is an investigation into ways in which to improve the performance of a ‘pre-selected university building’ through the use of a media facade that allows for interactive experiences. Existing problems of the selected building have been identified through observation and research using a rich picture and agile approach. An underutilised staircase was selected as the focus site for a series of computational design and interactive design studies. The brief of this mini-research project aims to encourage more people to use the stairs and create a memorable experience with a technological approach through the application of a site specific interactive media installation. The project is an interactive staircase which utilises LED strips and generative sound. The project features a series of light boxes which are connected to the existing staircase balustrade. Arduino, passive infra-red sensors, and other motion detection sensors were used to allow for light and generative sound interaction with users using visual scripting tools and a generative design platform. Sensing technology was used as a real-time data-gathering device during the site analysis phase as well as an input device for the designed prototype to allow the testing of the data-driven design. This paper details the study and resultant interactive prototypes. It also discusses the exploration of performance based design ideas into design workflows and the integration of sensing tools into the design process. It concludes by identifying possible implications on using the Internet of Things concepts to facilitate the design of interactive architecture.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id sigradi2016_803
id sigradi2016_803
authors Almeida, Marcela Alves de
year 2016
title A teoria da ludificação e os ambientes responsivos [The theory of ludification and responsive environments]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.838-843
summary This paper reports the responsive environments and the Theory of Ludification towards the interaction design using the structure of games on feedback process. It presents an interaction classification that can be reactive, responsive and dialogical based on authors related to cybernetics studies. It exposes the need for rationality in environments as an intrinsic and necessary condition for achieving the interaction. It also uses dialogue and game Vilém Flusser’s concepts to support this argument. Thus, it broadens the contemporary architectural discussion that encompassing communication processes that do not recognize the physical boundaries of the buildings.
keywords Resposive Environment; Ludification; Interaction; Play; Game
series other
type normal paper
email
last changed 2017/06/21 14:51

_id sigradi2016_450
id sigradi2016_450
authors Araujo, André L.; Celani, Gabriela
year 2016
title Exploring Weaire-Phelan through Cellular Automata: A proposal for a structural variance-producing engine
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.710-714
summary Complex forms and structures have always been highly valued in architecture, even much before the development of computers. Many architects and engineers have strived to develop structures that look very complex but at the same time are relatively simple to understand, calculate and build. A good example of this approach is the Beijing National Aquatics Centre design for the 2008 Olympic Games, also known as the Water Cube. This paper presents a proposal for a structural variance-producing engine using cellular automata (CA) techniques to produce complex structures based on Weaire-Phelan geometry. In other words, this research evaluates how generative and parametric design can be integrated with structural performance in order to enhance design flexibility and control in different stages of the design process. The method we propose was built in three groups of procedures: 1) we developed a method to generate several fits for the two Weaire-Phelan polyhedrons using CA computation techniques; 2) through the finite elements method, we codify the structural analysis outcomes to use them as inputs for the CA algorithm; 3) evaluation: we propose a framework to compare how the final outcomes deviate for the good solutions in terms of structural performance and rationalization of components. We are interested in knowing how the combination of the procedures could contribute to produce complex structures that are at the same time certain rational. The system developed allows the structural analysis of structured automatically generated by a generative system. However, some efficient solutions from the structural performance point of view do not necessarily represent a rational solution from the feasibility aspects.
keywords Structural design; Complex structures; Bottom-up design approach
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_641
id caadria2016_641
authors Baerlecken, D.; K. Wright, J. Reitz, N. Mueller and B. Heiermann
year 2016
title Performative Agency of Materials: Matter agency of vernacular African pattern systems
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 641-650
doi https://doi.org/10.52842/conf.caadria.2016.641
summary This paper investigates an agency of materials through a design methodology that follows Martin Heidegger’s process of “Entbergen” or “unconcealing” as a non-instrumentalist understanding of tools and materials. This investigation takes place through the de- sign of a children’s theatre in South Africa where material innovation for architectural components is needed. The research studies vernacu- lar African patterns and their inherent behaviour when transferred to materials. The transference of pattern systems to architectural proto- types is discussed alongside the discussion of their technical and ar- chitectural performance criteria. Following Heidegger’s theory of “Entbergen” (“unconcealing”) the paper will demonstrate how making in this methodology becomes an “unconcealing”, which includes both digital and analogue means, linking the four causalities - causa mate- rialis, causa formalis, causa finalis, and causa efficiens – through the agency of material within an integrated process between all four caus- es. Making becomes a process in which form is generated through in- terventions within fields of forces and currents of materials, taking cause and agency into account, and standing in opposition to methods that are defined by a premeditated notion of an ideal outcome.
keywords African patterns, making, design build, design methodology
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2016_098
id ecaade2016_098
authors Bia³kowski, Sebastian
year 2016
title Structural Optimisation Methods as a New Toolset for Architects
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 255-264
doi https://doi.org/10.52842/conf.ecaade.2016.2.255
wos WOS:000402064400025
summary The paper focuses on possibilities of already known engineering procedures such as Finite Element Method or Topology Optimisation for effective implementation in architectural design process. The existing attempts of complex engineering algorithms implementation, as a form finding approach will be discussed. The review of architectural approaches utilising engineering methods will be supplemented by the author's own solution for that particular problem. By intersecting architectural form evaluation with engineering analysis complemented by optimisation algorithms, the new quality of contemporary architecture design process may appears.
keywords topology optimization; design support tools; complex geometries; finite element method; CUDA
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_345944 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002